NASA CR-144935

STUDY OF LH₂ FUELED SUBSONIC PASSENGER TRANSPORT AllCRAFT

by G. D. Brewer & R. E. Morris

FINAL REPORT

JANUARY 1976

(NEGR-GU-17 Sc) GENER SU FAS SAFFUS THERE A TAL MARY TEANSFORM ALLESSED - 525.12 "aport, dul.-tec. for (Lock-on)-alitorna 0:01 011 (D.) 1.1 + 1 + 1. 1. 1.

11. C] A 1

2 11 - 7

11, P.F. RECEIVED NASA STI FACILITY

INPUT BRANCH

ł,

for LANGLEY RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LOCKHEED-CALIFORNIA COMPANY • EURBANK SION OF LOCKHEED AIRCRAFT CORPORATION

1. REPORT NO. NASA CR-144935	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.			
4. TITLE AND SUBTITLE		5. REPORT DATE			
Final Report: Study of 3	LH, Fueled Subsonic	December, 1975			
Transport Aircraft		6. PERFORMING ORG CODE			
7. AUTHOR(S)		8. PERFORMING ORG REPORT NO.			
G. D. Brewer and R. E. M	orris	LR 27446			
9. PERFORMING ORGANIZATION NAME		10. WORK UNIT NO.			
LOCKHEED-CALIFORNIA COMPANY	AND ADDRESS				
P.O. BOX 551		11. CONTRACT OR GRANT NO.			
BURBANK, CALIFORNIA 91520		Modification No. 4,			
		NAS 1-12972 13. TYPE OF REPORT AND PERIOD			
12. SPONSORING AGENCY NAME AND A	DDRESS	COVERED Final Report			
NASA - Langley Research (^a ent <i>er</i>	July - Dec., 1975			
Hampton, Virginia 23665	Jenter	14. SPONSORING AGENCY CODE			
15. SUPPLEMENTARY NOTES					

16. ABSTRACT

. 4

•••

ر t د مسغ

....

1.

1.;

Li

This extension of a previous study to investigate the potential of using liquid hydrogen as fuel in subsonic transport aircraft, was performed to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

ころのないのである ひろうち マ

17. KEY WORDS (SUGGESTED BY AUTHOR(S)) Hydrogen, subsonic, passenger transport aircraft, Jet A, cryogenic, insulation, energy utilization		18. DISTRIBUTION STATEMENT		
19. SECURITY CLASSIF. (OF THIS REPORT)	20. SECURITY CL	ASSIF. (OF THIS PAGE)	21. NO. OF PAGES	22. PRICE*
Unclassified	Unclassif	Unclassified		

FOREWORD

Π

ſ

[]

 $\left[\right]$

[]

Π

Π

Π

2

12,210

.

......

.

10 11 2

1

.

ì

•

**** *

1

ı,

ang (11-

The second second

This is the final report of work performed as an addendum to a previously completed study of hydrogen fueled subsonic transport aircraft (Reference 1). This work was performed under Modification No. 4 of Contract NAS 1-12972 for NASA - Langley Research Center. The report is documentation of the substance of work performed during the period 20 June through 20 December, 1975.

The study was performed within the Advanced Design Division of the Science and Technology Organization at Lockheed - California Company, Burbank, California. G. Daniel Brewer was study manager and Robert E. Morris was project engineer. Other participants were

Dalton E. Sherwood	vehicle synthesis
E. L. Bragdon	propulsion
R. E. Skarshaug	propulsion
Samuel J. Smyth	design
R. N. Jensen	weights
R. J. Ptachick	flight controls
N. Shapiro	acoustics
J. Schulert	acoustics

Mr. Charles T. D'Aiutolo of the Aeronautical Systems Division at NASA-Langley Research Center was the technical monitor for the contract.

All computations were performed in U.S. Customary units and then converted to S.I. units.

TABLE OF CONTENTS

.

•

Section		Page
	FOREWORD	iii
he	LIST OF FIGURES	ix
	LIST OF TABLES	xi
	NOMENCLATURE	xiii
	SUMMARY	l
ı	INTRODUCTION	5
2	TECHNICAL APPROACH	8
3	TECHNOLOGY MODIFICATIONS	12
	3.1 Propulsion	12
	3.2 Hydrogen Tankage	13
	3.3 Weight Allowances	17
4	SHORT RANGE AIRCRAFT	20
	4.1 Design Requirements	20
	4.2 Configuration Selection	20
	4.3 LH ₂ Internal Tank Airplane (Aircraft No. 1)	23
	4.3.1 Aspect Ratio Selection	23
	4.3.2 Configuration Description	24
	4.3.3 Vehicle Data	26
*	4.4 LH ₂ External Tank Airplane (Aircraft No. 2)	31
* .	4.4.1 Aspect Ratio Selection	31
	4.4.2 Configuration Description	31
	4.4.3 Vehicle Data	31

v

PRECEDING PAGE BLANK NOT FILMEN

;

.

میلومی از این اور ماروند. این میلودی و موفوروند از مادیان در این میلود.

ě

وخا و والمراجع و المراجع و

:

and the second second second second second second and the second se

Ω

[]

 \Box

 \Box

 \square

[

0

 \prod

Π

TABLE OF CONTENTS (Continued)

11

Ĭ

1

[]

Ì

]

1

Section			Page
	4.5	Jet A Airplane (Aircraft No. 3)	35
		4.5.1 Aspect Ratio Selection	35
		4.5.2 Configuration Description	35
		4.5.3 Vehicle Data	35
	4.6	Comparison of Short Range Aircraft	35
		4.6.1 Noise	41
5	MEDI	UM RANGE AIRCRAFT	47
	5.1	Design Requirements	47
	5.2	Configuration Selection	47
	5.3	LH ₂ Internal Tank Airplane (Aircraft No. 4)	47
		5.3.1 Aspect Ratio Selection	47
		5.3.2 Configuration Description	48
		5.3.3 Vehicle Data	53
	5.4	LH ₂ External Tank Airplane (Aircraft No. 5)	53
		5.4.1 Aspect Ratio Selection	53
		5.4.2 Configuration Description	53
		5.4.3 Vehicle Data	53
	5.5	Jet A Airplane (Aircraft No. 6)	53
		5.5.1 Aspect Ratio Selection	53
		5.5.2 Configuration Description	53
		5.5.3 Vehicle Data	53
	5.6	Comparison of Medium Range Aircraft	54
		5.6.1 Noise	65
6	LONG	RANGE AIRCRAFT	68
	6.1	Design Requirements	68
	6.2	Configuration Selection	68
	6.3	LH ₂ Internal Tank Airplane (Aircraft No. 7)	69
		6.3.1 Parametric Investigation	69
		6.3.2 Configuration Description	69
		6.3.3 Vehicle Data	79

~ ~ ~

÷

2

• 1...

• • • • •

, #

-"1 *

. . . .

.......

c.

.

)

TABLE OF CONTENTS (Continued)

 \Box

[]

 \prod

[].

Π

î,

.

, , , , ,

;

7

ادر ب 2 li

. . . . Ц

5

ŝ

11 17 11

: : : 1

d*** * * * * *

······· 2011

A ŗ

ţ,

•

4

ja - ** -

Section		Page
	6.4 Jet A Airplane (Aircraft No. 8)	79
	6.4.1 Parametric Investigation	79
	6.4.2 Configuration Description	82
	6.4.3 Vehicle Data	84
	6.5 Comparison of Long Range Aircraft	84
	6.5.1 Noise	93
	6.6 Sensitivity Factors	95
7	RESEARCH AND DEVELOPMENT RECOMMENDATIONS	100
8	CONCLUSIONS AND RECOMMENDATIONS	103
	APPENDIX A	109
	REFERENCES	151

vii

LIST OF FIGURES

1. 1. 1. 1. 1. 1.

. بە

....

المتر المالية الم الم الم الم الم الم

11 S. W.

ماند یک مارد کرد. م

. . . .

;

· · · · · · · · · ·

ŝ

÷.

· * * · · * ·

Figure		Page
1	Illustration of External and Internal Tank LH ₂ Aircraft	6
2	Installed Cruise SFC Versus Percent Maximum Rated Thrust 10,068 m (35,000 ft), Mach 0.85, Standard Day	- (
_	(LH ₂ Fueled Engines)	16
3	Results of Analysis of Hydrogen Tanks	18
4	Candidate Configuration - Internal Tanks, Aft Mounted Engines	21
5	Candidate Configuration - External Tanks, Aft Mounted Ergines	22
6	Aspect Ratio Selection - Aircraft No. 1	25
7	General Arrangement: Short Range, LH ₂ Internal Tank Transport	27
8	Interior Arrangement: 130 Pax Aircraft	29
0	Aspect Ratio Selection - Aircraft No. 2	32
10	General Arrangement: Short Range, LH ₂ External Tank Transport	33
11	- Aspect Ratio Selection - Aircraft No. 3	36
12	General Arrangement: Short Range, Jet A Fuel Transport	37
13	DOC Versus Fuel Cost - 1500 n.mi., 130 Pax Aircraft	43
14	90 EPNdB Contour Comparison - Short Range Aircraft	45
15	General Arrangement: Medium Range, LH, Internal	-
-	Tank Transport	49
16	Interior Arrangement: 200 Pax Transport, LH ₂ Internal Tank	51
17	General Arrangement: Medium Range, LH ₂ External Tank Transport	55
18	Internal Arrangement: 200 Pax Transport, LH ₂ External Tank	57
19	General Arrangement: Medium Range, Jet Fuel	59

PRECEDING PAGE BLANK NOT FILMED

1

2 1 2

4

r i

50. J.

こうぎょ モイ といちてい

٣

\$ * "

;

1. 4.

. . .

* • • •

1

•

1

;

;

, ,

]

,

[]

Ĺ

[]

[]

 \Box

[]

Ľ

Ü

П

ix ix

LIST OF FIGURES (Continued)

-

-

: |

]

 \square

1

[]

:]

[]

Figure		Page
20	DOC Versus Fuel Cost - 3000 n.mi., 200 Pax Aircraft	64
21	90 EPNdB Contour Comparison - Medium Range Aircraft	67
22	Effect of Aspect Ratio and Initial Cruise Altitude on Direct Operating Cost of the Long Range LH ₂ Aircraft	72
23	Effect of Initial Cruise Altitude on Performance and Cost of the Long Range LH ₂ Aircraft	73
24	General Arrangement: Long Range, Internal Tank LH ₂ Transport	75
25	Interior Arrangement 400 Pax Transport, LH ₂ Fuel	77
26	Aspect Ratio Selection for Long Range Jet A Aircraft	80
27	Recommended Field Length for the Long Range, Jet A Aircraft	81
28	General Arrangement: Long Range, Jet A Fuel Transport	85
29	Interior Arrangement 400 Pax Transport, Jet A Fuel	87
30	DOC vs Fuel Cost - 5000 n.mi. radius, 400 Pax Aircraft	94
31	90 EPNdB Contour Comparison - Long Range Aircraft	96
32	Technology Development Program	101
33	Total Energy vs Design Mission Capability	105
34	Growth Characteristics	106

x

LIST OF TABLES

5 5

• [

the state of the s

,

[]

Ű

0

I

Î

[]

[]

1

2

. . .

والمراجع والمراجع

.

I

;

•

, z , z ,

•

•

- 4. 7 F H--

Table		Page
I	Aircraft Designs Required	8
II	Basic Guidelines	10
III	Small Engine Design Point Data, Sea Level Static - Standard Day	14
IV	Small Engine Propulsion System Weight	15
v	Small Engine Nacelle Design Characteristics	15
VI	Passenger Service Equipment	19
VII	Comparison of Final Design Short Range Aircraft	39
VIII	Cost Comparison of Final Design Short Range Aircraft	42
IX	Noise Evaluation - Short Range Aircraft	44
х	Comparison of Final Design Medium Range Aircraft	61
XI	Cost Comparison of Final Design Medium Range Aircraft	63
XII	Noise Evaluation - Medium Range Aircraft	66
XIII	Effect of Initial Cruise Altitude on LH2 Aircraft	70
XIV	Major Airport Runway Lengths and Reference Conditions	83
xv	Comparison of Final Design Long Range Aircraft	89
XVI	Cost Comparison of Final Design Long Range Aircraft	92
XVII	Noise Evaluation - Long Range Aircraft	95
XVIII	Sensitivity to Inert Weight Increase - Before Design Freeze - Aircraft No. 7	98
XIX	Sensitivity to Inert Weight Increase - Before Design Freeze - Aircraft No. 8	99

NOMENCLATURE

,4, ,

*

•

-

· · · · ·

.

.

2

- -

t

4

[]

Ú

IJ

Ĵ

 \square

[]

Ű

[]

[]

Ĵ

Ü

IJ

AR	= Aspect Ratio
ATA	= Air Transport Association
ъ	= Wing Span
BPR	= Bypass Ratio
Btu	= British Thermal Unit
°,	 Velocity Coefficient
CPR	= Compressor Pressure Ratio
DOC	= Direct Operating Cost
DTAM	= Deviation from std. ambient Temperature
FAR	= Federal Air Regulation
F _N	= Net Thrust
FPR	= Fan Pressure Ratio
GH2	= Gaseous Hydrogen
HP	= High Pressure
Jet A	= Conventional Hydrocarbon Fuel
RECEDING	PAGE BLANE NOT FILMED

NOMENCLATURE (Continued)

ŀ

l

ł

÷

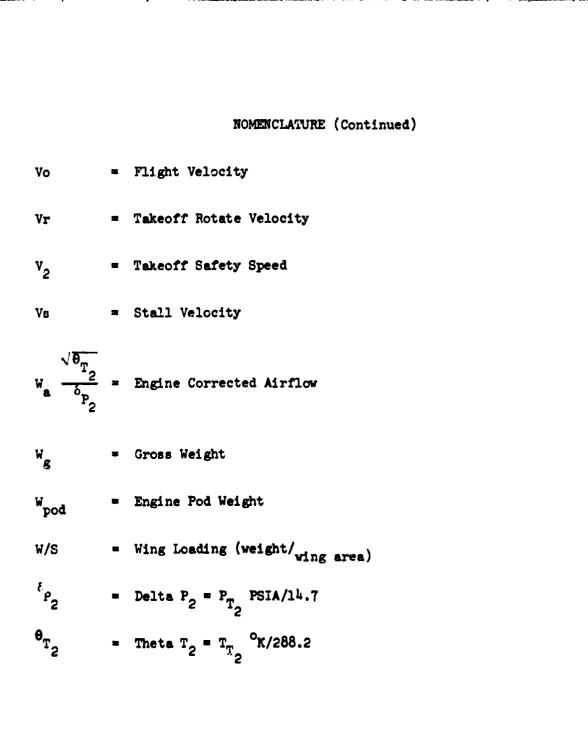
;

.

۱ د

1, 1,142

** * * * * *


KEAS	= Knots Equivalent Airspeed
L/D	= Lift-to-Drag Ratio
LH2	= Liquid Hydrogen
LP	= Low Pressure
M	Mach Number
MAC	Mean Aerodynamic Chord
OPR	= Overall Pressure Ratio
Pax.	= Passenger
Sv	= Wing Reference Area
SFC	 Specific Fuel Consumption
SLS	= Sea Level Static
T/W	= Thrust to Weight Ratio
TIT	= Turbine Inlet Temperature
tc	= Wing Thickness Ratio
v	- Tail Volume Coefficient
Vapp	= Landing Approach Velocity

IJ ----Ì 1 I Ŋ

i l

[]

•

÷

La Marine a

П

Ü

[]

I

Π

l

H

Ī

0

[

, × ,

2

Ŷ

į.

STUDY OF LH₂ FUELED SUBSONIC PASSENGER TRANSPORT AIRCRAFT

ţ

G. D. Brewer and R. E. Morris Lockheed-California Company

SL'MMARY

The work reported herein is supplemental to an original study performed for NASA - Langley Research Center in 1974 (Reference 1). In that study two different LH₂ passenger aircraft designs were established, one of which carried the fuel within the fuselage in tanks located both forward and aft of the passenger compartment; the other, in tanks mounted on short pylons above the wing at about midspan. Versions of these internal and external tank LH₂ airplane designs were configured to carry 400 passengers two different ranges: 5560 km (3000 n.mi.) and 10,190 km (5500 n.mi.).

The present study extended the scope of missions considered for the LH₂ fueled aircraft as follows:

400	passengers	9265	km	(5000	n.mi.)	radius
200	passengers	5560	km	(3000	n.mi.)	
130	passengers	2780	km	(1500	n.mi.)	

As noted, the longer range mission was specified as a radius. The aircraft was designed to fly 9265 km, land, and return to point of origin without refueling, carrying full design payload both directions and providing for specified reserve fuel for both landings.

Both internal tank and external tank LH₂ designs were defined for the short and medium range missions. Only the internal tank concept was considered for the long range requirement. For all three missions, equivalent designs of conventionally fueled aircraft were identified to provide a basis for comparison and evaluation. One of the objectives of the work was to determine if the external tark LH_2 design concept would begin to show design advantages, or at least design equivalence, with the internal tank concept at the low fuel load missions. It apparently does not. Even for the short range mission the external tank design was clearly not competitive. This stems from the dual, but imcompatible, needs to design the external tanks with a high fineness ratio for aerodynamic acceptability on the one hand, but with a low surface-to-volume ratio on the other to achieve low heat leak with minimum insulation thickness and weight. On small aircraft the external tanks account for an increasing percentage of total aircraft drag.

A summary of selected data for the preferred, internal tank LH_2 aircraft and for the corresponding Jet A fueled designs for all three of the subject missions is presented in the vable on page 3.


One of the objectives of the study was to determine if a crossover point could be predicted, i.e., a design mission requiring such a small amount of Jet A fuel that an equivalent LH_2 fueled aircraft would offer no advantage. The short range mission of this study appears to be at or near that crossover point. The internal tank LH_2 aircraft and the corresponding Jet A design are virtual standoffs. Since the LH_2 aircraft designed for the longer range, larger payload missions do show advantage over corresponding aircraft, it is presumed that for a mission requiring even less energy than the short range mission of this study, the Jet A airplane would be preferred.

As in the previous study, the results show that use of LH_2 fuel provides significant advantages in long range aircraft. The more energy required to perform the mission, the greater the advantage to be gained by using a high energy fuel. The long range LH_2 aircraft of this study are lighter; require smaller wing area and shorter span but larger, longer fuselages; use smaller engines; can operate from shorter runways; and use 25 percent less energy to perform the mission. Further, the LH_2 airplane would cost less both to develop and to produce. A differential of \$1.00 more per GJ (\$1.05/10⁶ Btu) can be paid for LH_2 , relative to a current price

7

		S.I. Units							
		130 Pasa	Short Range (130 Passengers 2780 km		Medium Range [200 Passengers] 5550 km		Range sengers n radius		
		LH2	Jet A	LH2	Jet A	LH2	Jet A		
Gross Weight	kg	44,600	49,300	81,400	58,400	266,400	450,200		
Totel Fuel Wt.	kg	3,360	8,940	9,480	27,720	68,500	238,000		
Operating Empty Wt.	kg	28,300	27,400	51,900	50,700	158,100	172,800		
Thrust/Weight	N/kg	3.43	3.43	3.33	2.75	2.65	1.96		
Number of Engines	•	2	2	4	4	4	4		
Thrust per Engine	N	75,600	84,100	66,700	68,100	175,300	221,100		
Wing Area	m ²	84.7	86.3	148.8	154.6	466	662		
Spen	m	29.3	30.8	37.5	38.7	68.3	85.3		
Fuselage Length	m	42.7	34.4	52.7	44.2	77.4	68.6		
FAR T.O. Distance	m	2,410	2,430	1,640	2,432	2,106	3,650		
Price per Airc:aft	\$10 ⁶	7.85	7.51	13.95	13.33	38.90	40.0		
Noise Sidelíne	EPNdB	86	86	86	86	94	93		
Flyover	EPNdB	79	79	82	86	93	100		
Energy Utilization	kJ Seet km	763	734	631	876	960	1,210		

				U.S. Custo	mary Units			
		Short Range [130 Passangers] [1500 n.mi,]		200 Pag	Medium Range 200 Passengers 3000 n.mi.		Long Range 400 Passengers 5000 n.mi, radius	
		LH2	Jet A	LH2	Jet A	LH ₂	Jet A	
Gross Weight	lb	98,300	108,700	179,500	216,900	587,400	992,500	
Total Fuel Wt.	lb	7,400	19,700	20,900	61,100	150,900	524,000	
Operating Empty Wt.	lb	62,300	6 0,400	114,500	111,800	348,500	380,500	
Thrust/Weight	•	0.35	0.35	0.34	0.28	0.27	0.20	
Number of Engines		2	2	4	4	4	4	
Thrust per Engine	ib	17,000	18,900	15,000	15,300	39,400	49,600	
Wing Area	ft ²	912	929	1,602	1,664	5.020	7,125	
Spen	ft	96	101	123	127	224	280	
Fuselage Length	ft	140	113	173	145	254	225	
FAR T.O. Distance	ft	7,890	7,970	5,380	7,980	6,910	11,970	
Price per Aircraft	\$10 ⁶	7.85	7.51	13.95	13.33	38.90	40.00	
Noise Sideline	EPNdB	36	86	86	86	94	93	
Fiyover	EPNdB	79	79	82	86	93	100	
Energy Utilization	Seat n.ml.	1,340	1,290	1,460	1,540	1,670	2,120	

Ì

. -• •

••• --# 5

• • ж. ж.

