42,479 research outputs found

    Hypersonic cruise aircraft propulsion integration study, volume 1

    Get PDF
    A hypersonic cruise transport conceptual design is described. The integration of the subsonic, supersonic, and hypersonic propulsion systems with the aerodynamic design of the airframe is emphasized. An evaluation of various configurations of aircraft and propulsion integration concepts, and selection and refinement of a final design are given. This configuration was used as a baseline to compare two propulsion concepts - one using a fixed geometry dual combustion mode scramjet and the other a variable geometry ramjet engine. Both concepts used turbojet engines for takeoff, landing and acceleration to supersonic speed

    Study of active cooling for supersonic transports

    Get PDF
    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing

    Minimum energy, liquid hydrogen supersonic cruise vehicle study

    Get PDF
    The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization

    Study of LH2 fueled subsonic passenger transport aircraft

    Get PDF
    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise

    Angle-of-attack analysis of a spinning slender cone with slight aerodynamic and mass asymmetries /reentry F/

    Get PDF
    Angle of attack analysis of spinning slender reentry cone with slight aerodynamic and mass asymmetrie

    Investigation of conventional and Super-X divertor configurations of MAST Upgrade using SOLPS

    Full text link
    One of the first studies of MAST Upgrade divertor configurations with SOLPS5.0 are presented. We focus on understanding main prospects associated with the novel geometry of the Super-X divertor (SXD). This includes a discussion of the effect of magnetic flux expansion and volumetric power losses on the reduction of target power loads, the effect of divertor geometry on the divertor closure and distribution of neutral species and radiation in the divertor, the role of the connection length in broadening the target wetted area. A comparison in conditions typical for MAST inter-ELM H-mode plasmas confirms improved performance of the Super-X topology resulting in significantly better divertor closure with respect to neutrals (the atomic flux from the target increased by a factor of 6, but the atomic flux from the divertor to the upper SOL reduced by a factor of 2), increased radiation volume and increased total power loss (a factor of 2) and a reduction of target power loads through both magnetic flux expansion and larger volumetric power loss in the divertor (a factor of 5-10 in attached plasmas). The reduction of the target power load by SXD further increases with collisionality (high density or detached regimes) thanks to larger importance of volumetric power losses. It is found that a cold divertor plasma leads to stronger parallel temperature gradients in the SOL which drive more parallel heat flux, meaning that the effectiveness of perpendicular transport in spreading the power at the target can be reduced, and this needs to be taken into account in any optimisation.Comment: 32 pages, 23 figures. This is an author-created, un-copyedited version of an article accepted for publication in PPCF. IOP Publishing Ltd and IAEA are not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Operating experiences of retardant bombers during firefighting operations

    Get PDF
    Data are presented on operational practices and maneuver accelerations experienced by two Douglas DC-6B airplanes converted to retardant bombers and used in firefighting operations. The data cover two fire seasons in the mountainous regions of the northwestern United States

    Lewis Research Center spin rig and its use in vibration analysis of rotating systems

    Get PDF
    The Lewis Research Center spin rig was constructed to provide experimental evaluation of analysis methods developed under the NASA Engine Structural Dynamics Program. Rotors up to 51 cm (20 in.) in diameter can be spun to 16,000 rpm in vacuum by an air motor. Vibration forcing functions are provided by shakers that apply oscillatory axial forces or transverse moments to the shaft, by a natural whirling of the shaft, and by an air jet. Blade vibration is detected by strain gages and optical blade-tip motion sensors. A variety of analogy and digital processing equipment is used to display and analyze the signals. Results obtained from two rotors are discussed. A 56-blade compressor disk was used to check proper operation of the entire spin rig system. A special two-blade rotor was designed and used to hold flat and twisted plates at various setting and sweep angles. Accurate Southwell coefficients have been obtained for several modes of a flat plate oriented parallel to the plane of rotation

    Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit

    Full text link
    We report measurements of a superconducting coplanar waveguide resonator (CPWR) coupled to a sphere of yttrium-iron garnet. The non-uniform CPWR field allows us to excite various magnon modes in the sphere. Mode frequencies and relative coupling strengths are consistent with theory. Strong coupling is observed to several modes even with, on average, less than one excitation present in the CPWR. The time response to square pulses shows oscillations at the mode splitting frequency. These results indicate the feasibility of combining magnonic and planar superconducting quantum devices.Comment: 5 pages, 4 figure

    Performance of high-altitude, long-endurance, turboprop airplanes using conventional or cryogenic fuels

    Get PDF
    An analytical study has been conducted to evaluate the potential endurance of remotely piloted, low speed, high altitude, long endurance airplanes designed with 1990 technology. The baseline configuration was a propeller driven, sailplane like airplane powered by turbine engines that used JP-7, liquid methane, or liquid hydrogen as fuel. Endurance was measured as the time spent between 60,000 feet and an engine limited maximum altitude of 70,000 feet. Performance was calculated for a baseline vehicle and for configurations derived by varying aerodynamic, structural or propulsion parameters. Endurance is maximized by reducing wing loading and engine size. The level of maximum endurance for a given wing loading is virtually the same for all three fuels. Constraints due to winds aloft and propulsion system scaling produce maximum endurance values of 71 hours for JP-7 fuel, 70 hours for liquid methane, and 65 hours for liquid hydrogen. Endurance is shown to be strongly effected by structural weight fraction, specific fuel consumption, and fuel load. Listings of the computer program used in this study and sample cases are included in the report
    corecore