10 research outputs found

    Finding Teo

    Get PDF

    Prevalence of chronic fatigue syndrome in metropolitan, urban, and rural Georgia

    No full text
    Abstract Background Chronic fatigue syndrome (CFS) is a debilitating illness with no known cause or effective therapy. Population-based epidemiologic data on CFS prevalence are critical to put CFS in a realistic context for public health officials and others responsible for allocating resources. Methods Based on a random-digit dialing survey we ascertained CFS cases and controls to estimate the prevalence of CFS in metropolitan, urban, and rural populations of Georgia. This report focuses on the 5,623 of 19,381 respondents ages 18 to 59 years old. Fatigued (2,438), randomly selected unwell not fatigued (1,429) and randomly selected well (1,756) respondents completed telephone questionnaires concerning fatigue, other symptoms, and medical history. Subsets of those identified by interview as having CFS-like illness (292), chronic unwellness which was not CFS-like (268 – randomly selected), and well subjects (223, matched to those with CFS-like illness on sex, race, and age) completed a clinical evaluation. Results We estimated that 2.54% of persons 18 to 59 years of age suffered from CFS. There were no significant differences in prevalence of CFS between metropolitan, urban or rural populations or between white and black residents of the three regions. However, there were significant differences in female-to-male ratios of prevalence across the strata (metropolitan female: male 11.2 : 1, urban 1.7 : 1, rural 0.8 : 1). Conclusion We estimated that 2.54% of the Georgia population suffers from CFS, which is 6- to 10-fold higher than previous population-based estimates in other geographic areas. These differences may reflect broader screening criteria and differences in the application of the case definition. However, we cannot exclude the possibility that CFS prevalence may be higher in Georgia than other areas where it has been measured. Although the study did not identify differences in overall prevalence between metropolitan, urban, and rural Georgia populations, it did suggest the need for additional stratified analyses by geographic strata.</p

    Single-Cell Proteomics Reveal that Quantitative Changes in Co-expressed Lineage-Specific Transcription Factors Determine Cell Fate.

    No full text
    Hematopoiesis provides an accessible system for studying the principles underlying cell-fate decisions in stem cells. Proposed models of hematopoiesis suggest that quantitative changes in lineage-specific transcription factors (LS-TFs) underlie cell-fate decisions. However, evidence for such models is lacking as TF levels are typically measured via RNA expression rather than by analyzing temporal changes in protein abundance. Here, we used single-cell mass cytometry and absolute quantification by mass spectrometry to capture the temporal dynamics of TF protein expression in individual cells during human erythropoiesis. We found that LS-TFs from alternate lineages are co-expressed, as proteins, in individual early progenitor cells and quantitative changes of LS-TFs occur gradually rather than abruptly to direct cell-fate decisions. Importantly, upregulation of a megakaryocytic TF in early progenitors is sufficient to deviate cells from an erythroid to a megakaryocyte trajectory, showing that quantitative changes in protein abundance of LS-TFs in progenitors can determine alternate cell fates

    YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression

    Get PDF
    Defective Hippo/YAP signaling in the liver results in tissue overgrowth and development of hepatocellular carcinoma (HCC). Here, we uncover mechanisms of YAP-mediated hepatocyte reprogramming and HCC pathogenesis. YAP functions as a rheostat in maintaining metabolic specialization, differentiation, and quiescence within the hepatocyte compartment. Increased or decreased YAP activity reprograms subsets of hepatocytes to different fates associated with deregulation of the HNF4A, CTNNB1, and E2F transcriptional programs that control hepatocyte quiescence and differentiation. Importantly, treatment with small interfering RNA-lipid nanoparticles (siRNA-LNPs) targeting YAP restores hepatocyte differentiation and causes pronounced tumor regression in a genetically engineered mouse HCC model. Furthermore, YAP targets are enriched in an aggressive human HCC subtype characterized by a proliferative signature and absence of CTNNB1 mutations. Thus, our work reveals Hippo signaling as a key regulator of the positional identity of hepatocytes, supports targeting of YAP using siRNA-LNPs as a paradigm of differentiation-based therapy, and identifies an HCC subtype that is potentially responsive to this approach

    YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression

    No full text
    Defective Hippo/YAP signaling in the liver results in tissue overgrowth and development of hepatocellular carcinoma (HCC). Here, we uncover mechanisms of YAP-mediated hepatocyte reprogramming and HCC pathogenesis. YAP functions as a rheostat in maintaining metabolic specialization, differentiation, and quiescence within the hepatocyte compartment. Increased or decreased YAP activity reprograms subsets of hepatocytes to different fates associated with deregulation of the HNF4A, CTNNB1, and E2F transcriptional programs that control hepatocyte quiescence and differentiation. Importantly, treatment with small interfering RNA-lipid nanoparticles (siRNA-LNPs) targeting YAP restores hepatocyte differentiation and causes pronounced tumor regression in a genetically engineered mouse HCC model. Furthermore, YAP targets are enriched in an aggressive human HCC subtype characterized by a proliferative signature and absence of CTNNB1 mutations. Thus, our work reveals Hippo signaling as a key regulator of the positional identity of hepatocytes, supports targeting of YAP using siRNA-LNPs as aparadigm of differentiation-based therapy, and identifies an HCC subtype that is potentially responsive to this approac

    YAP Inhibition restores Hepatocyte differentiation in advanced HCC, leading to tumor regression

    No full text
    Defective Hippo/YAP signaling in the liver results in tissue overgrowth and development of hepatocellular carcinoma (HCC). Here, we uncover mechanisms of YAP-mediated hepatocyte reprogramming and HCC pathogenesis. YAP functions as a rheostat in maintaining metabolic specialization, differentiation, and quiescence within the hepatocyte compartment. Increased or decreased YAP activity reprograms subsets of hepatocytes to different fates associated with deregulation of the HNF4A, CTNNB1, and E2F transcriptional programs that control hepatocyte quiescence and differentiation. Importantly, treatment with small interfering RNA-lipid nanoparticles (siRNA-LNPs) targeting YAP restores hepatocyte differentiation and causes pronounced tumor regression in a genetically engineered mouse HCC model. Furthermore, YAP targets are enriched in an aggressive human HCC subtype characterized by a proliferative signature and absence of CTNNB1 mutations. Thus, our work reveals Hippo signaling as a key regulator of the positional identity of hepatocytes, supports targeting of YAP using siRNA-LNPs as a paradigm of differentiation-based therapy, and identifies an HCC subtype that is potentially responsive to this approach
    corecore