•• ļ

3.4 ; 2 ;

. .

- -

. .

. ۱ ,

× •

. .

. • -

. .

۰.

• • . .

- -\$ ÷ • ٠ .

٠

- -2

•••

:...

. .

b~ *u*

. . .

:

÷

a. .

•

ž

.

* * *

•

į

. .

. . . .

۰,

3

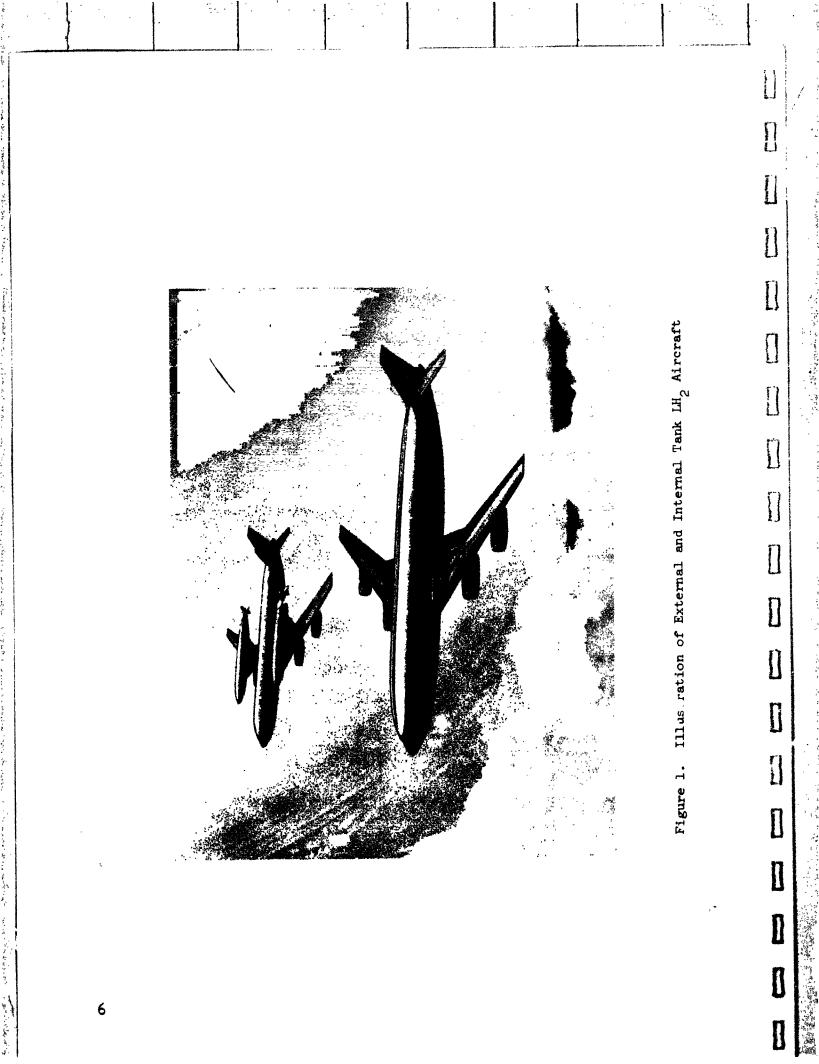
ş

for Jet A, and still have equal direct operating cost. The LH₂ design is 6 EPNdB quieter in flyover noise, but slightly noisier in sideline and approach compared to the Jet A counterpart.

Advantages for the LH_2 aircraft not reassessed in this supplementary study, but which nevertheless pertain, are the significant reduction in noxious exhaust products reported in Reference 1, and the fact that aircraft designed for initial operation in 1990-1995 will have normal service life long after Jet A - type fuel is expected to become increasingly unavailable and expensive around the world.

1. INTRODUCTION

This work is an addendum to a study performed in 1974 for NASA-Langley Research Center to evaluate the feasibility, practicability, and desirability of using liquid hydrogen (LH_2) as fuel in subsonic transport aircraft. NASA CR-132558 and 132559 (Reference 1), dated January 1975, are the Summary and Final reports, respectively, of the original study. That work involved investigation of both passenger and cargo type aircraft. The passenger vehicles were all capable of carrying 400 bassengers plus appropriate cargo for a total of 36,300 kg (88,000 lb) of payload. Aircraft designed for two ranges, 5560 km (3000 n.mi.) and 10,190 km (5500 n.mi.) and for cruise speeds of Mach 0.80, 0.85, and 0.90 were evaluated. In addition, aircraft capable of carrying 600 and 800 passengers were also investigated for both ranges but for only Mach 0.85 cruise speed. Cargo aircraft capable of carrying 56,700 kg (125,000 lb) and 113,400 kg (250,000 lb) were designed for ranges of 5560 km (3000 n.mi.) and 10,190 km (5500 n.mi.), respectively. All cargo aircraft were designed for Mach 0.85 cruise speed.


In the present study, the payload and range spectrum of the passenger aircraft was enlarged to involve aircraft of the following capability, all designed to cruise at Mach 0.85:

	Passengers	Range				
		km	(n.mi.)			
n	130	2780	(1500)			
on	200	5560	(3000)			
L I	400	9265 radius	(5000) radius			

Snort range mission Medium range mission Long range mission

For the short and medium range missions, LH₂ fueled aircraft using both internal and external tank design concepts illustrated by the artist's rendering in Figure 1, taken from Reference 1, were parametrically evaluated.

The long range mission was different in that the range requirement was stated as an unrefueled radius capability. The aircraft was intended to fly

9265 km (5000 n.mi.), land, and then return to the point of origin unrefueled with full payload and with full allowances for reserve fuel for both landings. For this mission, only the internal tank design of LH_2 fueled aircraft was investigated.

Surveyor ---

For all missions, as in the case of the original study, reference aircraft using conventional (Jet A) fuel were designed to the same guidelines and technology to provide a basis for valid comparison.

All aircraft incorporate such advanced technology concepts as are forecast to be available for designs which might be ready for initial operational use in 1990-1995.

Since the subject work is a "follow-on" to an earlier study and uses the basic LH_2 airplane design concepts developed and described in Reference 1, only revisions and modifications to the designs and the results derived there-from are reported in full in this report. The reader interested in the background leading to derivation of the original airplane design concepts should refer to NASA CR-132559 (Reference 1).

2. TECHNICAL APPROACH

This investigation expanded the matrix of passenger aircraft missions which were studied under the original contract (Reference 1). The complete list of aircraft evaluated herein is shown in Table I.

As noted, the long range aircraft were designed to fly 9256 km (5000 n.mi.) carrying full allowance for reserve fuel (per ATA international definition), land, takeoff without refueling, fly 9265 km (5000 n.mi.) and land with final reseves calculated on the basis of the airplane weight at the end of cruise for the second leg.

Aircraft	Passenger	Range			
Number	Load	km	(n.mi.)	Fuel	Configuration
Short Range					
ı	130	2780	(1500)	LH2	Internal Tank
2	130	2780	(1500)	LH2	External Tank
3	130	2780	(1500)	Jet A	Conventional
Medium Range					
24	200	5560	(3000)	LH2	Internal Tank
5	200	5560	(3000)	LH2	External Tank
6	200	5560	(3000)	Jet A	Conventional
Long Range					
7	400	9265 radius	(5000) radius	LH2	Internal Tank
8	400	9265 radius	(5000) radius	Jet A	Conventional

TABLE I. AIRCRAFT DESIGNS REQUIRED

Guidelines used in the present study were the same as those which served as a basis for the work in the original study (Reference 1) with the exception that the short and medium range aircraft used reserve fuel quantities as defined by the ATA for domestic flights. The long range aircraft continued to use the ATA international reserve definition. The same differences in basis for calculating direct operating costs applied; the short and medium range aircraft were treated as domestic flights per the 1967 ATA equations, while the long range aircraft were treated as international carriers. For convenience, Table II presents the complete list of updated guidelines which were used in the present study. It should be noted that the allowable runway length for the long range aircraft was extended to 3600 m (12,000 ft). The basis for this revision is discussed in Section 6.

The technical approach employed was essentially the same as that described in Reference 1 for the original study. Preliminary sizing and conceptual design studies established baseline sizes, weights, and configurations for each of the eight aircraft. The resulting preliminary configuration drawings were then used as a basis for assessment of

- stability and control requirements
- structural and weight relationships
- drag characteristics

× 1 1.1

1,

- propulsion requirements
- tank insulation requirements

as required for the various aircraft.

The results of these analyses, plus the preliminary sizing data, provided input to the ASSET (Advanced System Synthesis Evaluation Technique) computer program for parametric determination of preferred vehicle design characteristics. The performance capability, weight, and cost of aircraft designs derived for each of the specified set of requirements were determined by detail analysis of the carpet-type Autoplots produced from ASSET printout data. The criterion used as an ultimate basis for selecting

TABLE II. BASIC GUIDELINES

Fuel: Liquid Hydrogen (assumed available at airport for this study) Initial Operational Capability: 1990-95 Advanced Aircraft Technologies: Supercritical aerodynamics • Composite materials Active controls Terminal area features Advanced Engines: Contractor-derived performance for both LH₂ and Jet A fueled turbofans 5.18 km² (2 mi²) area for 90 EPNdB contour (sum of Noise Goal: takeoff + approach) Emission Limit Goals: • Ground Idle CO 14 gm/kg fuel burned UHC 2 gm/kg fuel burned Takeoff Power NO 13 gm/kg fuel burned Smöke SAE 1179 Number 25 Landing and Takeoff: 32.2°C (90°F) day, 304.8 m (1000 ft) altitude. 2410 m (8000 ft) runway for short and medium range aircraft. 3660 m (12,000 ft) runway for long range aircraft. Fuel Reserves: ATA guidelines (Reference 2) • Use domestic definition for short and medium range aircraft • Use international definition for long range aircraft Direct Operating Cost: • Utilization: Short Range - 3300 hrs/yr Medium Range -3600 hrs/yr - 7000 hrs/yr Long Range 1967 ATA equations international basis for long range aircraft. domestic basis for short and medium range aircraft. 1973 Dollars 350 aircraft production base Baseline fuel costs $LH_{2} = $2.85/GJ ($3/10^{6} Btu = 15.48$/1b})$ Jet \overline{A} = \$1.90/GJ (2/10⁶ Btu = 24.8¢/gal = 3.68¢/1b)

11

2

1

preferred vehicle design characteristics was minimum direct operating cost (DOC). Final design three-view general and interior arrangement drawings of each of the eight aircraft were then made to reflect the results of the analysis. Noise levels for preferred LH₂ aircraft and the Jet A counterpart for each mission were then determined.

 \prod

The characteristics of the eight aircraft were compared to the extent possible. Since this study was simply an evaluation of a matrix of aircraft designed to perform specified payload/range combinations, and was not planned specifically as a study to determine performance trands, there was little which could be concluded by comparing aircraft of the various missions. Comparisons were basically limited to evaluating internal tank versus external tank LH₂ designs within each of the three range categories, and then comparing the preferred LH₂ design with the corresponding Jet A airplane. The only exception to this was an opportunity to establish a three-point curve and thus provide a basis for comparison between range categories involving the 400 passenger aircraft. Aircraft from the long range mission of the present study were correlated with final design 400 passenger aircraft of the original study (Reference 1). In order to make this comparison valid the conventional oneway range capability of the aircraft from the current study were determined, as contrasted with their mission radius capability.

3. TECHNOLOGY MODIFICATIONS

3.1 Propulsion

The high bypass ratio turbofan engine data developed for the original LH₂ subschic aircraft study (Reference 1) were based on predictions of component efficiencies and weight for advanced (1985-1990) state-of-the-art technology. The baseline engine size for that study was set at 155.7 kN (35,000 lb) for the sea level static (SLS) design point. This was achieved with a 1.51 fan pressure ratio (FPR) and a 35.0 overall pressure ratio (OPR). The engine data used was estimated to be scaleable to approximately 70 percent of the base engine size without changes in component efficiencies or overall cruise specific fuel consumption (SFC).

The same engine data were used in the present study, within limits of scale. For a description of the basis for deriviation of the point design engine cycle parameters, and for a tabulation of the engine design and performance characteristics, see Section 3.2, starting on Page 30, Reference 1.

In addition to the baseline engine, the current study required that engine data be developed for smaller aircraft which would otherwise require scaling the baseline engines to approximately 35-45 percent. Such scaling would obviously result in some degradation of component efficiencies and, therefore, overall engine performance. This is basically due to the effects of reducing the size of the high pressure (HP) module of the engine. Specifically, the problem is related to the ratio of the HP compressor and turbine blade tip clearances to the blade height becoming relatively large compared to the baseline engine size - thereby making the originally assumed HP rotor presssure ratios and component efficiencies very difficult to achieve.

i |

11

 $\left\{ \right\}$

Because of this size (efficiency) problem, a new baseline engine cycle was defined for the smaller aircraft. It was sized to produce 53.4 kN (12,000 lb) thrust (SLS) and has a more moderate overall pressure ratio of 25.0, achieved with the same 1.51 FPR and a 16.67 compressor pressure ratio (CPR). The average pressure rise per axial stage would be approximately the

same (1.37) as the large engine, however, only nine axial stages are required to achieve the lower compressor pressure ratio. The estimated polytropic efficiency for the design point HP compressor of such a configuration is 90 percent (decreased from 92 percent), and the estimated turbine adiabatic efficiency is 89.5 percent (decreased from 91 percent) to account for size effects at the lower design pressure ratio.

The small engine design point cycle characteristics are presented in Table III for both the LH_2 and Jet A fueled engines. Some weight and dimensional characteristics of a typical installation of the 53.4 kN (12,000 lb) thrust size engine are shown in Tables IV and V. Table IV presents the wing pod weight buildup and Table V defines the nacelle dimensions. Nacelle scaling, resulting from small engine thrust perturbations, are referenced to the 53.4 kN (12,000 lb) thrust size and scaled with the equations provided in Table V.

The reduction in overall engine pressure ratio from 35.0 to 25.0 results in a 4.5 percent increase in cruise specific fuel consumption (SFC) and the decrease in HP component efficiency increases the SFC an additional 1.5 percent. Therefore, the total cruise SFC increase for both the LH₂ and Jet A fueled engines is approximately 6 percent, relative to the large thrust engine. A typical cruise SFC comparison for the LH₂ fueled engines is shown in Figure 2. All rated power thrust levels were scaled directly by the thrust change.

3.2 Hydrogen Tankage

The wide range of sizes of aircraft investigated in this study necessitated a review of the work done on hydrogen tankage in the previous contract (Reference 1). In particular, the smaller aircraft were examined with regard to tank, insulation, and cover weights us the tanks (internal and external)

۲ :

TABLE III.	SMALL	ENGINE	DESIGN	POINT	DATA,	SEA	LEVEL	STAT I	 STANDARD 	DAY	

ł

×,

-

a.

1

ţ

1

	and a second	Hydr	coon Fuele.	Jet A Fueled		
I.	Been Size Engine Installed Net Thrust Installed S.F.C. Turbine Isla	53.4 kN 0.096 kg/hr/daN	(12,000 lb) (0.100 lb/hv/lb)	53.4 kN 0.292 kg/hr/daN	(12,000 lb) (0.298 lb/hr/lb)	
	Turbine Inlet Temperature Bypess Retio Oversil Pressure	143 6°C	(3040°R) 12.8	/416°C	(3040°R) 10.8	
	Ratio Jet Exhaust Velocity	254.5 m/sec	25.0 (836 ft/sec) (Vj PRI & Vj duct matched © SLS)	254.5 m/s	25.0 (835 ft/sec)	
11.	Fan Design		_			
	Stages Airflow - Wa $\sqrt{\theta_{T_2}}/\delta p_2$ Pressure Ratio Polytropic Efficiency Diameter	212 kg/eec 1.26	1 (488 kb/sea) 1.51 91% (149.6 in.)	212 kg/sec 1.26 m	1 (466 lb/sec) 1.51 91% (149.6 in.)	
	Tip Velocity Fan Face Mech No. Hub/Tip Retio _	249 m/sec	(817 ft/sec) 0.56 0.35	249 m/sec	(817 ft/sec) 0.56 0.35	
111.	Compressor Design Compressor Pressure Ratio Polytropic Efficiency		16.7 90.0%		16.7 90.0%	
IV.	Airflow Combuster Efficiency Total Pressure Loss	15.2 kg/sec	(33.4 lb/ssc) 100% 4.5%	17.8 kg/sec	(39.3 lb/sec) 100% 4.5%	
v .	High Presure Turbinn Presure Ratio Stages Adiabatic Efficiency Cooling Air		3.2 2 80.5% 0		3.8 2 88.5% 5%	
VI.	Lou: Pressure Turbine Pressure Ratio Stages Adiabatic Efficiency Cooling Air		6.5 4 91% 0		5.A 4 91% 0	
VII.	Nazzle Design Configuration		Copiener, fixed convergent nezzle		Seme	
	Parlermance - (Vel. Coef.) A. Prin wy Cy B. Fan Cy		0.905 0.905		0. 90 5 0. 90 5	
/111.	Acoustic Treetment A. Inlet	Variable geo.netry Threat Mada = 0.1 and approach, ink	during takeofi		Some	
	8. Exhaust 1. Fan Duct	All treatment on i ongine and outer treated dust ring			Sama	
	2. Primary	Well treatment			Same	
IX.	Nocelle Geometry Maximum Diemeter Overall Length Inlet Highlight	1.26 m 4.22 m 1.28 m	(62 in.) {106 in.) (51 in.)		Some	
	Dismoter Inlet Throat Diameter Cruise Throat Mash Number	1.17 m	(46 in.) 0.73			

GINAL PAGN DE

,

₹.¥ , `

.

TABLE IV. SMALL ENGINE PROPULSION SYSTEM WEIGHT

Base Thrust = 53.4 kN (12,000 lb) (SLS, installed)

TIT = 1416°C (3040°R), OPR = 25.0

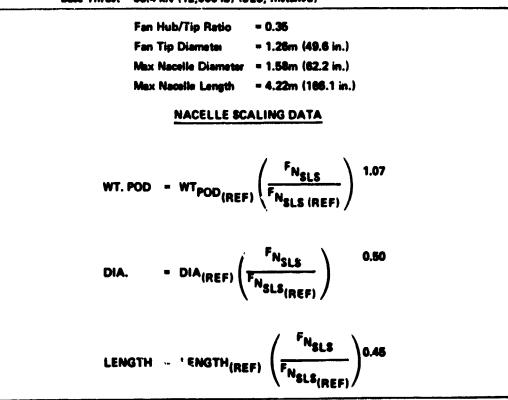
Fan Pressure Ratio = 1.51

2.4 11

_]

1.11

. . .


