A hydrodynamic model for determining the electrophoretic speed of a
polyelectrolyte through a nanopore is presented. It is assumed that the speed
is determined by a balance of electrical and viscous forces arising from within
the pore and that classical continuum electrostatics and hydrodynamics may be
considered applicable. An explicit formula for the translocation speed as a
function of the pore geometry and other physical parameters is obtained and is
shown to be consistent with experimental measurements on DNA translocation
through nanopores in silicon membranes. Experiments also show a weak dependence
of the translocation speed on polymer length that is not accounted for by the
present model. It is hypothesized that this is due to secondary effects that
are neglected here.Comment: 5 pages, 2 column, 2 figure