393 research outputs found

    Five-State Study of ACA Marketplace Competition

    Get PDF
    The health insurance marketplaces created by the Affordable Care Act (ACA) were intended to broaden health insurance coverage by making it relatively easy for the uninsured, armed with income-related federal subsidies, to choose health plans that met their needs from an array of competing options. The further hope was that competition among health plans on the exchanges would lead to lower costs and higher value for consumers, because inefficient, low-value plans would lose out in the competitive market place. This study sought to understand the diverse experience in five states under the ACA in order to gain insights for improving competition in the private health insurance industry and the implementation of the ACA.In spring 2016, the insurance marketplaces had been operating for nearly three full years. There were numerous press stories of plans' decisions to enter or leave selected states or market areas within states and to narrow provider networks by including fewer choices among hospitals, medical specialists, and other providers. There were also beginning to be stories of insurer requests for significant premium increases. However, there was no clear understanding of how common these practices were, nor how and why practices differed across carriers, markets, and state regulatory settings.This project used the ACA Implementation Research Network to conduct field research in California, Michigan, Florida, North Carolina, and Texas. In each state, expert field researchers engaged directly with marketplace stakeholders, including insurance carriers, provider groups, state regulators, and consumer engagement organizations, to identify and understand their various decisions. This focus included an effort to understand why carriers choose to enter or exit markets and the barriers they faced, how provider networks were built, and how state regulatory decisions affected decision-making. Ultimately, it sought to find where and why certain markets are successful and competitive and how less competitive markets might be improved.The study of five states was not intended to provide statistically meaningful generalizations about the functioning of the marketplace exchanges. Rather, it was intended to accomplish two other objectives. First, the study was designed to generate hypotheses about the development and evolution of the exchanges that might be tested with "harder" data from all the exchanges. Second, it sought to describe the potentially idiosyncratic nature of the marketplaces in each of the five states. Political and economic circumstances may differ substantially across markets. Policymakers and market participants need to appreciate the nuances of different local settings if programs are to be successful. What works in Michigan may not work in Texas and vice versa. Field research of this sort can give researchers and policymakers insight into how idiosyncratic local factors matter in practice.In brief, our five states had four years of experience in the open enrollment periods from 2014 through 2017. The states array themselves in a continuum of apparent success in enhancing and maintaining competition among insurers. California and Michigan appear to have had success in nurturing insurer competition, in at least the urban areas of their states. Florida, North Carolina, and Texas were less successful. This divergence is recent, however. As recently as the 2015 and 2016 open enrollment periods, all of the states had what appeared to be promising, if not always robust, insurance competition. Large changes occurred in the run-up to the 2017 open enrollment period

    HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-ÎČ Signaling Regulation

    Get PDF
    SummaryThe terminal stages of pulmonary development, called sacculation and alveologenesis, involve both differentiation of distal lung endoderm progenitors and extensive cellular remodeling of the resultant epithelial lineages. These processes are coupled with dramatic expansion of distal airspace and surface area. Despite the importance of these late developmental processes and their relation to neonatal respiratory diseases, little is understood about the molecular and cellular pathways critical for their successful completion. We show that a histone deacetylase 3 (Hdac3)-mediated epigenetic pathway is critical for the proper remodeling and expansion of the distal lung saccules into primitive alveoli. Loss of Hdac3 in the developing lung epithelium leads to a reduction of alveolar type 1 cell spreading and a disruption of lung sacculation. Hdac3 represses miR-17-92 expression, a microRNA cluster that regulates transforming growth factor ÎČ (TGF-ÎČ) signaling. De-repression of miR-17-92 in Hdac3-deficient lung epithelium results in decreased TGF-ÎČ signaling activity. Importantly, inhibition of TGF-ÎČ signaling and overexpression of miR-17-92 can phenocopy the defects observed in Hdac3 null lungs. Conversely, loss of miR-17-92 expression rescues many of the defects caused by loss of Hdac3 in the lung. These studies reveal an intricate epigenetic pathway where Hdac3 is required to repress miR-17-92 expression to allow for proper TGF-ÎČ signaling during lung sacculation