And Alexandra

A MERIC

ſ

item	kg	lb
Bere Engine	839.2	1850
Accessories and Guar Box	74.8	165
Inlet, Variable Geometry	156 .5	345
Mounting Brackets and Pylon Splitter Fairing	31.8	70
Nacelle	154.2	340
Gas Generator Cowl and Tail Pipe	79.4	175
Fan Duct Acoustic Ring	43.1	95
Thrust Reverser	97 .5	215
Fotal Pod Weight (per Engine)	1476.5	3255

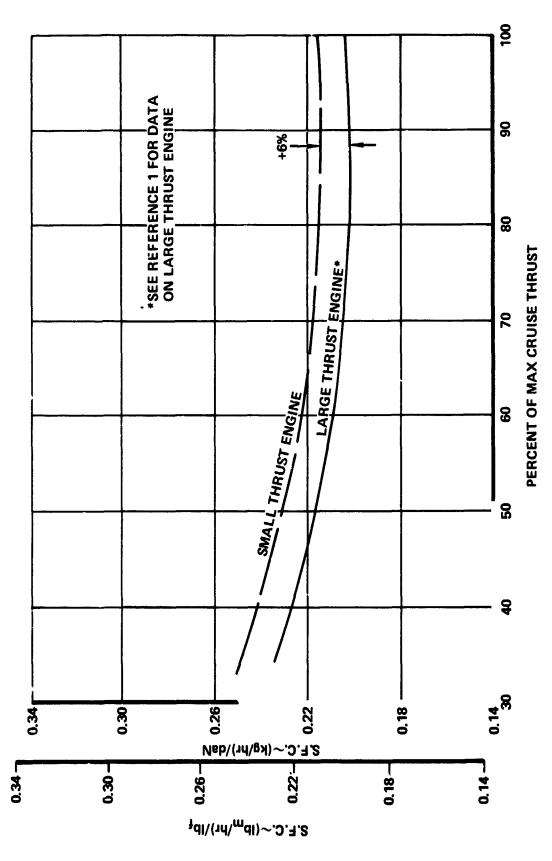
TABLE V. SMALL ENGINE NACELLE DESIGN CHARACTERISTICS

Base Thrust = 53.4 kN (12,000 lb) (SLS, Installed)

ŝ

Installed Cruise SFC Versus Percent Maximum Rated Thrust 10,668 ${\rm m}$ (35,000 ft), Mach 0.85, Standard Day (LH₂ Fueled Engines) Figure 2.

. 1


nan I

()

]

Ц

[]

16

きょうそう フォント・キュー エ

للاستعادي والمستعادين والمستعادين والمستعاد

3

•

the set beaution to the

r, r,

:)

• •

'; •

became smaller. A preliminary analysis was made to examine trends based on the following assumptions:

- Range of gross weights: 45,360 to 181,440 kg (100,000 to 400,000 lb)
- 3780 km (1,500 n.mi.) range
- Constant fuel fractions

1

1

1

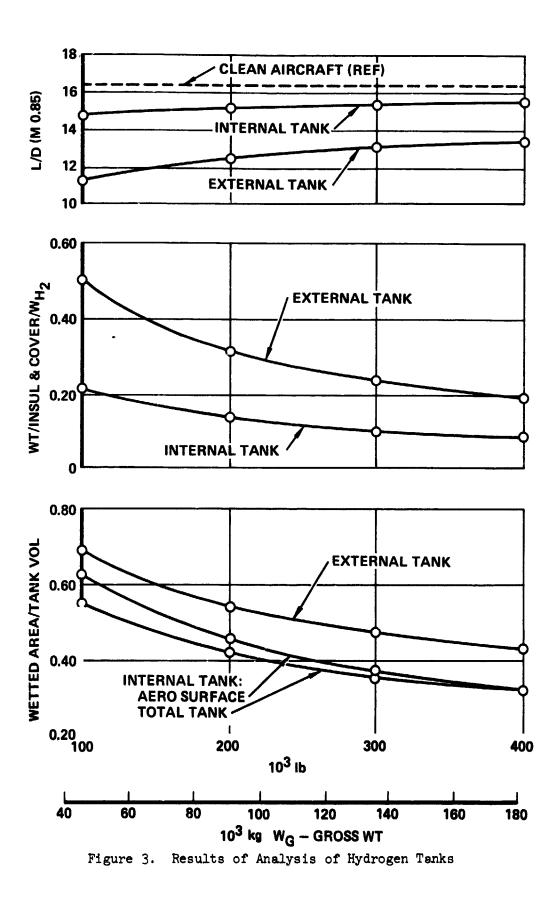
11

1 1

ł

5

- External tank length-to-diameter ratio (1/d) = 6.5
- Constant wing loading of 527 kg/m² (108 lb/ft²)


It was further assumed that the percent boil-off remained constant. This required an increase in insulation thickness as the ratio of tank wetted area-to-volume increased since boil-off is approximately proportional to this ratio. Figure 3 shows the results of this investigation and indicates that:

- 1. The external tank has a higher ratio of wetted area-to-volume than the internal tank.
- 2. This results in the much higher ratio of insulation and cover weight fractions as indicated. (Note, tank weight not included).
- 3. The effect of the addition of the tank wetted areas on the aircraft L/D is shown at the top of the figure compared to a clean (no tank) configuration. The internal tank aircraft L/D decreases 4.1 percent while the external tank L/D reduction is 15.8 percent over the gross weight range from 45,360 to 181,440 kg (100,000 to 400,000 lb).

These results show that the insulation thickness and weight must be adjusted as the size of the tanks decreases. This was done in providing the input data to ASSET for the parametric aircraft study. The results also indicate that the external tank aircraft will suffer more severe weight and aerodynamic penalties relative to the internal tank design as the aircraft size is decreased.

3.3 Weight Allowances

The aircraft designs which were considered in the present study represent a wide range of passenger requirements. This necessitated adjustment of those items of equipment associated with providing services to passengers. The

)

18

* 1

:

adjustment is basically a function of the number of passengers carried, and the design range. As previously defined, the short range aircraft carry 130 passengers 2780 km (1500 n.mi.), the medium range aircraft carry 200 passengers 5560 km (3000 n.mi.), and the long range aircraft carry 400 passengers 9265 km (5000 n.mi.) each way, out and back. Table VI shows values which were used for these items which required such adjustment.

And a state of the state of the

1.]

11

11

Li

Π

15

There was also a small adjustment in the weight of escape slide/rafts as a result of the fact the LH_2 aircraft designed for the long range mission is double decked. Its conventionally fueled counterpart is not, all 400 passengers are carried on a single deck. Accordingly, as shown on the table, the weight of escape slide/rafts provided for the LH_2 airplane is 810 kg (1786 lb) while that for the Jet A design is 623 kg (1374 lb).

Other weight changes to the short range aircraft include addition of air stairs (2) and deletion of certain navigation and communication equipment not required for short, over-land flight.

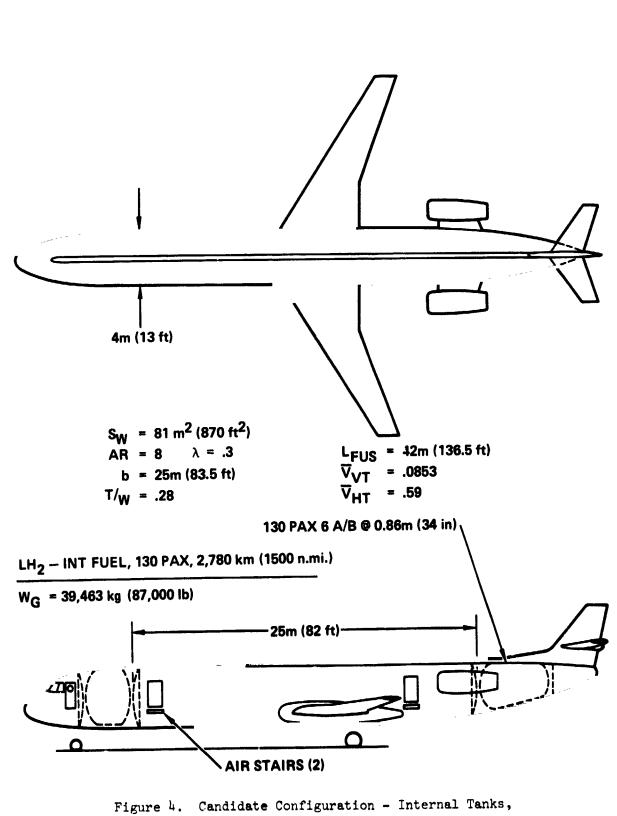
	Short Range	Medium Range	Long Range
Escape Slide/Rafts kg (lb)	160 (353)	203 (448)	810 (1786)-LH 623 (1374)-Je€ A
Food Allowance/Pass. kg (1b)	3.74 (8.24)	4.65 (10.24)	6.91 (15.24)
Water Allowance/Pass.kg (1b)	0.73 (1.6)	0.91 (2.0)	1.42 (3.12)
Pass. Serv. Equip./ Pass. kg (lb)	0.95 (2.1)	1.27 (2.8)	1.81 (4.0)
Cargo Containers-Total kg (lb)	0.0	1470 (3240)	1960 (4320)
Serving Carts-Total kg (1b)	330 (726.)	494 (1090)	989 (2180)
No. of Cabin Attendents	4.0	5.0	8.0
No. of Lavatorie	3.0	4.0	7.0

TABLE VI. PASSENGER SERVICE EQUIPMENT

4. SHORT RANGE AIRCRAFT

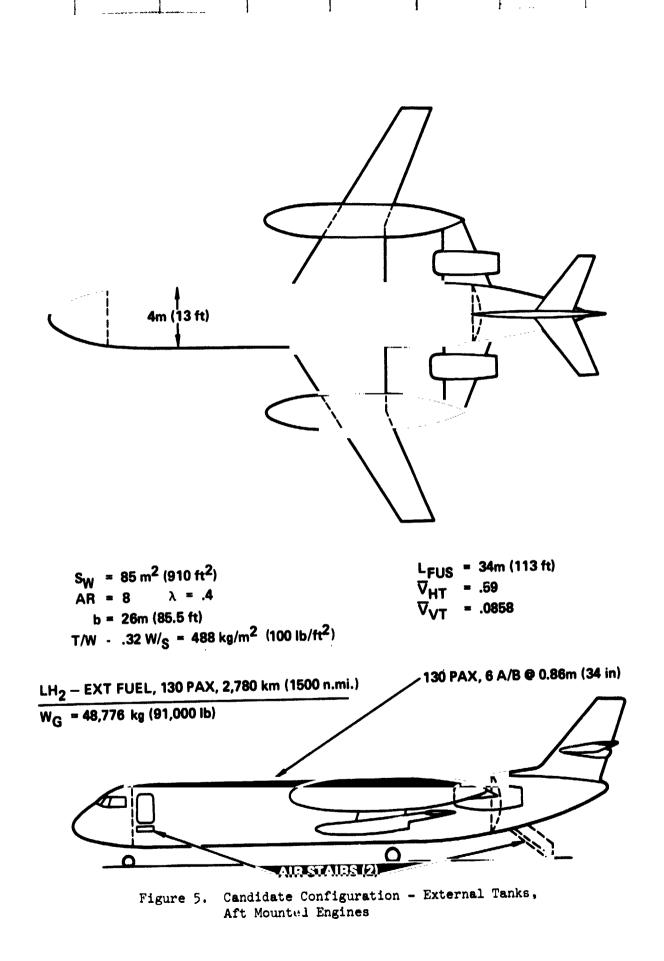
4.1 Design Requirements

The short range aircraft are designed to meet the following requirements and constraints:


- 2780 km (1500 nmi) design range
- 136 passengers plus baggage and cargo for a total payload of 12,970 kg (28,600 lb)
- Maximum FAR takeoff field length of 2438 m (8000 ft)
- Minimum initial cruise altitude of 10,360 m (34,000 ft)
- Reserve fuel per ATA domestic regulations.
- Maximum approach speed of 69.4 m/s (135 KEAS) for aircraft weight corresponding to end of design range

4.2 Configuration Selection

Because of the small size and range of the aircraft, extended over-water operation was not envisioned and a two-engined configuration was selected. This requires an engine-out second segment climb gradient of at least 2.4 percent during takeoff.


The short range two-engined aircraft, in contrast to the medium and long range version which were investigated in the original study (Reference 1), offered the most possibilities for variations in configuration. Some of the variations investigated were:

1. Aft mounted engines as shown in Figure 4 for the internal tank hydrogen fuel version and in Figure 5 for the external. This is a viable configuration for the internal tank aircraft but presents some aerodynamic, and structural dynamic problems in the external tank version.

į.

Aft Mounted Engines

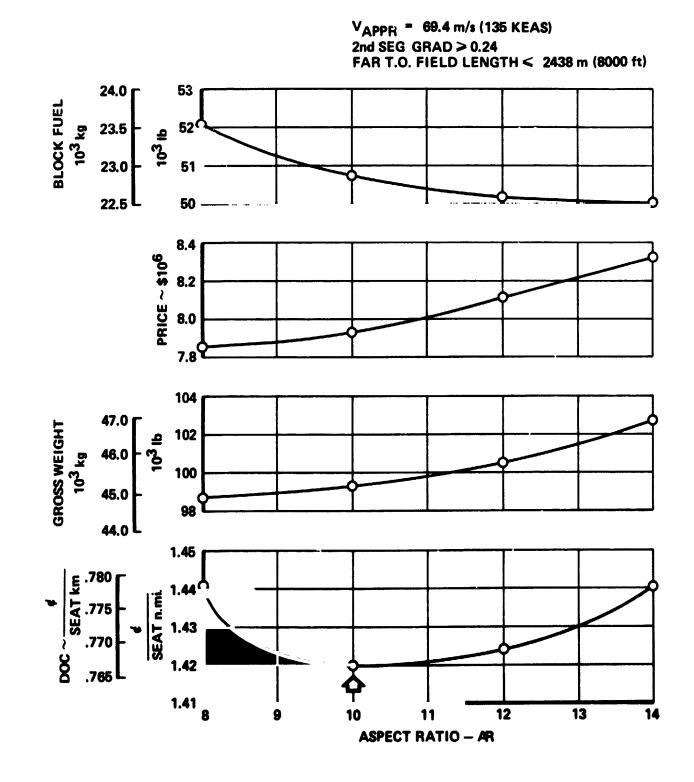
2. A high-winged configuration with underwing mounted engines for both internal and external tanks. This configuration presented no advantage over the low wing aircraft and had the problem of landing gear location and storage and also vulnerability of the internal fuel tanks to a wheels-up landing due to having no heavy wing box for protection as is the case with low winged aircraft. Another disadvantage is the passenger cabin exposure to an engine burst due to absence of the wing box.

3. A version of the aft-engined internal tank hydrogen fuel aircraft in which all fuel is carried in a single aft tank was also considered. This arrangement has the advantage of placing all fuel and propulsion in a package aft of the passengers. The obvious disadvantage with this concept is the excessive c.g. travel, estimated at 75 percent of MAC. This requires a horizontal tail approximately twice as large as is the case when the fuel is located fore and aft. Other disadvantages are the exposure of the tank to damage, and structural weight penalties due to the cantilevered tank and tail junction.

The concept chosen for analysis was a conventional low-winged design with under-wing mounted engines as described in the following sections. This configuration allows for maximum flexibility in going from the internal to the external hydrogen tanks and is adaptable to the Jet A version as well. This insures a high degree of commonality between all the designs for comparison purposes.

4.3 LH₂ Internal Tank Airplane (Aircraft No. 1)

The parametric study was conducted using the ASSET vehicle synthesis program described in Section 4.3, Reference 1. In the previous study, a comprehensive investigation was made to determine the influence of wing geometry (thickness ratio, taper ratio, and sweep) on vehicle performance. Those characteristics found to be optimum for Mach 0.85 cruise were retained for this study. The primary consideration in the present work was selection of wing aspect ratio as described below.


4.3.1 <u>Aspect Ratio Selection.</u> - From a matrix of some 64 aircraft generated by the vehicle synthesis program, i.e., 16 aircraft for each of four candidate aspect ratios (8,10,12, and 14) one aircraft which met all the performance constraints was selected for each aspect ratio. The variation of the selection

criteria; DOC, gross weight, price, and block fuel for these point design aircraft is presented in Figure 6 as a function of aspect ratio. This figure indicates that if the selection criteria were minimum airplane purchase price and gross weight an aspect ration of 8 would be chosen. If minimum block fuel were desired, it would be 14. Since minimum DOC was specified as the ultimate selection criterion to be used in event of conflict, an aspect ratio of 10 was selected. Following this choice, all synthesis program input data was reviewed, revised where required, and the final point design aircraft was generated. This method of selecting the final configuration was used for each of the study aircraft.

Since two-engined aircraft are critical with regard to field length and climb gradient with one engine out, a subroutine of ASSET was used to determine the optimum takeoff flap setting and overspeed (V_2/V_S) ratio to meet these constraints with any given combination of thrust-to-weight, aspect ratio, and wing loading.

4.3.2 Configuration Description. .. A general arrangement drawing of the LH₂ internal tank, Mach 0.85, 2280 km (1500 n.mi.), 130 passenger aircraft is shown in Figure 7. The passenger compartment is located in the central section of the fuselage. Liquid hydrogen fuel tanks are located fore and aft of the passenger compartment. They occupy the full available cross section of the fuselage, except for provision for protective, crushable structure around the bottom areas. No provision was made for a passageway through or cround the forward tank to permit movement between flight station and passenger compartment. The flight station is provided with separate lavatory and galley facilities.

Passenger accommodations, shown in Figure 8, use 6 abreast seating and seat spacing of 0.8 m (34 in.). The arrangement provides doors, lavatory and galley facilities in accordance with requirements of FAR 25 and current wide-body standards. Air stairs are provided at both portside doors. All cargo is contained in the pressurized fuselage below the cabin floor where space is provided for cargo containers and for loose cargo. Further details of the design are as follows:

i

11

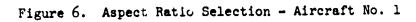
,

1

L

U

L


Ľ

Ľ

[]

1

1

<u>Wing:</u> The wing has an aspect ratio of 10, thickness ratio of 10 percent and a sweep angle of 30°. The high lift devices include 15 percent leading edge slats and 35 percent double-slotted flaps, as shown. This high lift system is typical for all study configurations. Spoilers are used in flight for direct lift control, and for landing ground run deceleration. Conventional ailerons are fitted outboard of the flaps.

Landing gear: The landing gear consists of two two-wheel main gears mounted aft of the rear spar. They retract inward into the fuselage. The space between the retracted gear contains the hydraulic service center. The forward gear has two-wheels mounted on a strut which retracts forward under the pilot's compartment.

Hydrogen tank and systems: The hydrogen tank structural concept selected for purposes of this study is the integral type described in Reference 1, Section 3.1.2. All aircraft structural loads in addition to the fuel dynamic and pressure loads are taken by the tank shell. Loads are transferred from the vehicle structure to the tank at both ends by low heat-leak boron-reinforced fiberglass tubes arranged in an interconnect truss structure. Eight inches of closedcell plastic foam insulation e.g., Rohacel. 41S, covers the tank, in accordance with the scaling relationship discussed in Section 3.2. The foam insulation is then wrapped by a vapor shield (Kapton) to prevent cryopumping in event a crack develops in the foam insulation. A fiberglass reinforced composite layer covers the entire tank section to provide a smooth aerodynamic surface, and protection from physical damage.

The tank is thus generally protected from mechanical damage by the foam insulation and its fiberglass cover. Further special protection from foreign object damage and damage from aircraft maneuvers such as overrotation or tail scrape is provided on the bottom of the tank, as shown in Figure 7, by an energy absorbing, aluminum honeycomb structure supported from the tank bottom. Protection is also provided by this structure for plumbing, electrical, and control systems which would be routed adjacent to the tank.

The tank and mounting is designed for both inflight structural and fatigue loads (fail saife considerations) and to withstand the emergency crash load requirements of FAR 25 with full fuel load.

4.3.3 Vehicle Date. - All weight, performance, and cost data are presented in Section 4.6.

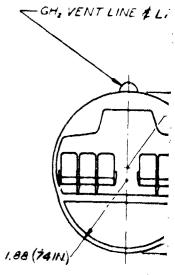
CHARACTERISTICS	WING	HORIZ. TAIL	VERT. TAIL
AREA M2 (SQ FT)	34.68 (911.5)	8.73 (94)	8.36 (90)
ASPECT RATIO	10	4.5	1.6
SPAN M (FT)	23.11 (35.5)	6.23 (206)	3.66 (12.0)
ROOT CHORD M(IN)	4.49 (176.3)	2.14 (84 4)	3.52 (138.5)
TIP CHORD M (IN)	1.34 (52.88)	0.64 (25.3)	1.05 (41.5)
TAPER RATIO	0.3	23	0.3
MAC M (IN)	3.13 (125 64)	1.53 (60.1)	2.51 (98.7)
SWEEP RAL. (DEG)).524 (30)	0.524 (30)	0.524 (30)
T/C ROOT (T)	10	3	9
T/C TIP (X)	10	3	<u>_</u>

DESIGN GROSS WT. - 44,563 KG. (38,257 LB.)

