17,956 research outputs found
Development of small bore, high speed tapered roller bearing
The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate
On Krein-like theorems for noncanonical Hamiltonian systems with continuous spectra: application to Vlasov-Poisson
The notions of spectral stability and the spectrum for the Vlasov-Poisson
system linearized about homogeneous equilibria, f_0(v), are reviewed.
Structural stability is reviewed and applied to perturbations of the linearized
Vlasov operator through perturbations of f_0. We prove that for each f_0 there
is an arbitrarily small delta f_0' in W^{1,1}(R) such that f_0+delta f_0f_0$ is perturbed by an area preserving rearrangement, f_0 will
always be stable if the continuous spectrum is only of positive signature,
where the signature of the continuous spectrum is defined as in previous work.
If there is a signature change, then there is a rearrangement of f_0 that is
unstable and arbitrarily close to f_0 with f_0' in W^{1,1}. This result is
analogous to Krein's theorem for the continuous spectrum. We prove that if a
discrete mode embedded in the continuous spectrum is surrounded by the opposite
signature there is an infinitesimal perturbation in C^n norm that makes f_0
unstable. If f_0 is stable we prove that the signature of every discrete mode
is the opposite of the continuum surrounding it.Comment: Submitted to the journal Transport Theory and Statistical Physics. 36
pages, 12 figure
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Stability properties and mode signature for equilibria of a model of electron
temperature gradient (ETG) driven turbulence are investigated by Hamiltonian
techniques. After deriving the infinite families of Casimir invariants,
associated with the noncanonical Poisson bracket of the model, a sufficient
condition for stability is obtained by means of the Energy-Casimir method. Mode
signature is then investigated for linear motions about homogeneous equilibria.
Depending on the sign of the equilibrium "translated" pressure gradient, stable
equilibria can either be energy stable, i.e.\ possess definite linearized
perturbation energy (Hamiltonian), or spectrally stable with the existence of
negative energy modes (NEMs). The ETG instability is then shown to arise
through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a
negative energy mode, corresponding to two modified drift waves admitted by the
system. The Hamiltonian of the linearized system is then explicitly transformed
into normal form, which unambiguously defines mode signature. In particular,
the fast mode turns out to always be a positive energy mode (PEM), whereas the
energy of the slow mode can have either positive or negative sign
Electrophoresis of a polyelectrolyte through a nanopore
A hydrodynamic model for determining the electrophoretic speed of a
polyelectrolyte through a nanopore is presented. It is assumed that the speed
is determined by a balance of electrical and viscous forces arising from within
the pore and that classical continuum electrostatics and hydrodynamics may be
considered applicable. An explicit formula for the translocation speed as a
function of the pore geometry and other physical parameters is obtained and is
shown to be consistent with experimental measurements on DNA translocation
through nanopores in silicon membranes. Experiments also show a weak dependence
of the translocation speed on polymer length that is not accounted for by the
present model. It is hypothesized that this is due to secondary effects that
are neglected here.Comment: 5 pages, 2 column, 2 figure
Subtraction of test mass angular noise in the LISA Technology Package interferometer
We present recent sensitivity measurements of the LISA Technology Package
interferometer with articulated mirrors as test masses, actuated by
piezo-electric transducers. The required longitudinal displacement resolution
of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that
corresponds to the expected in on-orbit operation. The excess noise
contribution of this test mass jitter onto the sensitive displacement readout
was completely subtracted by fitting the angular interferometric data streams
to the longitudinal displacement measurement. Thus, this cross-coupling
constitutes no limitation to the required performance of the LISA Technology
Package interferometry.Comment: Applied Physics B - Lasers and Optics (2008
Relaminarisation of Re_Ï„=100 channel flow with globally stabilising linear feedback control
The problems of nonlinearity and high dimension have so far prevented a complete solution of the control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control strategy which ensures that the energy of any perturbation to the target profile decays monotonically. The controller’s estimate of the flow state is similarly guaranteed to converge to the true value. We present a one-time off-line synthesis procedure, which generalises to accommodate more restrictive actuation and sensing arrangements, with conditions for existence for the controller given in this case. The control is tested in turbulent channel flow (Re_τ = 100) using full-domain sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection in the mean profile, the control directly counters the supply of turbulence energy arising from the interaction of the wall-normal perturbations with the flow shear. It is found that the control is only required for the larger-scale motions, specifically those above the scale of the mean streak spacing. Minimal control effort is required once laminar flow is achieved. The response of the near-wall flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields, in the context of Landahl’s theory of sheared turbulence
Collective spin systems in dispersive optical cavity QED: Quantum phase transitions and entanglement
We propose a cavity QED setup which implements a dissipative
Lipkin-Meshkov-Glick model -- an interacting collective spin system. By varying
the external model parameters the system can be made to undergo both first-and
second-order quantum phase transitions, which are signified by dramatic changes
in cavity output field properties, such as the probe laser transmission
spectrum. The steady-state entanglement between pairs of atoms is shown to peak
at the critical points and can be experimentally determined by suitable
measurements on the cavity output field. The entanglement dynamics also
exhibits pronounced variations in the vicinities of the phase transitions.Comment: 19 pages, 18 figures, shortened versio
Relaminarisation of Re_{\tau} = 100 channel flow with globally stabilising linear feedback control
The problems of nonlinearity and high dimension have so far prevented a
complete solution of the control of turbulent flow. Addressing the problem of
nonlinearity, we propose a flow control strategy which ensures that the energy
of any perturbation to the target profile decays monotonically. The
controller's estimate of the flow state is similarly guaranteed to converge to
the true value. We present a one-time off-line synthesis procedure, which
generalises to accommodate more restrictive actuation and sensing arrangements,
with conditions for existence for the controller given in this case. The
control is tested in turbulent channel flow () using full-domain
sensing and actuation on the wall-normal velocity. Concentrated at the point of
maximum inflection in the mean profile, the control directly counters the
supply of turbulence energy arising from the interaction of the wall-normal
perturbations with the flow shear. It is found that the control is only
required for the larger-scale motions, specifically those above the scale of
the mean streak spacing. Minimal control effort is required once laminar flow
is achieved. The response of the near-wall flow is examined in detail, with
particular emphasis on the pressure and wall-normal velocity fields, in the
context of Landahl's theory of sheared turbulence
- …