    Health Care Consumers: Choices and Constraints

    Full text link
    This article summarizes the research and data currently available on different dimensions of consumer choice. These dimensions include not only whether to participate in a health care plan and which plan to select if given a choice but also the decisions that lead to having a choice and the implications of making the choice. Data are presented on what choices consumers face, how many are given what kinds of choices, what constraints they face, what we know about how they make these choices, and what information they are given and what they use. The majority of Americans are offered some kind of health insurance plan either through their place of employment or as a dependent on someone else’s employer-sponsored health plan. About half of those offered health insurance are offered a choice, usually of only two or three plans. The majority elect to participate in one of those plans.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68465/2/10.1177_107755879905600102.pd

    DAAM1 and DAAM2 are co-required for myocardial maturation and sarcomere assembly

    Get PDF
    AbstractWnt ligands regulate heart morphogenesis but the underlying mechanisms remain unclear. Two Formin-related proteins, DAAM1 and 2, were previously found to bind the Wnt effector Disheveled. Here, since DAAM1 and 2 nucleate actin and mediate Wnt-induced cytoskeletal changes, a floxed-allele of Daam1 was used to disrupt its function specifically in the myocardium and investigate Wnt-associated pathways. Homozygous Daam1 conditional knockout (CKO) mice were viable but had misshapen hearts and poor cardiac function. The defects in Daam1 CKO mice were observed by mid-gestation and were associated with a loss of protrusions from cardiomyocytes invading the outflow tract. Further, these mice exhibited noncompaction cardiomyopathy (NCM) and deranged cardiomyocyte polarity. Interestingly, Daam1 CKO mice that were also homozygous for an insertion disrupting Daam2 (DKO) had stronger NCM, severely reduced cardiac function, disrupted sarcomere structure, and increased myocardial proliferation, suggesting that DAAM1 and DAAM2 have redundant functions. While RhoA was unaffected in the hearts of Daam1/2 DKO mice, AKT activity was lower than in controls, raising the issue of whether DAAM1/2 are only mediating Wnt signaling. Daam1-floxed mice were thus bred to Wnt5a null mice to identify genetic interactions. The hearts of Daam1 CKO mice that were also heterozygous for the null allele of Wnt5a had stronger NCM and more severe loss of cardiac function than Daam1 CKO mice, consistent with DAAM1 and Wnt5a acting in a common pathway. However, deleting Daam1 further disrupted Wnt5a homozygous-null hearts, suggesting that DAAM1 also has Wnt5a-independent roles in cardiac development

    Deep GALEX Imaging of the HST/COSMOS Field: A First Look at the Morphology of z~0.7 Star-forming Galaxies

    Get PDF
    We present a study of the morphological nature of redshift z~0.7 star-forming galaxies using a combination of HST/ACS, GALEX and ground-based images of the COSMOS field. Our sample consists of 8,146 galaxies, 5,777 of which are detected in the GALEX near-ultraviolet band down to a limiting magnitude of 25.5 (AB). We make use of the UV to estimate star formation rates, correcting for the effect of dust using the UV-slope, and compute, from the ACS F814W images, the C,A,S,G,M20 morphological parameters for all objects in our sample. We observe a morphological bimodality in the galaxy population and show that it has a strong correspondence with the FUV - g color bimodality. We conclude that UV-optical color predominantly evolves concurrently with morphology. We observe many of the most star-forming galaxies to have morphologies approaching that of early-type galaxies, and interpret this as evidence that strong starburst events are linked to bulge growth and constitute a process through which galaxies can be brought from the blue to the red sequence while simultaneously modifying their morphology accordingly. We conclude that the red sequence has continued growing at z~<0.7. We also observe z~0.7 galaxies to have physical properties similar to that of local galaxies, except for higher star formation rates. Whence we infer that the dimming of star-forming galaxies is responsible for most of the evolution in the star formation rate density of the Universe since that redshift, although our data are also consistent with a mild number evolution. [abridged]Comment: 29 pages including 22 figures. Accepted for publication in ApJS COSMOS Special Issue. A copy of the paper with high resolution figures is available at http://www.astro.columbia.edu/~michel/galex_cosmos_paper.pd

    The Dark Matter Distributions in Low-Mass Disk Galaxies. I. Hα Observations Using the Palomar Cosmic Web Imager