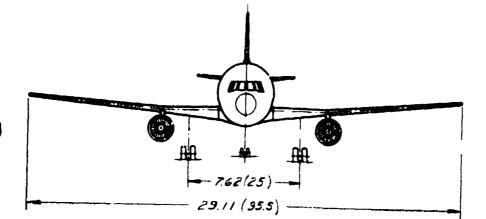
The second second second

FOWER PLANT - 2, TURBOFANS

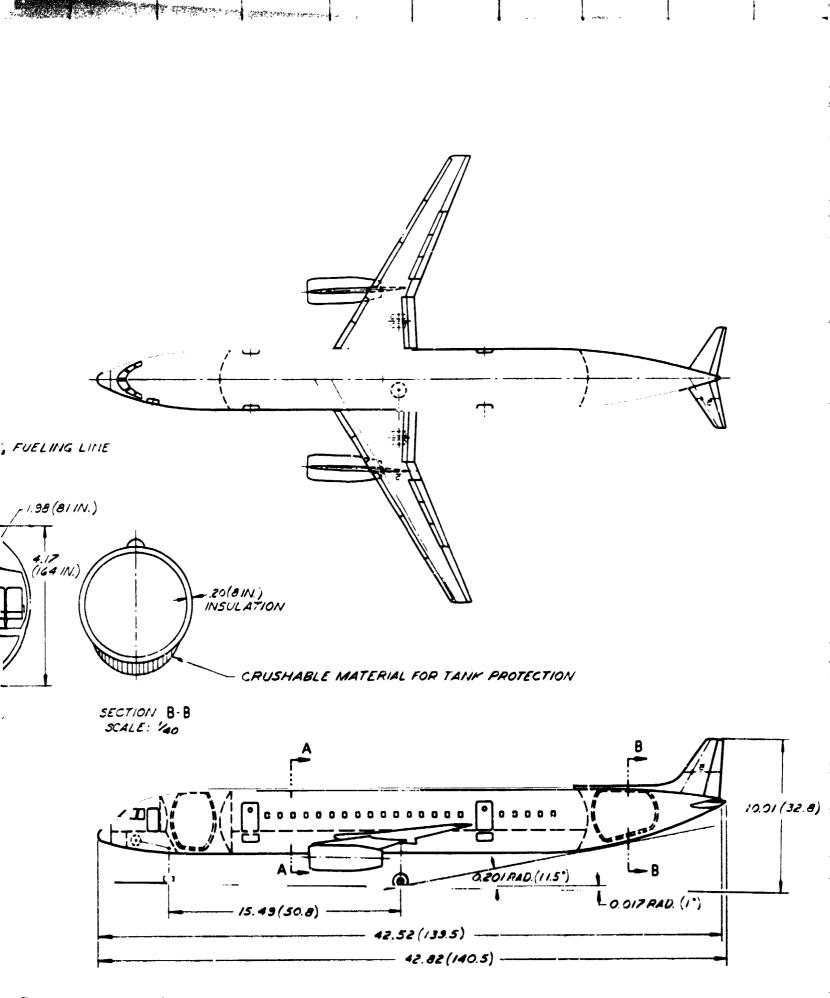
INSTALLED THRUST EA.J- 75,383 N. (16, 343 LE)

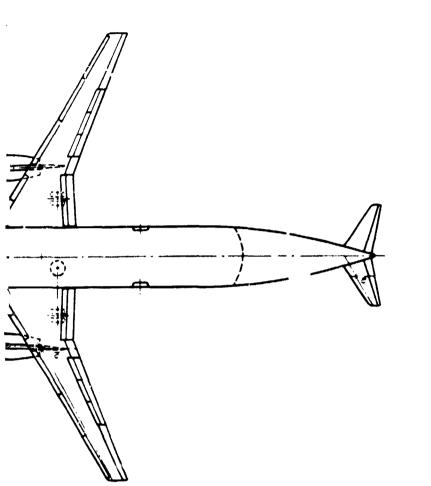

11.6

PASSEINGERS - 130

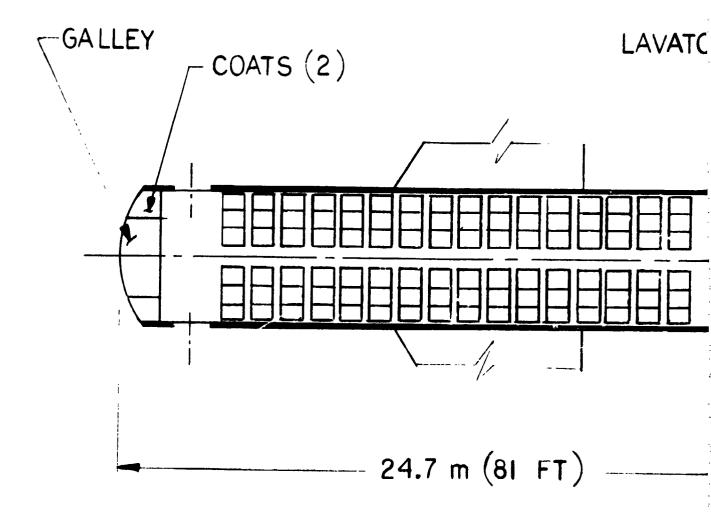

A STATE OF A

FUEL (LH12)- 3,463 KG. (7,634 LE.)


PANGE - 2,780 KM. (1,500 N.M.)


SECTION A-


FOLDOUT FRAME 2



encia - exp

		SCALE • METERS					
0		5	10		/5		
0	10	20	30	40	50		
		SCALL	E.FEE	r			

ATERIAL FOR TANK PROTECTION

130 PAX, 6 A/B, .86 m (34 IN) SPACING

PRECEDING PAGE BLANK NOT FILMED

FOLDOUT PD .

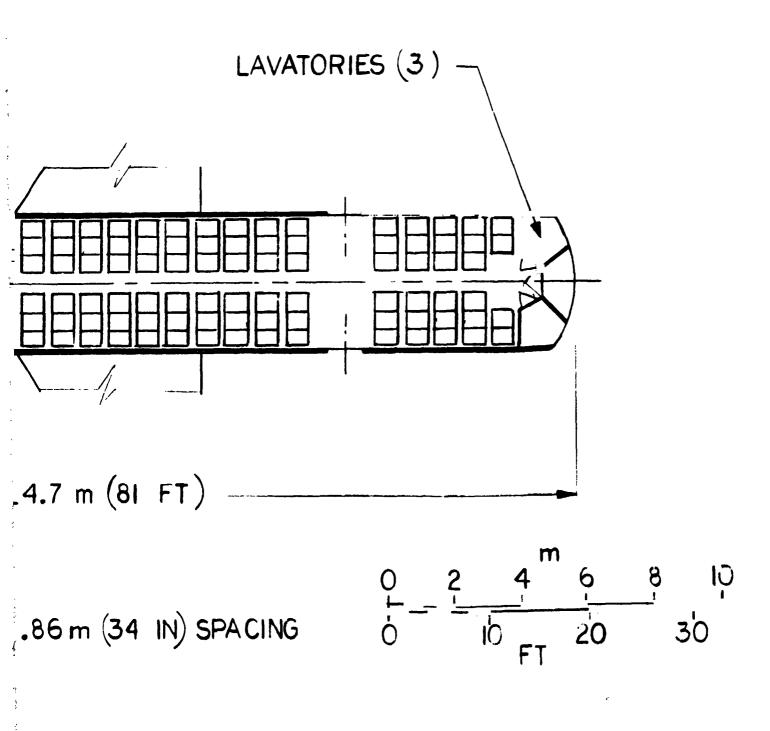


Figure 8. Interior Arrangement: 130 Pax Aircraft

4.4 LH₂ External Tank Airplane (Aircraft No. 2)

Ł,

4.4.1 <u>Aspect Ratio Selection.</u> - The procedure for selecting aircraft characteristics from the parametric matrix generated by use of ASSET is the same as that described in Section 4.3.1 for the internal tank configuration. Figure 9 shows the effect of the various selection criteria on choice of aspect ratio. Based on minimum DOC, an aspect ratio of 9.5 was selected for the final point design aircraft.

4.4.2 <u>Configuration Description.</u> - The most obvious feature of the external tank LH₂ aircraft design shown in Figure 10 is of course the large wingmounted tanks. Their physical size prevents mounting below the wing. To reduce drag to an acceptable level the tank is supported on a plyon with a height of approximately one-third the tank diameter. The tank is of integral construction covered with eight inches of closed-cell plastic foam insulation protected by a vapor proof barrier film and an external fiberglass reinforced composite cover.

The fuselage length of this aircraft has been reduced compared to the internal tank version by removal of the hydrogen fuel tanks. Six abreast seating is provided with a 0.86 m (34 in.) seat pitch for 130 passengers. Cargo volume, lavatory, and galley facilities are equivalent to those on the internal tank aircraft.

The tank arrangement of this aircraft simplifies the fuel system arrangement since only one engine crossfeed line and refuel line are carried across the aircraft fuselage in the wing box.

Air stairs are provided at both entry doors on the left hand side of the aircraft.

4.4.3 <u>Vehicle Data.</u> - All weight, performance, and cost data for this aircreft are presented in Section 4.6.

PRECEDING PAGE BLANK NOT FILMED

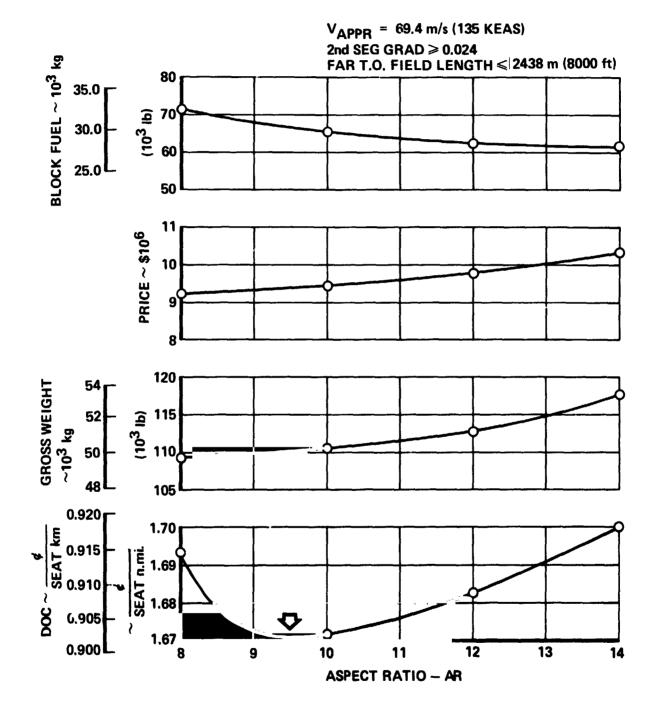


Figure 9. Aspect Ratio Selection - Dircraft No. 2

.

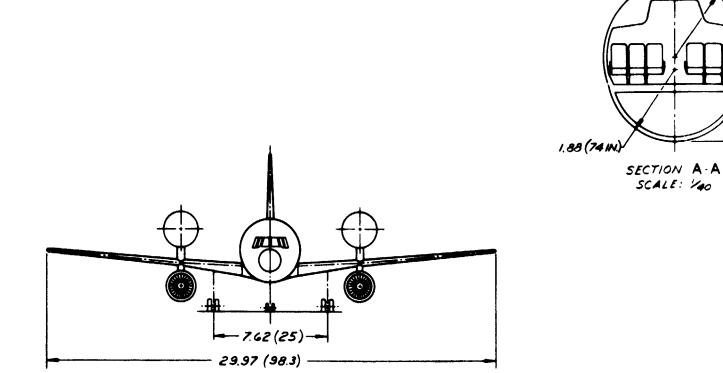
1

32

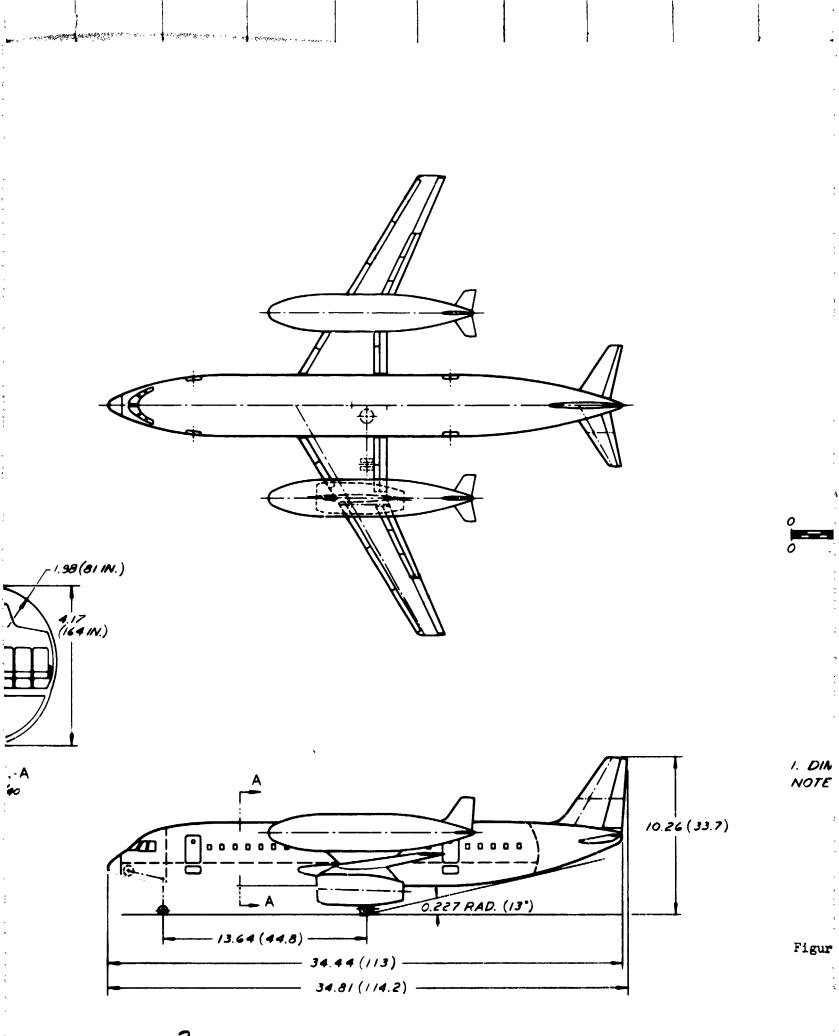
- maraphistati (1986)	MARTINE CAPE	1. 1. Jak 200	2.4.1	1999 - 160 - 17 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1	Sector Construction of the sector	, E	· · · · · · · · · · · · · · · · · · ·
-----------------------	--------------	---------------	-------	---	---	-----------------------------------	-----	---------------------------------------

CHARACTERISTICS	WING	HORIZ. TAIL	VERT. TAIL
AREA M' (SQ FT)	94.54 (1017.6)	15.16 (163.2)	12.89 (138.8)
ASPECT RATIO	9.5	4.5	1.6
SPAN M (FT)	29.97 (98.3)	8.26 (27.1)	4.54 (14.9)
ROOT CHORD M(IN)	4.51 (177.4)	2.82 (111.1)	4.37 (172.0)
TIP CHORD M (IN)	1.80 (71.0)	0.85 (33.3)	1.31 (51.6)
TAPER RATIO	0.4	0.3	0.3
MAC M (IN)	3.35 (131.5)	2.01 (79.2)	3.11 (122.6)
SWEEP RAD. (DEG)	0.524 (30)	0.524 (30)	0.524 (30)
T/C ROOT (I)	10	9	9
T/C TIP (X)	10	9	9

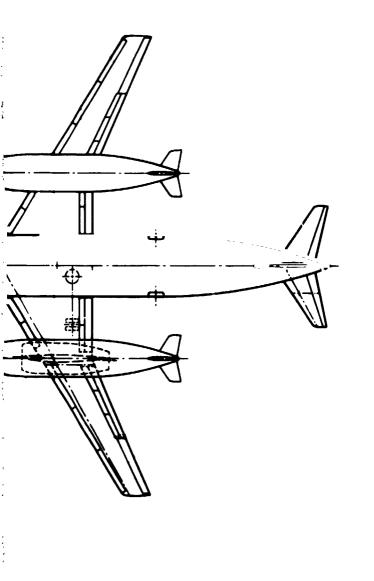
DESIGN GROSS WT. - 43,851 KG. (109,901 LB.)

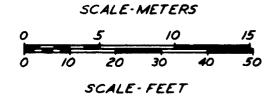

POWER PLANT - (2) TURBOFANS

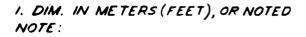
INSTALLED THRUST (EA.) - 109,986 N. (24,727 LB.)

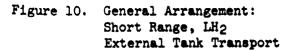

PASSENGERS - 130

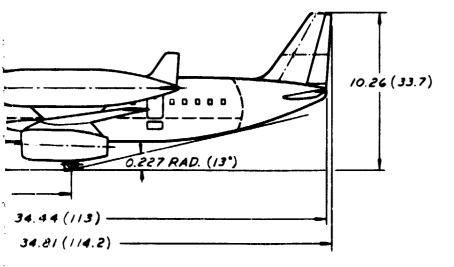
FUEL (LH2) - 4,361 KG. (9,615 LB.)


RANGE - 2,780 KM. (1,500 N.M.)




OLDOUR PRAN





4.5 Jet A Airplane (Aircraft No. 3)

4.5.1 <u>Aspect Ratio Selection.</u> - Figure 11 shows the various selection criteria versus aspect ratio and indicates a choice of 11 to provide minimum DOC.

4.5.2 <u>Configuration Description.</u> - The general arrangement of the Jet A fueled aircraft is shown in Figure 12. The fuselage and interior arrangement is the same as that of the external tank hydrogen aircraft described in Section 4.4. All fuel is contained in the wing box structure resulting in some load relief for this wing compared to the internal tank hydrogen design. Air stairs are provided on both left hand entry doors.

4.5.3 <u>Vehicle Data.</u> - All weight, performance, and cost data for this aircraft are presented in Section 4.6.

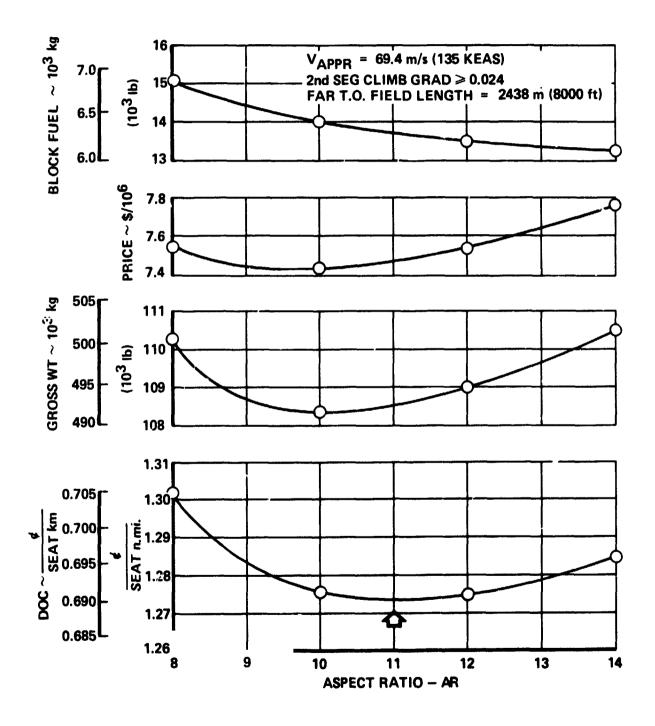

4.6 Comparison of Short Range Aircraft

Table VII presents a summary of the characteristics of the three short range aircraft. These are the final point designs meeting all performance constraints and selected on the basis of minimum DOC. For convenience in comparing the designs, ratios of the more significant values are shown.

Comparison of the external to the internal tank LH_2 aircraft designs shows that in spite of the short range involved, and therefore a relatively small fuel load, the drag of the external tanks resulted in a lift/drag ratio 15 percent poorer for that aircraft design compared to the internal tank aircraft. This is due to the rapid increase of external tank wetted area (and weight) compared to the internal tank, as discussed in Section 3.2. The lower L/D in turn, requires more cruise thrust and results in use of larger engines.

Use of larger engines accounts for the shorter takeoff distance and the higher initial cruise altitude of the external tank design. However, the combination of lower L/D and larger engines causes a significant penalty in fuel weight, aircraft price, and DOC. These disadvantages led to selection of the

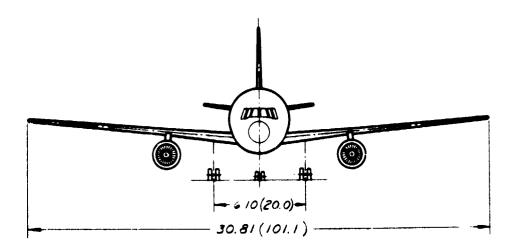
•

i

Figure 11. Aspect Ratio Selection - Aircraft No. 3

CHARACTERISTICS	WING	HORIZ. TAIL	VERT. TAIL
AREA M2 (SQ FT)	863(928.7)	12.3(132.1)	11.6(125.4)
ASPECT RATIO	11	4.5	1.6
SPAN M (FT)	30,81(101,1)	7.43 (24.4)	4.32(14.2)
ROOT CHORD M(IN)	4.31 (169.6)	254 (93.3)	4.14 (162 9)
TIP CHORD M (IN)	1.29 (50.9)	0.76 (30)	1.24 (48.3)
TAPER RATIO	0.3	0.3	0.3
MAC M (IN)	3 07(120.9)	1.81(71.2)	2.35(116.1)
SWEEP RAD. (DEG)	0.524(30)	0.524(30)	0.524 (30)
T/C ROOT (%)	10	Э	9
T/C TIP (%)	10	Э	9

DESIGN GROSS WT. - 49,287 KG. (108,657 LB.)

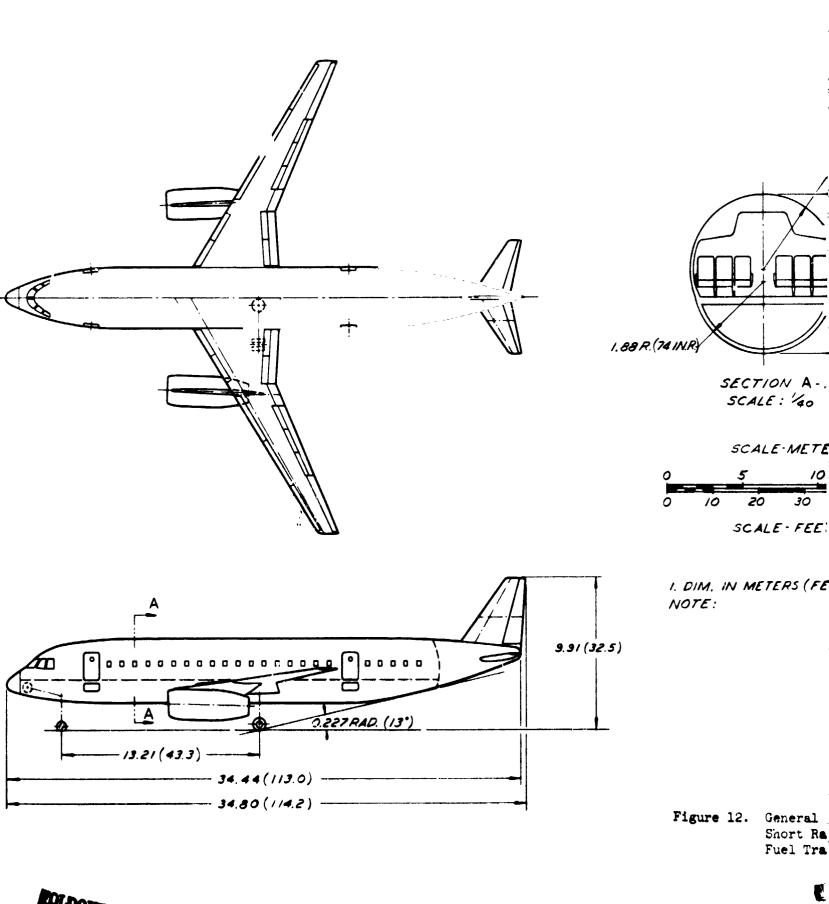

POWER PLANT - (2) TURBOFAINS INSTALLED THRUST (EA) - 84,094 N. (18,906 LB.)

and the state of the second

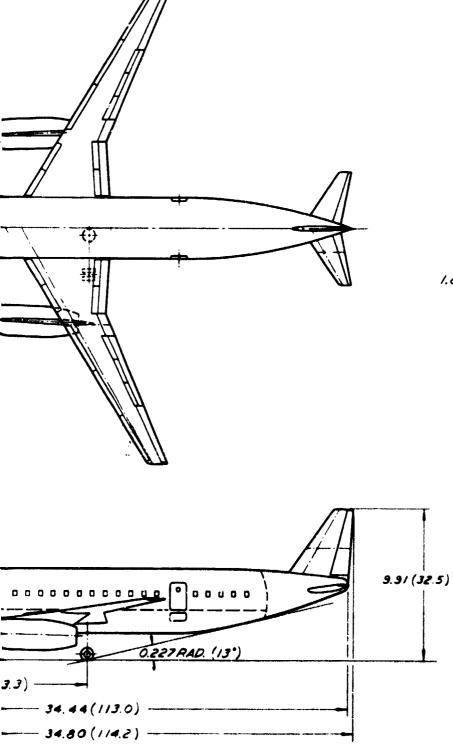
PASSENGERS - 130

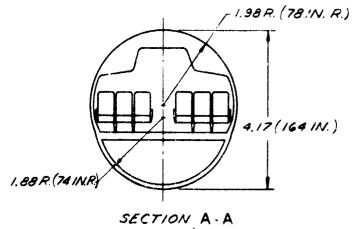
FUEL (JET A) - 8,938 KG (19,704 LB.)

RANGE - 2,780 KM. (1,500 N.M.)



4. 1977 -


1


1

MINING THE REAL PROPERTY OF TH

CALDONE PRANCE

SCALE : 140

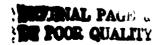
SCALE-METERS

I. DIM. IN METERS (FEET), OR NOTED. NOTE:

Figure 12. General Arrangement: Short Range, Jet A Fuel Transport

TABLE VII. COMPARISON OF FINAL DESIGN SHORT RANGE AIRCRAFT

(S.I. UNITS)


(2780 km Range - 130 Pax. - Mach 0.85)

Payload = 12,973 kg

		Aircreft	Aircraft	Ratio	Aircraft	Ratio
		No. 1	No. 2	$\left(\frac{\mathbf{E}\mathbf{x}\mathbf{t}}{\mathbf{I}\mathbf{n}\mathbf{t}}\right)$	No. 3	/ Jet A
		(Int LH ₂)	(Ext LH ₂)	(Int)	(Jet A)	(Int LH ₂)
Gross Weight	kg	44,570	49,850	1.118	49,290	1.11
Total Fuel	kg	3,340	4,360	1,31	8,940	2.66
Block Fuel	kg	2,296	3,015	1.31	6,190	2,70
Operating Empty Wt	kg	28,260	32,520	1,15	27,380	0.97
Empty Wt	kg	26,290	30,520	1.16	25,460	0.97
Aspect Ratio	-	10	9.5		11	
Wing Area	m ²	85	94.5	1.11	86.3	1.02
Sweep	degrees	30	30	1	30	
Span	m	29.1	30.0	1.03	30,8	1.06
Fue, Length	m	42.5	34.4	0.81	34.4	0.81
L/D - Cruise		13.9	11.7	0.846	16.3	1.18
SFC - Cruise	kg hr /daN	0.215	0.215		0.629	2.93
Initial Cruise Altitude	m	10,970	11,580		12,190	
Wing Loading	kg/m ²	526.3	527.3		571.2	1
Thrust/Weight	N/ka	3.38	4.41	1.3	3.41	1.0
No. Engines		2	2		2	ļ
Thrust Per Engine	N	75,390	109,990	1.46	84,090	1.12
FAR T.O. Distance	m	2,403	1,420	0.59	2,429	1.02
FAR Ldg. Distance	m	1,746	1,753		1,754	
2nd Seg Climb		0.0276	0.0583	2.11	0.0365	1.32
Grad. (Eng. Cu.)						
Approach Speed	m/s	66	69		69	
Weight Fractions	percent					
Fuel		7.5	8.8		18.1	
Payload		29.1	26.0		26.3	
Structure		28.3	27.6	{	26.1	[
Propulsion (Includes		12.8	17.6		9.2	
Fuel System)		1				ļ
Equipment and		22.3	20.0		20.3	
Operating Items						1
Price	\$10 ⁶	7.85	9.34	1.19	7.51	0.95
DOC	seat km	0.763 ¹	0.901 ¹	1.18	C.889 ²	0.90
Energy Utilization	kJ seat km	762	1001	1.32	733	0.96

¹DOC based on LH₂ cost = \$2.85/GJ

²DOC based on Jet A cost = \$1.90/GJ

to support and

: 1

11

terret sector

, [†]. 1

.

.

PROCEDING PAGE BLANK NOT PENDE

39

3

5

.

TABLE VII. COMPARISON OF FINAL DESIGN SHORT RANGE AIRCRAFT (U.S. CUSTOMARY UNITS) (1500 n.mi. Range - 130 Pax. - Mach 0.85)

Payload = 28,600 lb

		Aircraft	Aircraft	Ratio	Aircraft	Ratio
		No. 1	No. 2	(Ext)	No. 3	/ Jet A
		(Int LH ₂)	(Ext 1 H ₂)	(Inc)	(Jet A)	(Int 1.H2)
Grass Weight	lb.	98,280	109,900	1.118	108,660	1.11
Total Fuel	ib	7,364	9,616	1.31	19,704	2.68
Block Fuel	łb	5,060	6,647	1.31	13,645	2.70
Operating Empty Wt	Ho	62,290	71,690	1.15	60,350	0.97
Emoty Wt	lib	57,970	67,270	1.16	56,130	0.97
Aspect Ratio		10	9.5		11	
Wing Area	ft ²	911.5	1,018	1.12	928.7	1.02
Sweep	deg	30	30		30	
Spen	ft	95.5	98.3	1.03	101.1	1.06
Fus. Length	ft	139.5	113.0	0.81	113.J	0.81
L/D - Cruise		13.9	11.7	0.846	16.3	1.18
SFC - Cruise	lb hr ib	0.211	0.211		0.61ఓ	2.93
Initial Cruise Altitude	ft	36,000	38,000		40,000	
Wing Loading	16/ft ²	107.8	108.0		117.0	
Thrust/Weight		0.345	0.450	1.3	0.348	1.0
No. Engines		2	2		2	
Thrust Per Engine	њ	16,950	24,730	1.46	18,9 /0	1.12
FAR T.O. Distance	ft	7,885	4,**0	0.59	7,970	1.02
FAR Ldg. Distance	ft	5,728	5,752		5,754	
2nd Sce Climb		0.0276	0.0583	2.11	0.0365	1.32
Grad. (En j. Out)						
Approach: Freed	KEAS	135	135	1	135	
Weight Fractions	percent					
Fuel		7.5	8.8		18.1	
Payload	1	29.1	26.0		26.3	
Structure		28.3	27.6		26.1	
Propulsion (Includes		12.8	17.6		9.2	
Fuel System)			Ì			
Equipment		22.3	20.0		20.3	
and Operating Items						
Price	\$10 ⁶	7.85	9.34	1.19	7.51	0.95
DOC	¢ seat n.mi.	1.413 ¹	1.609 ¹	1.18	1.276 ²	0.90
Energy Utilization	Btu seet n.mi.	1,339	1,759	1.32	1,288	0.96

¹DOC based on LH₂ cost = \$3/10⁶ Btu

²DOC based on Jet A cost = \$2/10⁶ Btu = 24.8 /gel

40

internal tank design for comparison with the Jet A fueled airplane. For a description of the complete rationale leading to selection of internal tank over external tank designs, see Section 4.6 of the final report of the original study (Reference 1).

1 . . .

م المعالية من المحمد الله من المحمد المحم المحمد المحمد

•

.

1

11

. .

As might be expected from the low fuel fraction involved in this small payload, short-range mission, the advantage of using hydrogen fuel is largely mitigated by the penalties involved, i.e., tank, insulation wight, and drag increase due to more wetted area. The factor of 2.93 advantage in specific fuel consumption offered by the LH₂ fueled design, operating on the small fuel weight involved, is not sufficient to overcome the 18 percent disadvantage in L/D. Table VII shows almost equal empty weights for the internal tank LH₂ (Aircraft No. 1) and Jet A (Aircraft No. 3) designs and only an 11 percent higher gross weight for the Jet A fueled design. The purchase price of Aircraft No. 3 is lower by 4 percent and energy used in perfroming the mission is lower by 4 percent.

Table VIII presents a breakdown of costs for the three aircraft. Note that DOC is calculated on the basis of the prescribed fuel costs. Figure 13 shows the DOC versus the fuel cost in $4/410^{6}$ Btu) across the lower edge, and for Jet A fuel in 4/3 allon at the top. It indicates the high DOC of the external tank LH₂ and almost equal DOC's for the internal LH₂ and the Jet A aircraft for the same fuel price. In other words, for these aircraft LH₂ cannot cost more than Jet A for equal DOC's.

Selected pages of ASSET computer printouts for the internal tank LK_2 , external tank LH_2 , and Jet A point design aircraft are reproduced in Appendix A-1, A-2 and A-3, respectively.

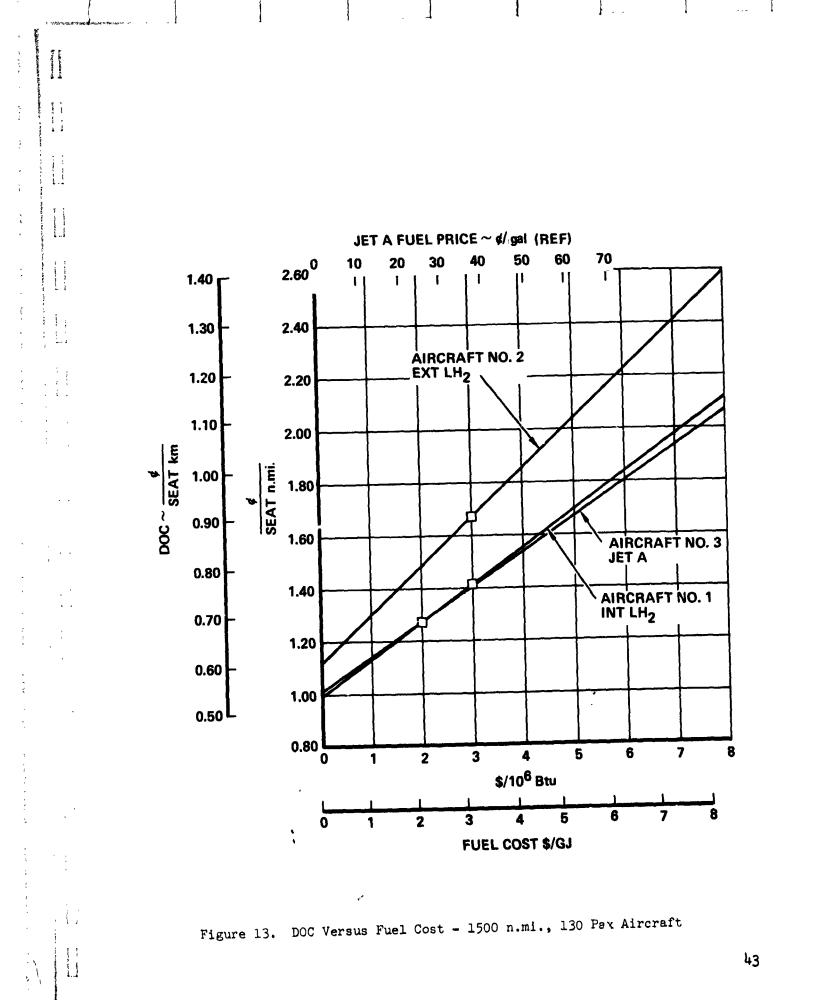
4.6.1 <u>Noise.</u> - A comparison of noise generated by the two aircraft is presented numerically in Table IX and graphically in Figure 14. The analysis was made using the takeoff and approach paths generated for the respective aircraft in the ASSET program, and using engine parameters and procedures described in Section 4.8.2 of the final report of the previous study (Reference 1).

TABLE VIII. COST COMPARISON OF FINAL DESIGN SHORT RANGE AIRCRAFT

. .

. :

Development \$10 ⁶ Airframe Engine (Amortized in prod. cost) TOTAL TOTAL Production \$10 ⁶ Airframe Cost Engine (including R&D) Avionics R&D Amortization (Airframe) TOTAL Aircraft Price \$m.mi.	21.62 0 21.62 5.482 1.530	27.47 0 27.47 6.222	23.68 0 23.68
Engine (Amortized in prod. cost) TOTAL <u>Production</u> \$10 ⁶ Airframe Cost Engine (including R&D) Avionics R&D Amortization (Airframe) TOTAL Aircraft Price	0 21.62 5.482 1.530	0	0
in prod. cost) TOTAL <u>Production</u> \$10 ⁶ Airframe Cost Engine (including R&D) Avionics R&D Amortization (Airframe) TOTAL Aircraft Price	21.62 5.482 1.530	27.47	
Production\$106Airframe CostEngine (including R&D)AvionicsR&D Amortization(Airframe)TOTAL Aircraft Price	5.482 1.530		23.68
Airframe Cost Engine (including R&D) Avionics R&D Amortization (Airframe) TOTAL Aircraft Price	1.530	6.222	
Engine (including R&D) Avionics R&D Amortization (Airframe) TOTAL Aircraft Price	1.530	6.222	
Avionics R&D Amortization (Airframe) TOTAL Aircraft Price			5.210
R&D Amortization (Airframe) TOTAL Aircraft Price		2.113	1.340
(Airframe) TOTAL Aircraft Price	0.220	0.220	0.220
1	0.618	0.785	0.677
Direct Operating Cost $\frac{\$}{km} \left(\frac{\$}{mmi}\right)$	7.850	9.340	7.507
Crew 0.2	228 (0.422)	0.227 (0.420)	0.228 (0.423)
Maintenance			
Airframe Labor 0.0 (Including Burden)	072 (0.134)	0.078 (0.145)	0.070 (0.129)
Engine Labor (Including Burden)	029 (0.053)	0.035 (0.064)	0.045 (0.J84)
Airframe Material 0.0	037 (0.069)	0.043 (0.079)	0.036 (0.067)
Engine Material 0.0	037 (0.069)	0.051 (0.095)	0.051 (0.095)
Fuel* and Oil $\frac{\$}{km} \left(\frac{\$}{n.mi}\right) 0.2$	296 (0.549)	0.389 (0.721)	0.185 (0.342)
	060 (0.111)	0.071 (0.132)	0.058 (0.107)
Depreciation 0.3	232 (0.430)	0.278 (0.514)	0.222 (0.412)
TOTAL DOC 0.9	992 (1.837)	1.17 (2.170)	0.896 (1.659)
TOTAL Unit DOC $\frac{\phi}{\text{seat km}} \left(\frac{p}{\text{seat n.mi.}} \right) 0.7$	763 (1.413)	0.901 (1.670)	0.689 (1.276)


2,780 km (1500 n.mi.) - 130 Pax. - M 0.85

Jet A = \$1.90/GJ ($\$2/10^6$ Btu = $24.8\phi/gal$ = $3.68\phi/lb$) LH₂ = \$2.85/GJ ($\$3/10^6$ Btu = $15.48\phi/lb$)

والجاهر بدارا بالم

•

. . ì

Airplane No.		l		3
Number of Engines		2		2
Fuel		LH ₂	Je	et A
Gross Weight kg (lb.)	44,570	(98,260)	49,288 (108,6	660)
FAR 36 Flyover Level (EPNdB)		79.2	7	9.2
Limit Per NPRM 75-37		87.6	3	38.2
FAR 36 <u>Sideline</u> Level (EPNdB)		85.5	8	35.7
Limit Per NPRM 75-37		93.7	Ş	94.0
FAR 36 Approach Level (EPNdB)	<u></u>	91.1	9	0.3
Limit Per NPRM 75-37		98.8	9	9.1
Enclosed "Footprint" Contour Area		1		
	<u>km</u> ²	st.mi.2	<u>km</u> 2	st.mi. ²
80 EPNdB - Takeoff	8.03	3.10	7.56	2.92
- Approach	6.32	2.44	5.36	2.07
- Total	14.35	5.54	12.92	4.99
90 EPNdB - Takeof:	1.92	0.74	1.94	0.75
- Approach	. 47	0.18	. 36	0.14
- Total	2.39	0.92	2.30	0.89

TABLE IX. NOISE EVALUATION - SHORT RANGE AIRCRAFT

1

44

, , ,

4. ····

; j

۰.