    Get PDF
    Dark-matter-only simulations predict that dark matter halos have cusp-like inner density profiles, while observations of low-mass galaxies have found a range of inner slopes that are typically much shallower. It is still not well established whether this discrepancy can be explained by baryonic feedback or if it may require modified dark matter models. To better understand the diversity of dark matter profiles in dwarf galaxies, we undertook a survey of 26 low-mass galaxies (\mathrm{log}{M}_{* }/{M}_{\odot }=8.4\mbox{--}9.8, v max = 50–140 km s−1) within 30 Mpc using the Palomar Cosmic Web Imager, which is among the largest integral field spectroscopic surveys of its type. In this paper, we derive Hα velocity fields for the full sample with a typical spatial resolution of ~160 pc. We extract rotation curves and verify their robustness to several choices in the analysis. We present a method for improving the velocity precision obtained from image slicing spectrographs using narrowband Hα images. For 11 galaxies, we compare the Hα velocity fields to CO kinematics measured using CARMA, finding the maps to be in good agreement. The standard deviation of the difference is typically ~7 km s−1, comparable to the level of turbulence in the interstellar medium, showing that the two tracers have substantially the same bulk kinematics. In a companion paper, we will use the rotation curves produced here to construct mass models of the galaxies and determine their dark matter density profiles

    Crossing the Dripline to 11N Using Elastic Resonance Scattering

    Get PDF
    The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion completely analogous to its mirror partner, 11Be. A narrow resonance in the excitation function at 4.33 (+-0.05) MeV was also observed and assigned spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR

    Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    Get PDF
    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes

    Barx1-Mediated Inhibition of Wnt Signaling in the Mouse Thoracic Foregut Controls Tracheo-Esophageal Septation and Epithelial Differentiation

    Get PDF
    Mesenchymal cells underlying the definitive endoderm in vertebrate animals play a vital role in digestive and respiratory organogenesis. Although several signaling pathways are implicated in foregut patterning and morphogenesis, and despite the clinical importance of congenital tracheal and esophageal malformations in humans, understanding of molecular mechanisms that allow a single tube to separate correctly into the trachea and esophagus is incomplete. The homoebox gene Barx1 is highly expressed in prospective stomach mesenchyme and required to specify this organ. We observed lower Barx1 expression extending contiguously from the proximal stomach domain, along the dorsal anterior foregut mesenchyme and in mesenchymal cells between the nascent esophagus and trachea. This expression pattern exactly mirrors the decline in Wnt signaling activity in late development of the adjacent dorsal foregut endoderm and medial mainstem bronchi. The hypopharynx in Barx1−/− mouse embryos is abnormally elongated and the point of esophago-tracheal separation shows marked caudal displacement, resulting in a common foregut tube that is similar to human congenital tracheo-esophageal fistula and explains neonatal lethality. Moreover, the Barx1−/− esophagus displays molecular and cytologic features of respiratory endoderm, phenocopying abnormalities observed in mouse embryos with activated ß-catenin. The zone of canonical Wnt signaling is abnormally prolonged and expanded in the proximal Barx1−/− foregut. Thus, as in the developing stomach, but distinct from the spleen, Barx1 control of thoracic foregut specification and tracheo-esophageal septation is tightly associated with down-regulation of adjacent Wnt pathway activity

    Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis.

    Get PDF
    Hemodynamic forces play an essential epigenetic role in heart valve development, but how they do so is not known. Here, we show that the shear-responsive transcription factor KLF2 is required in endocardial cells to regulate the mesenchymal cell responses that remodel cardiac cushions to mature valves. Endocardial Klf2 deficiency results in defective valve formation associated with loss of Wnt9b expression and reduced canonical WNT signaling in neighboring mesenchymal cells, a phenotype reproduced by endocardial-specific loss of Wnt9b. Studies in zebrafish embryos reveal that wnt9b expression is similarly restricted to the endocardial cells overlying the developing heart valves and is dependent upon both hemodynamic shear forces and klf2a expression. These studies identify KLF2-WNT9B signaling as a conserved molecular mechanism by which fluid forces sensed by endothelial cells direct the complex cellular process of heart valve development and suggest that congenital valve defects may arise due to subtle defects in this mechanotransduction pathway.journal articleresearch support, non-u.s. gov'tresearch support, n.i.h., extramural2017 11 062017 10 19importe
    • 

    corecore