1

30,000 8,000 **DISTANCE FROM BRAKE RELEASE** 20,000 6,000 JET A FUELED LH2 FUELED 4,000 Ε t Figure 14. 90 EPNdB Contour Comparison - Short Range Aircraft 10,000 2,000 0 0 2,000 **DISTANCE TO THRESHOLD** 10,000 4,000 ε t 6,000 20,000 8,000 30,000 -6,000 - - 20,000 15,000 -5,000 -15,000 10,000 5000 -10,000 6,000 Z0,000 0 ¥ 4,000-0 2,000--4,000--2,000-١Ū DISTANCE FROM RUNWAY CENTERLINE

, , ,

• • • • • •

, . .

•

;

19812-1992-29

Roman and

A second of

Service of the servic

: i 1 | 4 ...

1 , . ,

> :

•

ı

, , ,

.

.....

- -----

U

1)

,

,

· Ause

,

•

.

•

. . . .

when the stand

ないないないでいないないとうなたちをしてくろうよう

45

く こう 幸

いいしょう しんしい かいしょう かいかい かいかい かいかい しゅうしん しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう

. .

Noise limits which are listed in the table for comparison with the values calculated for the subject aircraft are calculated according to the recently published Notice of Proposed Rule Making (NPRM) (Reference 3) for revision of the FAR Part 36 noise certification requirements. The final format and limits of a revised FAR Part 36 will probably be fairly close to the NPRM.

The airplane takeoff performance conditions of 305 m (1000 ft) elevation runway, $32.2^{\circ}\text{C} (90^{\circ}\text{F})$ day, are not consistent with the sea level, $25^{\circ}\text{C} (77^{\circ}\text{F})$, reference conditions of FAR Part 36, or the proposed change thereto. This will tend to make some of the results conservative. The approach noise predictions, however, are probably slightly too low because airframe noise was not included.

The aircraft designed for the short range mission are essentially equal in noise characteristics. Both are significantly quieter than the limit noise calculated by the proposed standard; viz., 8.4 and 9 EPNdB quieter in flyover, 8.2 and 8.3 EPNdB quieter in sideline, and 7.7 and 8.8 EPNdB quieter in approach respectively, for the LH₂ and Jet A aircraft.

The LH_2 airplane is slightly noisier in approach for reasons explained in Reference 1. Compared to the Jet A design, it has smaller engines, lower L/D, and in approach it has approximately equal weight. Consequently, the LH_2 aircraft is required to operate its engines at more advanced throttle setting to maintain the 3 degree glide slope. This accounts for the fact Aircraft No. 1 has a slightly larger footprint area, for both the 80 and the 90 EPNdB contours. The area of the 90 EPNdB contour for the LH_2 airplane is 2.39 km² (0.92 mi²) vs 2.30 km² (0.89 mi²) for the Jet A design. These areas are the total of approach plus takeoff. They are less than half the noise goal specified in the study guidelines.

5. MEDIUM RANGE AIRCRAFT

5.1 Design Requirements

The medium range aircraft are designed to meet the following requirements and constraints:

• 5560 km (3000 n.mi.) design range

į

- 200 passengers plus baggage and cargo for a total payload of 19,960 kg (44,000 lb)
- Maximum FAR takeoff field length of 2438 m (8000 ft)
- Minimum initial cruise altitude of 10,360 km (34,000 ft)
- Reserve fuel per ATA domestic regulations
- Maximum approach speed of 69.4 m/s (135 KEAS) for aircraft weight corresponding to end of design range.

5.2 Configuration Selection

Based on the study of alternate configurations reported in Section 4.2 on Reference 1, the medium range configurations are low-winged aircraft of conventional appearance with four wing-mounted engines. This requires a minimum 2.7 percent gradient during the critical second segment climb with an engine out. The external tank LH_2 design (Aircraft No. 5) has tanks mounted above the wing at the inboard engine position. The internal tank LH_2 aircraft (No. 4) has tanks located fore and aft of the passenger compartment.

5.3 LH₂ Internal Tank Airplane (Aircraft No. 4)

5.3.1 <u>Aspect Ratio Selection.</u> - The method of generation of data for the parametric aircraft evaluation, and the basis for selection of an aspect ratio of 9.5 for minimum DOC, is the same as previously described for the short range aircraft in Section 4.3.

5.3.2 <u>Configuration Description.</u> - A general arrangement drawing of the LH₂ internal tank, Mach 0.85, 5560 km (3000 n.mi.), 200 passenger aircraft is shown in Figure 15. Specific features of the design are as follows:

Fuselage: The passenger compartment is located i the central section of the fuselage. Liquid hydrogen fuel tanks are located fore and aft of the passenger compartment. They occupy the full available cross section of the fuselage, except for provision for protective, crushable structure around the bottom areas. No provision was made for a passageway through or around the forward tank to permit movement between flight station and passenger compartment. The flight station is provided with special lavatory and galley facilities.

Passenger accommodations are shown in Figure 16 which illustrates the 10/90 percent class mix and seat spacing of 0.965 m (38 in.) and 0.86 m (34 in.), respectively, for first class and coach. Six abreast seating is used in first class and eight in coach. Provision for doors, lavatory, and galley facilities is in accordance with the requirements of FAR 25 and current widebody standards. Separate galleys are provided for first class and coach sections.

All cargo is contained in the pressurized fuselage below the cabin floor where space is provided for nine cargo containers plus additional space for loose cargo.

<u>Wing:</u> The wing has an aspect ratio of 9.5, thickness ratio of 10 percent and a sweep angle of 30°. The high lift devices include 15 percent leading edge slats and 35 percent doubleslotted flaps where shown. Spoilers are used in flight for direct lift control, and for landing ground run deceleration. Conventional ailerons are fitted outboard of the flaps.

Landing Gear: The main gear consists of two four-wheel bogies mounted aft of the rear spar. They retract inward into the fuselage. The space between the retracted gear contains the hydraulic service center. The forward gear is a forward retracting two-wheel strut arrangement.

<u>Hydrogen Tank and Systems:</u> The hydrogen tank structural concept is the integral type. All aircraft structural loads in addition to the fuel dynamic and pressure loads are taken by the tank shell. Loads are transferred from the vehicle structure to the tank at each end by low heat-leak boron-reinforced fiberglass tubes arranged in an interconnect truss structure. Six-and-one-half inches of closedcell plastic foam insulation, e.g., Rohacell 41S, covers the tank. This is wrapped by a vapor shield (Kaptn) which is to prevent cryopumping in event a crack develops in the foam insulation. A fiberglass reinforced composite layer covers the entire tank section to provide a smooth aerodynamic surface, and protection from physical damage.

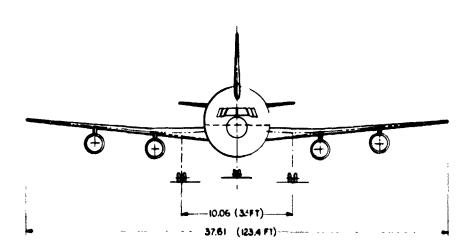
1. 1. H

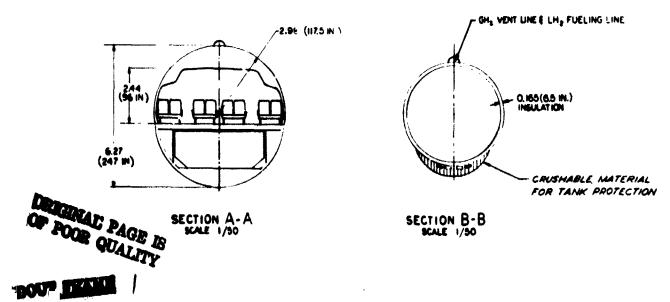
. . . .

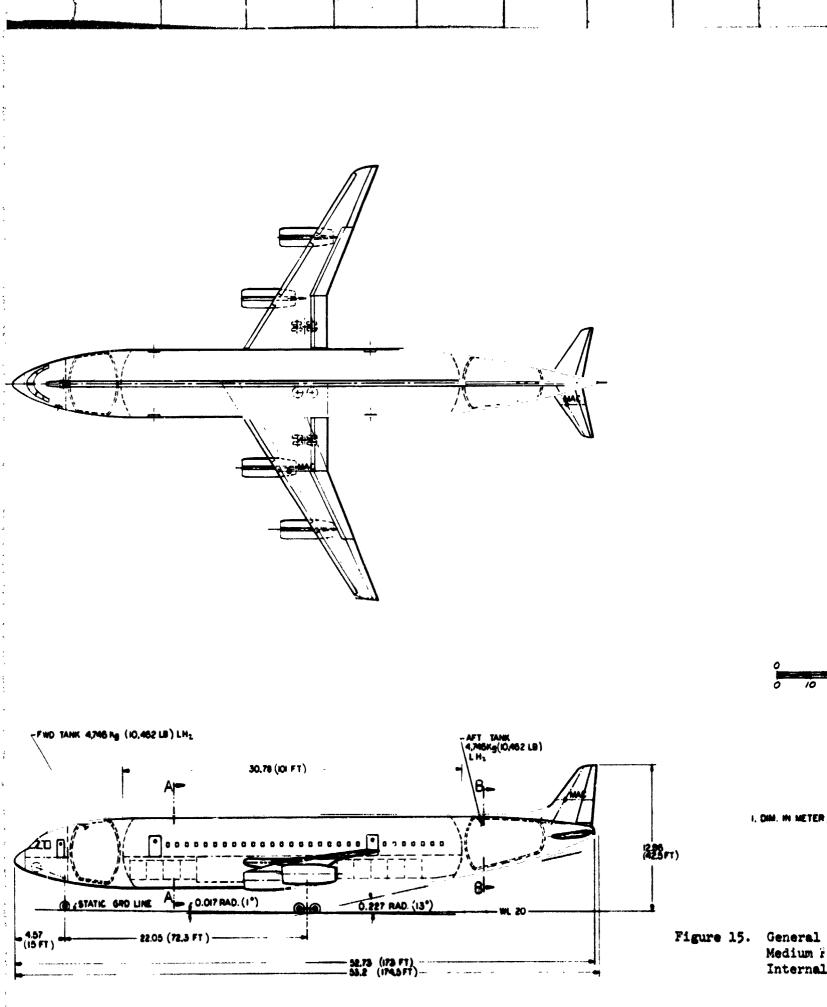
CHARACTERISTICS	WING	HORIZ, TAIL	VERT. TAIL
AREA M' (SQ FT)	148.8 (1602.3)	19.8 (212.9)	15.6 (167.7)
ASPECT RATIO	9.5	4.5	1,6
SPAN M (FT)	37.61 (123A)	9.43 (31.0)	4.99 (16.4)
ROOT CHORD M(IN)	6.09 (239.7)	3.22 (126.8)	4.80 (188.8)
TIP CHORD M (IN)	1.83 (71.9)	0.97 (38.0)	1.44 (56.6)
TAPER RATIO	0.3	0.3	0.3
MAC V (IN)	4.34 (170.9)	2.30 (90.4)	3.42 (134.6)
SWEEP RAD (DEG	0.524 (30)	0.524 (30)	0.524 (30)
T/C ROOT (X)	10	9	9
T/C TIP (S)	10	9	9

DESIGN GROSS WT. - 81,403 KG. (179,459 LB.)

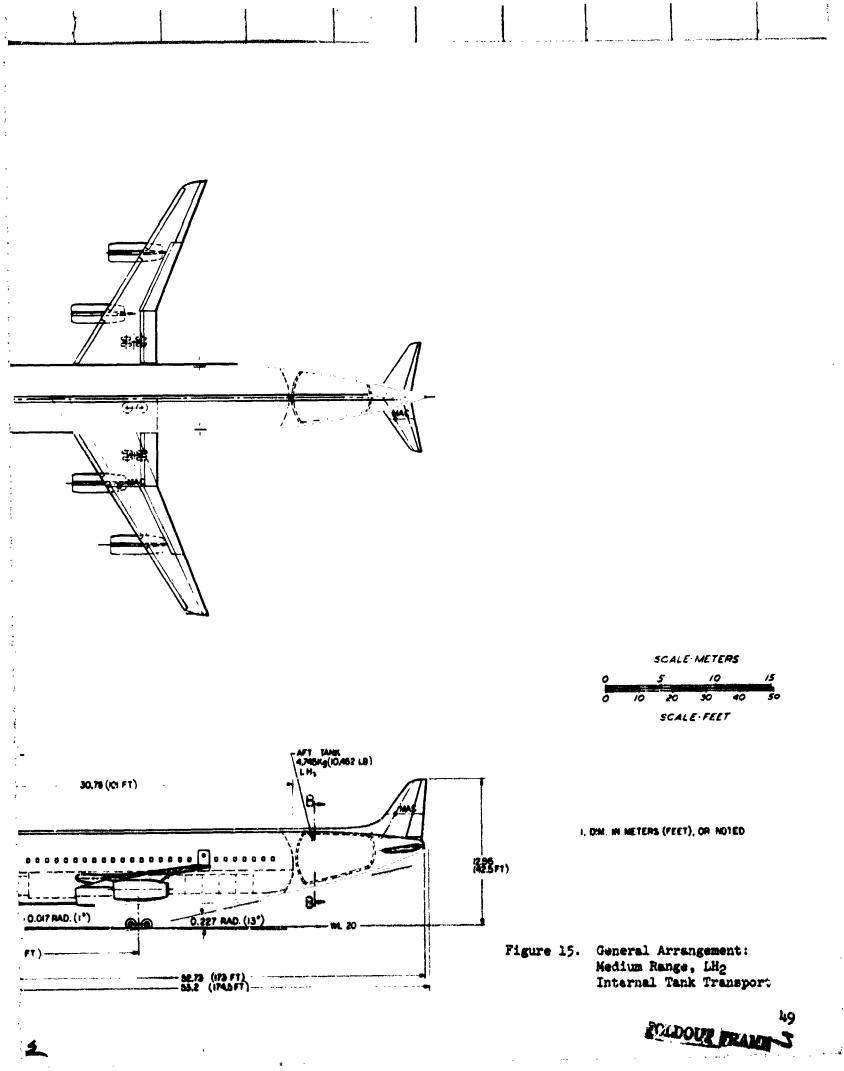
POWER PLANT - (2) TURBOFAN

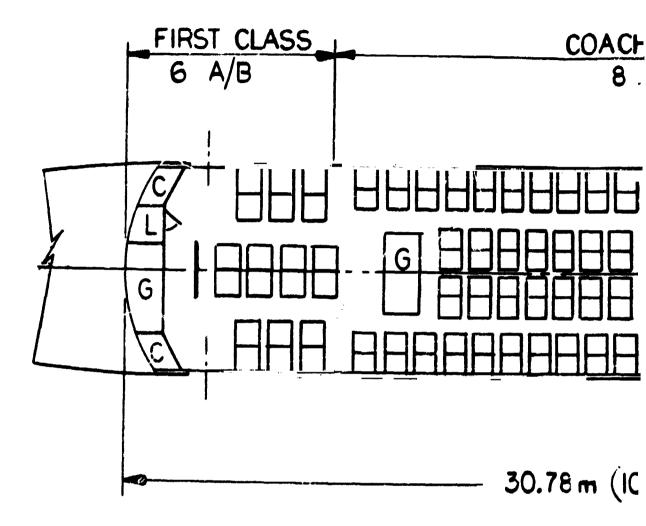

INSTALLED THRUST (EA.) - 66,849 N. (15,029 LB.)


PASSENGERS - 200


Ś

FUEL LH, - 9,492 KG (20,924 LB.)


RANGE - 5,559 KM. (3,000 NM.)



FIRST CLASS: 20 PAX, .96 m (38 IN) SPACING COACH CLASS: 180 PAX, .86 m (34 IN) SPACING

L - LAVATORY C - COATS G - GALLEY

PRECEDING PAGE BLANK NOT FILMED

POLDOUT FRAME

ž

X

- 19- -

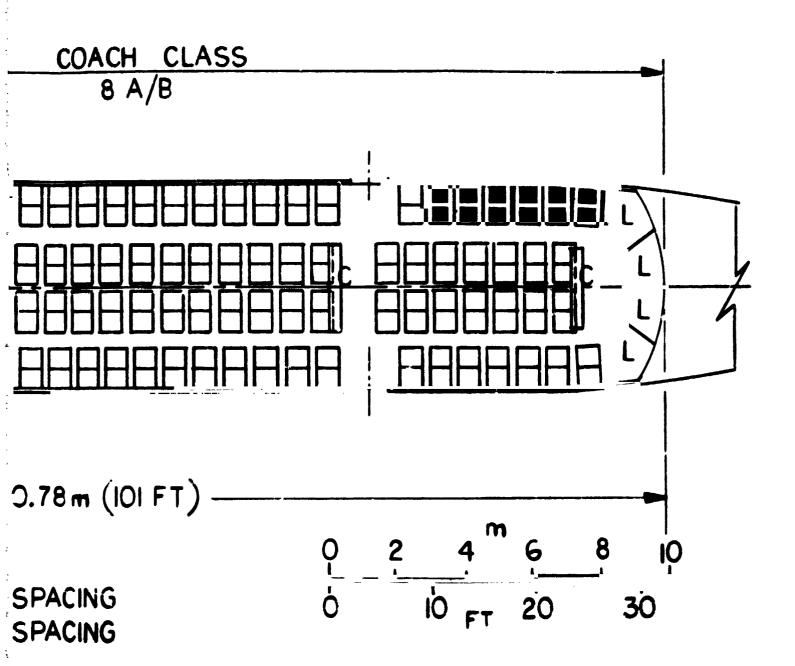


Figure 16. Interior Arrangement: 200 Pax Transport, LH₂ Internal Tank

51 EULDOUT PLUT -

5.3.3 <u>Vehicle Data.</u> - All weight, performance, and cost data are presented in Section 5.6.

5.4 LH₂ External Tank Airplane (Aircraft No. 5)

5.4.1 <u>Aspect Ratio Selection.</u> - The aspect ratio selected for this aircraft is 9.5 based on minimum DOC.

5.4.2 <u>Configuration Description.</u> - The general arrangement of this airc aft design is shown in Figure 17. This configuration is similar to the short range external tank LH_2 aircraft described in Section 4.4.2, with the exception that this design has four engines. Also, since the ratio of tank wetted area to volume is more favorable, only 6.5 inches of tank insulation are required to restrict boil-off to the desired fraction. The seating arrangement is shown in Figure 18. A 10/90 percent first-to-coach class mix is used with a seat spacing of 0.965 m (38 in.) in first, and 0.86 m (34 in.) in coach class. Six abreast seating is used in first class and eight in coach. An under-floor galley is used in this configuration, with elevators as shown to provide access. Five lavatories and provision for overhead coat storage is also shown.

5.4.3 Vehicle Data. - For performance, weight, and cost data see Section 5.6.

5.5 Jet A Airplane (Aircraft No. 6)

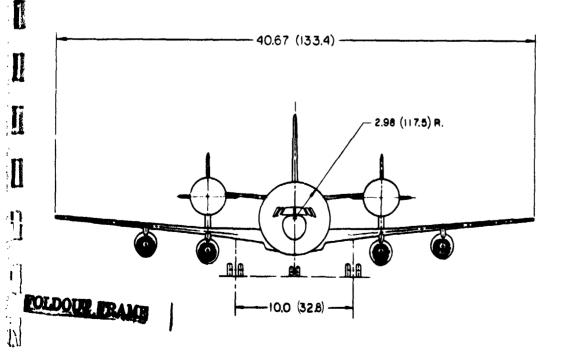
5.5.1 <u>Aspect Ratio Selection.</u> - The aspect ratio which provides minimum DOC for this aircraft is 9.75.

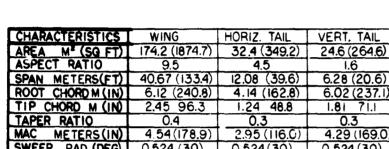
5.5.2 <u>Configuration Description.</u> - The general arrangement is shown in Figure 19. The aircraft design is conventional with all fuel carried in the wing box. The fuselage size and arrangment is the same as that of the external tank LH₂ aircraft described in Section 5.4.2.

5.5.3 <u>Vehicle Data.</u> - All weight, performance, and cost data is presented in Sectior. 5.6.

PRECEDING PAGE BLANK NOR FILMEN

5.6 Comparison of Medium Range Aircraft


Table X presents a summary of the characteristics of the three medium range, minimum DOC aircraft which meet the specified performance requirements.


Comparison of the external to the internal tank LH_2 aircraft shows that the internal tank version is superior in every significant respect. Aircraft No. 5 is 16 percent heavier in gross weight, 20 percent heavier in empty weight, costs 22 percent more in price and DOC, and uses 20 percent more fuel. Consequently the internal tank LH_2 design (Aircraft No. 4) was selected for comparison with the Jet A aircraft (Aircraft No. 6).

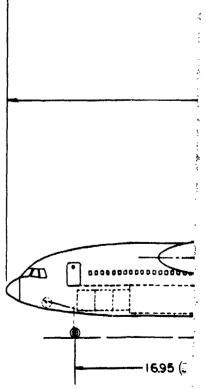
The comparison of the internal tank LH_2 aircraft and the corresponding Jet A fueled design for the medium range mission is also presented in Table X. The LH_2 fueled aircraft shows marginally superior characteristics compared to the Jet A design. It is considerably lighter in gross weight but slightly heavier in empty weight. The purchase price of the Jet A design is 4 percent less, but the LH_2 vehicle uses 5 percent less energy in performing the design missio⁴

Table XI shows a cost comparison breakdown for the three aircraft indicating a slightly higher price for the internal LH₂ compared to Jet A. Note that the DOC values shown in the table reflect use of arbitrarily selected values of fuel costs. Figure 20 shows the DOC versus fuel cost in $\frac{4}{\text{GJ}}$ ($\frac{4}{10}^{6}$ Btu.). Equivalent cost of Jet A fuel expressed in $\frac{4}{\text{gallon}}$ in shown at the top of the figure. The figure indicates the higher DOC of the external compared to the internal tank LH₂ aircraft and a slight advantage for the internal LH₂ compared to the Jet A design for equal fuel cost. Also shown is the average price paid by domestic truck airlines for Jet A fuel in September 1975 (28.6 $\frac{4}{\text{gallon}}$). At that price a differential of $\frac{133}{\text{GJ}}$ ($\frac{50.14}{10}^{6}$ Btu's) more could be paid for LH₂ and still maintain equal DOC's. This would increase slightly as the cost of Jet A increases.

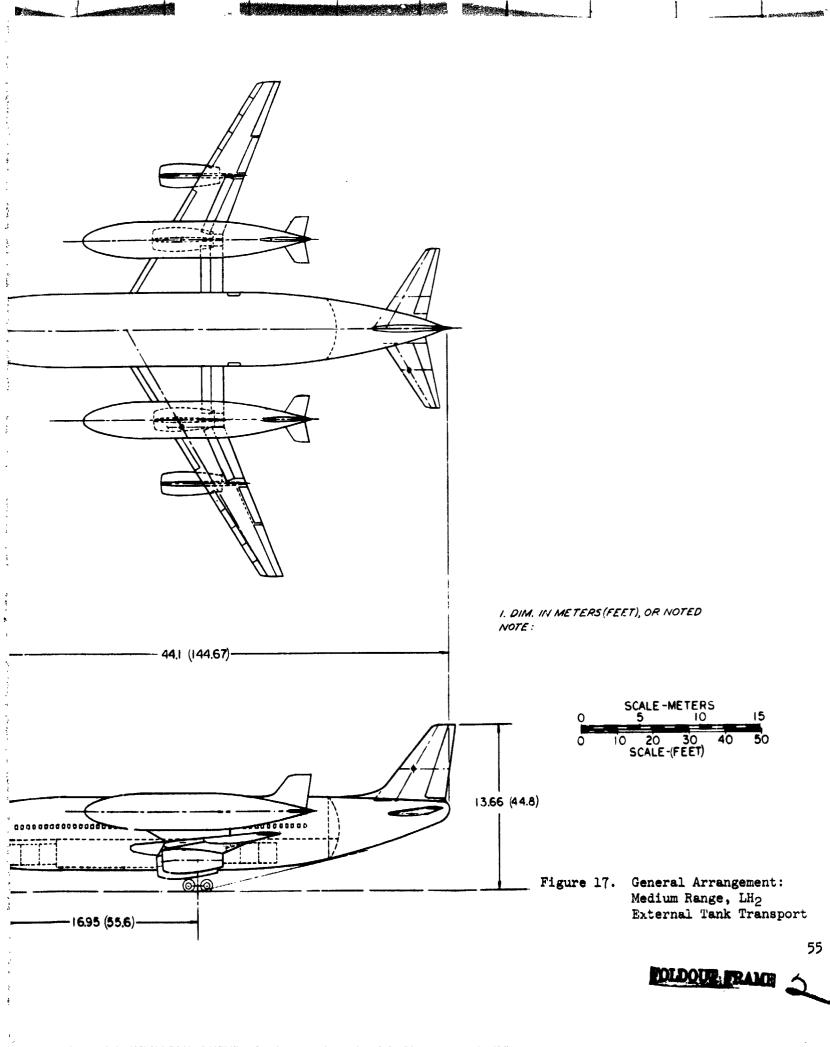
Detailed ASSET computer printouts for aircraft No's. 4, 5, and 6 are shown in Appendix A-4, A-5 and A-6, respectively.

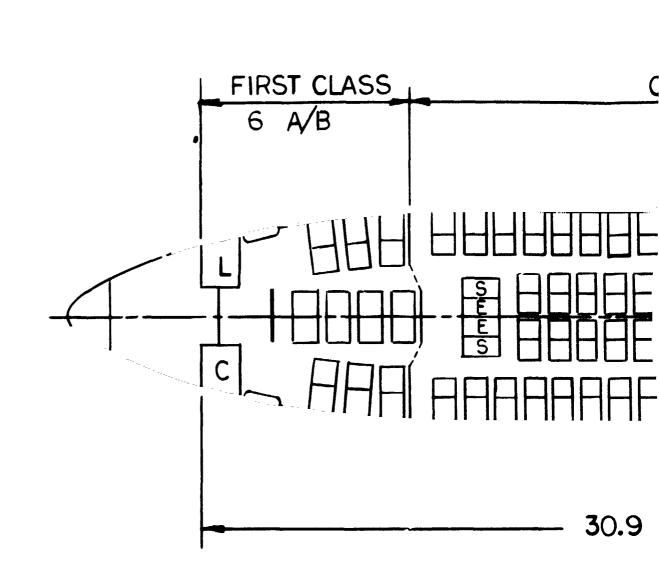
DESIGN GROSS WT. - 94,052 KG (207, 346 LB.)

POWER PLANT - 2 TURBOFAN


FUEL LH2 - 12,351 KG. (27,229 LB.)

HANGE - 5,559 KM. (3,000 N.M.)


PASSENGERS - 200


6.02 (237.1) 1.81 71.1 4.29 (169.0) SWEEP RAD (DEG) 0.524 (30) 0.524(30)0.524 (30) T/C ROOT 10 C 9 T/C TIP TC (T) 9 9

INSTALLED THRUST (EA.) - 99,141 N.(22,289 LB.)

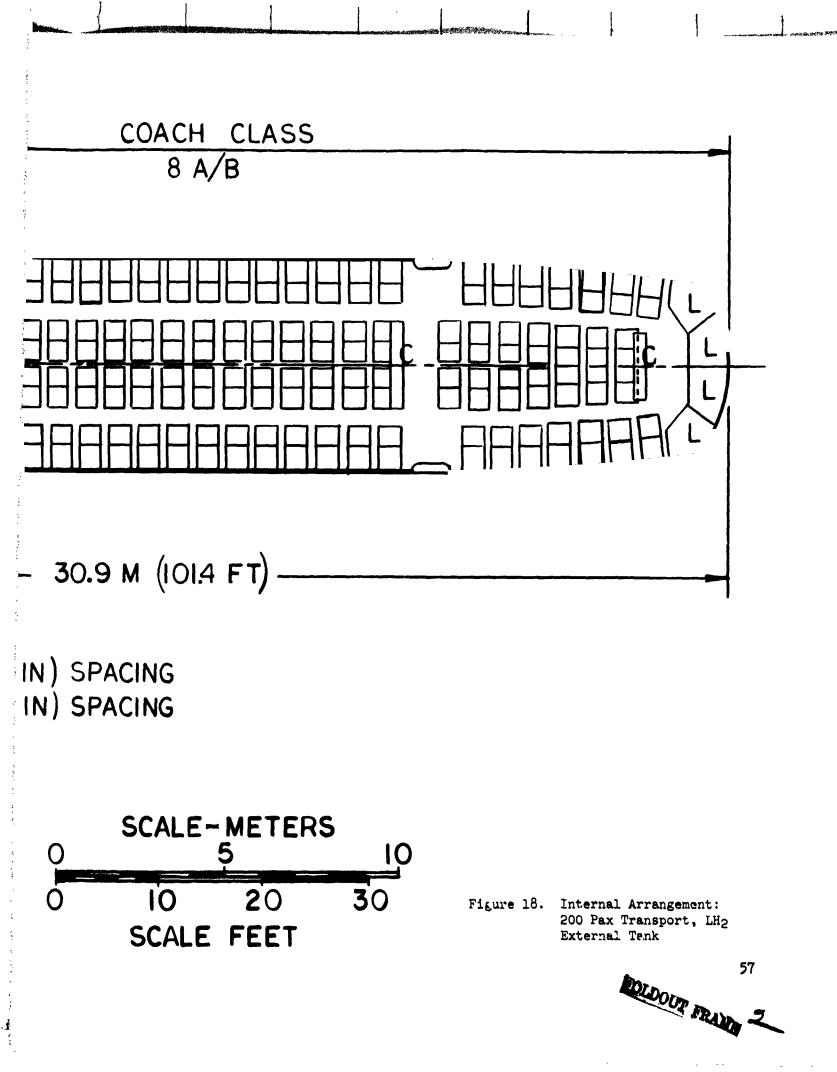
PRECEDING PAGE BLANK NOT FILMED

FIRST CLASS 20 PAX 96 (38 IN) SPA COACH CLASS 180 PAX .86 M (34 IN) SPA

L-LAVATORY C-COATS S-SERVICE CARTS E-ELEVATOR TO BELOW FLOOR KITCHEN

PRECEDING PAGE BLANK NOT FILMED

I


Ĩ

I

Se oraș

and a

Ι

CHARACTERISTICS	WING	HORIZ. TAIL	VERT. TAIL
AREA M' (SO FT)	154.5 (1663.5)	27.5 (296.3)	20.6 (221.6)
ASPECT RATIO	9.75	4.5	1.6
SPAN M (FT)	38.82 (127.4)	11.13 (36.5)	5.74 (18.8)
ROOT CHORD M (IN)	6.12 (241.1)	3.81 (149.9)	5.52 (217.3)
TIP CHORD M (IN)	1.84(72.3)	1.14 (45.0)	1.66 (65.2)
TAPER RATIO	0.3	0.3	0.3
MAC M (IN)	4.73 (171.9)	2.71 (106.8)	3.93(154.9)
SWEEP RAD. (DEG)	0.524 (30)	0.524 (30)	0.524(30)
T/C ROOT (I)	10	9	و
T/C TIP (X)	10	9	و

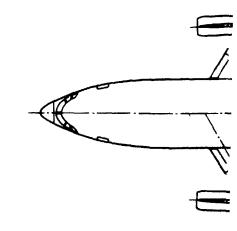
DESIGN GROSS WT. - 98,396 KG. (216,923 LB.)

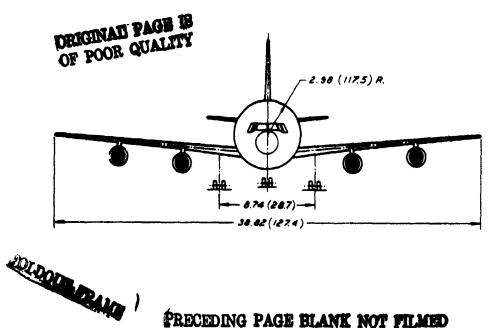
POWER PLANT . (2) TURBOFANS INSTALLED THRUST (EA.) - 68,023 N. (15,293 LB.)

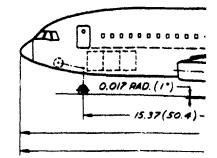
PASSENGERS - 200

Ţ

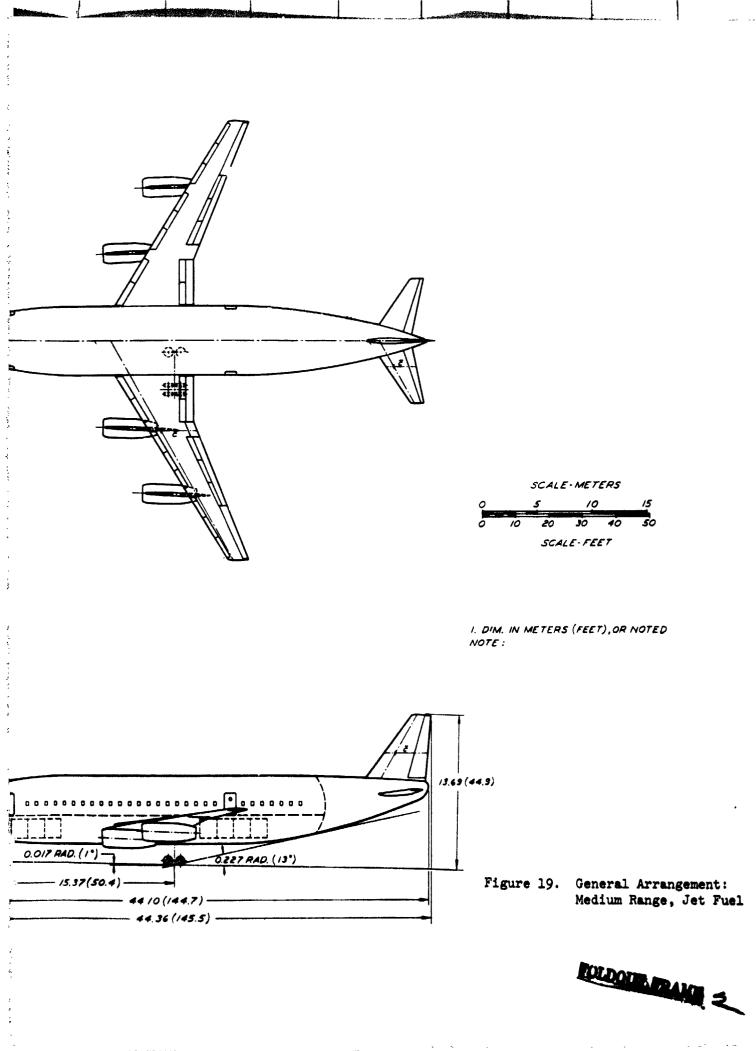
Į נן ין


'n


1


רי לידר

FUEL (JET A) - 27,731 KG. (G1.136 LB.)


RANGE - 5,559 KM. (3,000 N.M.)

PRECEDING PAGE BLANK NOT FILMED

TABLE X. COMPARISON OF FINAL DESIGN MEDIUM RANGE AIRCRAFT (S.I. UNITS) (5560 km RANGE - 200 PAX - Mach 0.85)

тереу - 19,580 kg							
		Aircraft	Aircraft	Ratio:	Aircraft	Ratio:	
		No. 4	No. 5	(Ext.)	No. 6	(Jet A)	
		(Int. LH ₂)	(Ext. LH ₂)	(Int.)	(Jet A)	(int LH ₂)	
Gross Wt	kg	81,400	94,050	1.16	98,400	1.21	
Total Fuel	kg	9,490	12,350	1.30	27,730	2.92	
Block Fuel	kg	7,724	10,000	1.29	22,710	2.94	
Operating Empty Wt	kg	51,950	61,740	1.19	50,710	0.98	
Empty Wt	kg	47,420	57,050	1.20	46,270	0.98	
Aspect Ratio	-	9.50	9.50		9.75		
Wing Area	m ²	149	174	1.17	155	1.04	
Sweep	deg	30	30		30	[
Spen	m	38	41	1.08	39	1.03	
Fus Length	m	53	44	0.83	44	0.83	
L/D - Cruise	-	13.8	12.3	0.89	15.3	1.11	
SFC — Cruise	kg/deN	.215	.215		.627	2.92	
Initial Cruise Altitude	m	10,670	11,580		10,360		
Wing Loading	kg/m ²	547	540		637	1	
Thrust/Weight	N/kg	3.28	4.21	1.28	2.76	0.84	
No. Engines	-	4	4		4		
Thrust Per Engine	N	66,850	99,140	1.48	68,020	1.02	
FAR T.O. Distance	m	1,640	1,290	0.79	2,430	1.48	
FAR Ldg. Distance	m	1,760	1,755		1,757		
2nd Seg. Climb Gred.		0.094	0.146	1.55	0.065	0.70	
(Eng out)							
Approach Speed	m/s	69	69		69		
Weight Fractions Pe	rcent						
Fuel		11.7	13.1		28.2		
Payload		24.5	21.2		20.3		
Structure		31.0	30.7		27.5	1	
Propulsion (Includes		12.5	17.2		7.1		
Fuel System)							
Equipment and		20.3	17.8		16.9		
Operating Items							
Price	\$10 ⁶	13.95	17.07	1.22	13.33	0.98	
DOC	seet km	0.7231	0.878 ¹	0.122	0.6502	0.90	
	kJ	833	1,078	1.29	875	1.05	
Energy Utilization	seet km					1	

W____ = 19,960 kg

¹DOC based of LH₂ cost = \$2.85/GJ

÷.,

į

1

۰. ۲۰۰۰

١., ξ.:

 \square

 \Box

 \square

.

. 1

3

, **.** . .

1. . L.

· · ,·

۰.

ž

ł

ž

:

111

. ,

.

8 ;

5

;,

²DOC based on Jet A cost = \$1.90/GJ

PRECEDING PAGE BLANE NOT FILMED

		···pi	7			
		Aircraft	Aircraft	Ratio	Aircraft	Ratio
		No. 4	No. 5	<u>(Ext.)</u>	No. 6	(Jet A)
		(int, LH ₂)	(Ext. LH2)	(Int.)	(Jet A)	(Int. LH ₂
Gross Wt.	lb	179,460	207,350	1.16	216,920	1.21
Total Fuel	わ	20,920	27,230	1.30	61,140	2.92
B'ock Fuel	lb	17,030	22,040	1.29	50,080	2.94
Operating Empty Wt	lb	114,540	136,120	1.19	111,790	0.98
Empty Wt	lb	104,530	125,770	20	102,000	0,98
Aspect Ratio	-	9.50	9.50	t t	9.75	
Wing Area	tt ²	1,602	1,875	1.17	1,664	1.04
Sweep	deg	30	30		30	
Spen	ft	123.4	133.5	1.06	127.4	1.03
Fus Length	ft	173.4	144,7	0.83	144.7	0.83
L/D - Cruise		13.8	12.3	0.89	15,3	1.11
SFC - Cruise	10 /Ib	0.211	0.211		0.516	2.92
Initial Cruise Altitude	ft	35,000	38,000		34,000	
Wing Loading	lb/ft ²	112.0	110.6		130.4	[
Thrust/Weight		0.336	0.430	1.28	0.282	0.84
No. Engines		4	4	[4	(
Thrust per Engine	lb	15,030	22,290	1.48	15,290	1.02
FAR T.O. Distance	ft	5,382	4,235	0.79	7,975	1.48
FAR Ldg. Distance	ft	5,779	5,757		5,763	
2nd Seg. Climb		0.094	0.146	1.55	0.066	0.70
Grad. (Eng out)		1				
Approach Speed	KEAS	135	135		135	
Weight Fractions - Perc	ent					
Fuel		11.7	13.1		28.2	
Payload		24.5	21.2		20,3	
Structure .		31,0	30.7		27.4	
Propulsion (Includes		12.5	17.2		7.2	[
Fuel System)						
Equipment and		20.3	17.8	1	16.9	
Operating Items				5		
Price	\$10 ⁶	13.95	17.07	1.22	13.33	0.96
DOC	¢	1.338 ¹	1.626 ¹	1.22	1.203 ²	0.90
Energy Utilization	Btu seet n.m ¹ .	1,464	1,895	1.29	1,537	1.05

TABLE X. COMPARISON OF FINAL DESIGN MEDIUM' RANGE AIRCRAFT (U.S. CUSTOMARY UNITS) (300U n. mi. RANGE - 200 PAX - Mach 0.85) Wnay = 44,000 ibs

.

1

IJ

[]

¹DOC based on LH₂ cost = \$3/10⁶ BTU = 15.48 ¢//b

²DOC based on Jet A cost = \$2/10⁶ Btu = 24.8¢/gai

62

.....

į

. . . .

* *

. . . .

2

1. 2

÷)

1. " ~~ I

TABLE XI. COST COMPARISON OF FINAL DESIGN MEDIUM RANGE AIRCRAFT

5560 km (3000 n.mi.) - 200 Pax - Mach 0.85

	No	Aircraft No. 4 (Int. LH ₂)		Aircraft No. 5 (Ext. LH ₂)		craft o. 6 et A)
Development \$10 ⁶						
Airframe	36	52.24	46	9.40	39	0.66
Engine (Amortized i prod. cost)		0	_	0		0
TOTAL	36	2.24	46	9.40	39	0.66
Production \$10 ⁶						
Airframe Cost		9.880	1 1	1.674		9.561
Engine (Including R&D)		2.540	ļ	3 •559		2.148
Avionics		0.500		0.500		0.500
R&D Amortization (Airframe)		1.035		1.341		1.116
TOTAL Aircraft Price	ī	3.955	1	7.074		3.325
$\frac{\text{Direct Operating}}{\text{Cost}} \frac{\$}{\text{km}} \left(\frac{\$}{\text{n.mi.}}\right)$	ĺ					
Crew	0.213	(0.395)	0.213	(0.395)	0.214	(0.396)
Maintenance						
Airframe Labor (Including Burden)	0.092	(0.170)	0.103	(0.191)	0.090	(0.167)
Engine Labor (Including Burden)	0.048	(0.089)	0.058	(0.107)	0.072	(0.134)
Airframe Material	0.053	(0.098)	0.063	(0.116)	0.032	(0.096)
Engine Material	0.054	(0.200)	0.076	(0.141)	0.069	(0.128)
Fuel* and Oil	0.499	(0.924)	0.645	(1.195)	0.339	(0.628)
Insurance	0.10	(0.185)	0.123	(0.227)	0.096	(0.177)
Depreciation	0.386	(0.714)	0.475	(0.879)	0.367	(0.679)
TOTAL DOC	1.445	(2.675)	1.756	(3.251)	1.299	(2.405)
$\begin{array}{cc} \text{TOTAL} & \underbrace{\phi} \\ \text{Unit DOC} & \overline{\text{seat km}} & \underbrace{\left(\underbrace{\phi} \\ \text{seat n.mi.} \right)} \end{array}$	0.723	(1.338)	0.878	(1.626)	0.650	(1.203)

*Fuel Cost:

1.

ľ

ί. .

[]

1)

L

[]

11

; }

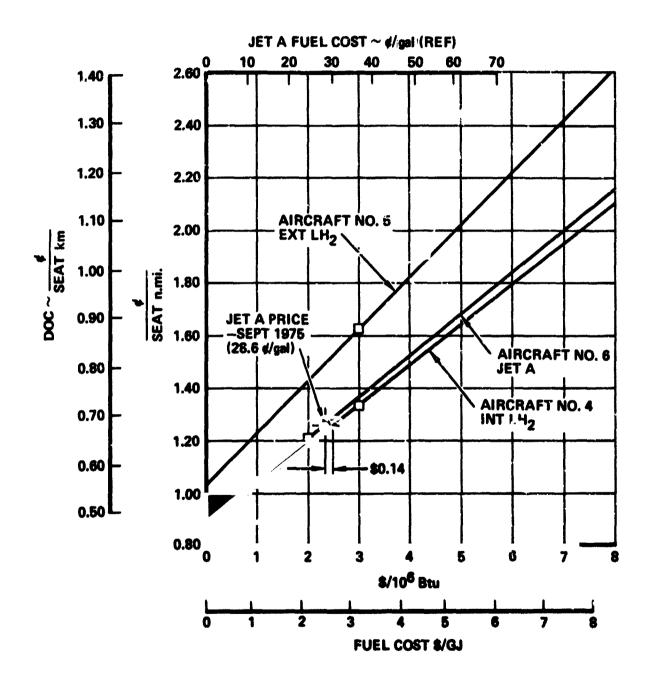
U

. . .

j

×

2


ŗ

4

.\

1 - 1 - 1 - 1

Jet A = \$1.90/GJ ($\$2/10^{6}$ Btu = $24.8\phi/gal$ = $3.68\phi/lb$) LH₂ = \$2.85/GJ ($\$3/10^{6}$ Btu = $15.48\phi/lb$)

1

Ĩ

; '

; 1

IJ

Figure 20. DOC Versus Fuel Cost - 3000 n.mi., 200 Pax Aircraft

64

á

*

].

;

5.6.1 <u>Noise.</u> - A comparison of noise generated by the two aircraft is presented numerically in Table XII and graphically in Figure 21. The enalysis was made using the takeoff and approach paths generated for the respective aircraft in the ASSET program, and using engine parameters and procedures described in section 4.8.2 of the final report of the previous study (Reference 1).

· * *** 8.×** -

Ļ

ž

Π

Ц

As noted in section 4.6.1, noise limits which are listed in the table for comparison with the values calculated for the subject sircraft are those according to the recently published Notice of Proposed Rule Making (Reference 3) for revision of the FAR Part 36 noise certification requirements.

The LH₂ aircraft designed for the medium range mission is appreciably quieter in flyover, but slightly noisier in sideline and during approach than its Jet A fueled counterpart. Both .re significantly quieter than the limit noise calculated by the proposed standard. The differences are 15.2 and 12.2 EPNdB quieter in flyover, 12.2 and 13.1 EPNdB quieter in sideline, ard 7.4 and 8.3 EPNdB quieter in approach, respectively, for the LH₂ and Jet A aircraft.

The LH₂ airplane is slightly noisier in approach for reasons explained in Reference 1 and reviewed in section 4.6.1. As shown in Table XII, the area of the 90 EPNdB contour for the LH₂ airplane is 3.21 km² (1.24 mi²) vs 3.75 km^2 (1.45 mi²) for the Jet A design. These areas are the total of approach plus takeoff. They are both less than the noise goal listed in the study guidelines, Table II.

Airplane No.		4		6
Number of Engines		4		6
Fuel		LH2		Jet A
Gross Weight - kg (1b)	81,403 (179,460)	98,395	(216,920)
FAR 36 Flyover Level (EPNdB)		81.8		85.9
Limit per NPRM 75-37		97.0		98.1
FAR 36 Sideline Level		86.4		86.0
Limit Por NPRM 75-37		98.6		99.1
FAR 36 Approach Level (EPNdB)		93.1		92.8
Limit Per NPRM 75-37		100.5		101.1
Enclosed "Footprint" Contour Area				
	km ²	<u>st.mi.</u> 2	<u>km²</u>	<u>st.mi.</u> 2
80 EPNdB - Takeoff	10.33	3.99	12.48	4.82
- Approach	8.08	3.12	7.85	3.03
- Total	18.41	7.11	20.33	7.05
90 EPNdB - Takeoff	2.41	0.93	3.00	1.16
- Approach	.80	0.31	.75	0.29
- Total	3.21	1.24	3.75	1.45

TABLE XII. NOISE EVALUATION - MEDIUM RANGE AIRCRAFT

2 1

•

: !

; ;

• |

:::

: ز د

Nijan av v Vitennije ^{na}

4

ķ

11

:

1

;

•

د •

3

μ

*** * * * *

ţ

ž

÷

ŝ

ę

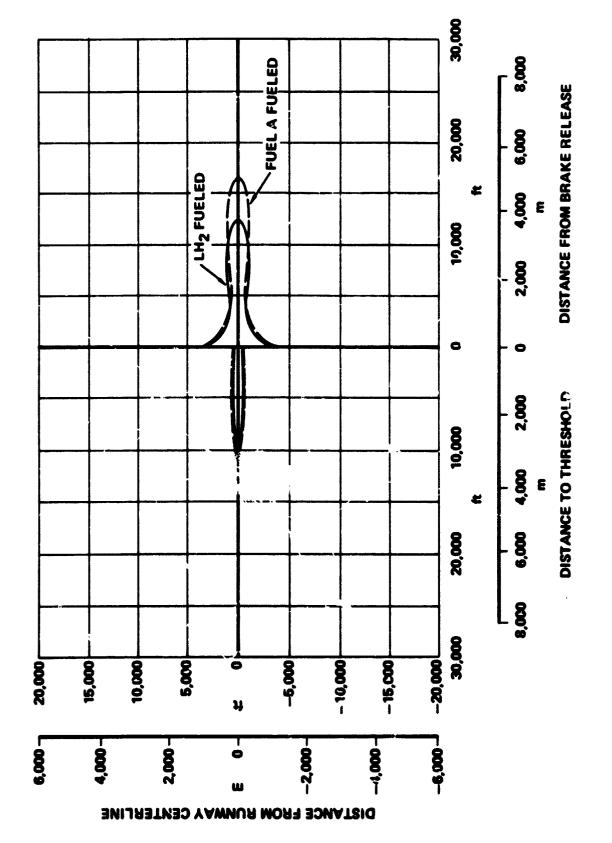
1 × × 1 × 2

: .

\$

1. 1000

**...*


?

ţ

مدیورد از مدین محمد میرود. • مدیورد از معرفی محمد مدیر است کهان از معرف می م

Figure 21. 90 EPNdB Contour Comparison - Medium Range Aircraft

I

. ¹. .

.

ł

č

. ?

. • •

.

* - * * *

. .

and the second sec

, 1

ì

1

٠

,

;

67

, (A.

6. LONG RANGE AIRCRAFT

6.1 Design Requirements

The long range aircraft are designed to provide the following performance and meet the specified constraints:

- 9265 km (5000 n.mi.) radius. With full payload and ATA international reserves for each segment, fly 9265 km, land, takeoff unrefueled, and fly another 9265 km segment.
- 400 passengers plus baggage and cargo for a total payload of 39,920 kg (88,000 lb)
- Maximum FAR takeoff field length of 3658 m (12,000 ft)
- Minimum initial cruise altitude of 10,360 m (34,000 ft)
- Maximum approach speed of 69.4 m/s (135 KEAS) at a landing weight equivalent to that at the end of the first 9265 km (5000 n.mi.) segment.

6.2 Configuration Selection

An external tank L₂ configuration was not evaluated for this long range missi . be use the work done in Reference 1 had confirmed that the high drag and weight penalties associated with this design concept would be noncompetitive.

Pesigns of the internal tank LH_2 and the Jet A aircraft are similar to the medium range aircraft described in Section 5.0 with the exception that the passenger cabin of the internal LH_2 aircraft is a two deck arrangement. It is described in a following section.

Both the long range LH₂ and Jet A aircraft have relatively high growth factors because of the high fuel fraction required for the very long, unrefueled flight. During the initial parametric investigation of these aircraft, the constraints imposed on each aircraft were examined to determine which were critical in sizing the aircraft. The results indicated that initial cruise altitude was the principal design constraint for the LH₂

ငပဲ

ì

i. N

ł,

Č,

 ${\bf A}^{i}$

design, and that takeoff field length was most significant for the Jet A aircraft. Consequently, an investigation of the sensitivity of each aircraft to these parameters was made. Results are described below for the LH_2 aircraft and in Section 6.4.1 for the Jet A.

6.3 LH₂ Internal Tank Airplane (Aircraft No. 7)

6.3.1 <u>Parametric Investigation.</u> - Results of the study to determine the effect of initial cruise altitude on characteristics of aircraft No. 7 are shown in Table YIII. The data are plotted in Figures 22 and 23. Note that each airplane design listed in Table XIII represents the combination of wing loading (W/S) and thrust-to-weight ratio (T/W) which meets all design constraints, i.e., approach speed, 2nd segment climb gradient, and FAR takeoff field length, and achieves the specified initial cruise altitude. In Figure 22 these results are plotted to determine the minimum direct operating cost (DOC) for each aspect ratio. The locus of minima is indicated by the broken line. It shows that changing the initial cruise altitude of the long range hydrogen-fueled airplane from 10,360 m (34,000 ft) would not result in a significant decrease in DOC. Accordingly, this altitude was retained as a design constraint for the long range aircraft in this study. Also, as shown in Figure 22 the aspect ratio selected for this aircraft on the basis of minimum DOC is 10.

Following this initial investigation, corrections to the ASSET input were made as required due to the reduction of the actual gross weight over the preliminary estimates, and the final aircraft data was generated.

6.3.2 <u>Configuration Description</u>. - A general arrangement drawing of the LH₂ internal tank, Mach 0.85, 9265 km (5000 n.mi.) radius 400 passenger aircraft is shown in Figure 2¹/₄.

<u>Fuselage:</u> A: in the previous LH_2 fueled aircraft the passenger compartment is located in the central section of the fuselage in a double deck arrangement. Liquid hydrogen fuel tanks are located fore and aft of the passenger compartment. They occupy the full available cross section of the fuselage, except for provision for protective, crushable structure around the pottom areas.

Initial			Aspec	t Ratio	
Cruise Alt10 ³ m		8	9	10	12
	W/S – kg/m ²	575	571	569	565
	T/W — N/kg	0.33	0.32	0.31	0.29
	DOC - g	.803	.784	.776	.788
	WG - Ny	282,050	278,740	278,420	284,320
	Cost - \$10 ⁶	41.63	41.56	41.8	43.3
	FAR T.O m	1,646	1,670	1,707	1,798
11.58	2nd Seg. Grad.	0.079	0.0823	0.085	0.085
	V(Appr.) - m/s	69	69	69	<u>69</u>
	W/S - kg/m ²	575	573	570	566
	T/W - N/kg	0.31	0.30	0.29	0.27
	DOC - grat km	.786	.772	.767	.777
	W _G - kg	277,510	275,290	275,93C	283,860
	$W_{G} - kg$ Cost - 10 ⁶	40.53	40.54	40.96	42.7
10.97	FAR T.O m	1,774	1,804	1,847	1,963
	2nd Seg. Grad.	0.067	0.0715	0.073	0.073
	V(Appr.) – m/s	69	69	69	69
	W/S kg/m ²	576	574	571	568
	T/W - N/kg	0.29	0.28	0.27	0.25
	DOC - seat km	.776	.766	.761	.781
		274,880	273,970	274,750	285,630
	Cost - \$10 ⁶	39.7	39.86	40.28	42.42
10.36	FAR T.O. – m	1,914	1,959	2,012	2,149
	2nd Seg. Grad.	0.056	0.0605	0.062	0.062
	V(Appr.) m/s	69	69	69	<u> </u>
	W/S – kg/m ²	578	575	574	570
	T/W N/kg	0.27	0.26	0.25	0.24
	$DOC - \frac{g}{\text{seat km}}$.769	.764	.767	.789
	₩ _C Kg _	273,430	274,340	277,470	288,800
	Cost - \$10 ⁶	38.98	39.37	40.1	42.56
9.75	FAR T.O. – m	2,088	2,143	2,210	2,262
	2nd Seg. Grad.	0.045	0.048	J.05	0.0565
	V(Appr.) – m/s	69	69	69	69
	W/S – kg/m ²	579	577	575	571
	T/W - N/kg	0.256	0.25	0.24	0.233
	DOC - seat km	.772	.766	.774	.795
	I VIA - KG	275,240	275,520	280,640	291,670
	Cost - \$10 ⁶	38.83	39.28	40.18	42.75
• • •	FAR T.O m	2,234	2,251	2,338	2,359
9,14	2nd Seg. Grad.	0.0364	0.043	0.045	0.0525
	V(Appr.) m/s	69	69	69	69
	W/S - kg/m ²	580	578	577	572
	T/W – N/kg	0.25	0.247	0.235	0.23
	DOC - great km	.775	.768	.780	.798
0.00		276,520	276,240	282,590	292,570
8.53	Cost - \$10 ⁶	38.2	39.3	42.8	42.82
	FAR T.O m	2,304	2,292	2,377	2,393
	2nd Seg. Grad.	0.033	0.0413	0.042	0.051

TABLE XIII. EFFECT OF INITIAL CRUISE ALTITUDE ON LH_2 AIRCRAFT (S.I. UNITS) (Aircraft No. 7)

DRUGINALI PAGE IS OF POOR QUALITY

70

TABLE XIII. EFFECT OF INITIAL CRUISE ALTITUDE ON LH $_{\rm 2}$ AIRCRAFT

(U.S. CUSTOMARY UNITS) (Aircraft No. 7)

I

+

. .

۰.

. .

-

•

. .

. . .

1

۰.

. 1

• •

• -

ł Ξ.

• •

· :

E

4

;

-Ĩ

ł

:.

š

2 . . .

ι •

ĩ

: • ;

ŗ

•

.

;;;

.

5

ţ

·i ÷

è,

5. .

Initial Cruise			Aspect	Ratio	
Cruise Alt10 ³ m		8	9	10	12
	W/S – Ib/ft ²	117.7	117	116.5	115.7
	T/W	0.33	0.32	0.31	0.29
	DOC - Seat n.mi.	1.4867	1.4527	1.437	1.46
	W _C - Ib	621,800	614,500	613,800	626,800
38	W _G - Ib Cost - \$10 ⁶	41.63	41.56	41.8	43.3
	FAR T.O. – ft	5,400	5,480	5,600	5 ,900
	2nd Seg. Grad.	0.079	0.082	0.085	0.085
	V(Appr.) - KEAS	135	135	135	135
	$W/S - ib/ft^2$	117.82	117.3	116.7	116
	T/W	0.31	0.30	0.29	0.27
	DOC - <u>¢</u> Seat n.mi. W ₂ - Ib	1.456	1.43	1.42	1.438
		611,800	606,900	608,300	625,800
36	Cost - \$10°	40.53	40.54	40.96	42.7
	FAR T.O. – ft	5,820	5,920	6,060	6,440
	2nd Seg. Grad.	0.067	0.072	0.073	0.073
	V(Appr.) – KEAS	135	135	135	135
	W/S - lb/ft ²	118	117.5	117	116.4
	T/W	0.29	0.28	0.27	0.25
	DOC - F Seat n.mi.	1.437	1.418	1.410	1 446
		606,000	604,000	605,700	629,700
34	Cost - \$10 ⁶	39.7	39.86	40.28	42.42
	FAR T.O. – ft	6,280	6,426	6,600	7,050
	2nd Seg. Grad.	0.056	0.060 135	0.062 135	0.062 135
	V(Appr.) – KEAS				
	W/S – lb/ft ²	118.3	117.8	117.5	116.75
	T/W é	0.27	0.26	0.25	0.24
	DOC - F Seat n.mi.	1.4243	1.415	1.42 611,700	1.462 636,700
32		602,800 38,98	604,300 39,37	40.1	42.56
	G Cost - \$10 ⁶ FAR T.O ft	6,850	7,030	7,250	7,420
	2nd Seg. Grad.	0.045	0.048	0.05	0.056
	V(Appr.) – KEAS	135	135	135	135
	W/S - lb/ft ²	118.5	1:9.1	117.8	117
	T/W	0.256	0.25	0.24	0.233
		1.429	1.418	1.4325	1.473
	DOC - Seat n.mi. W _G - Ib	606,800	607,400	618,700	643,000
	G - \$10 ⁶	38.83	39.28	40.18	42.75
30	FAR T.O ft	7,330	7,385	7,670	7,740
	2nd Seg. Grad.	0.036	0.043	0.045	0.052
	V(Appr.) - KEAS	135	135	135	135
	W/S - Ib/ft ²	118.8	118.3	118.2	117.1
	T/W	0.25	0.247	0.235	0.23
	DOC - seat n.mi .	1.4345	1.422	1.445	1.478
28		609,600	609,000	623,000	645,000
	Cost - \$10 ⁶	38.2	39.3	42.8	42.82
	FAR T.O ft	7,560	7,520	7,800	7,850
	2nd Seg. Grad.	0.033	0.041	0.042	0.051
	V(Appr.) - KEAS	135	135	135	135

ORIGINAL PAGE IS OF POOR QUALTIX

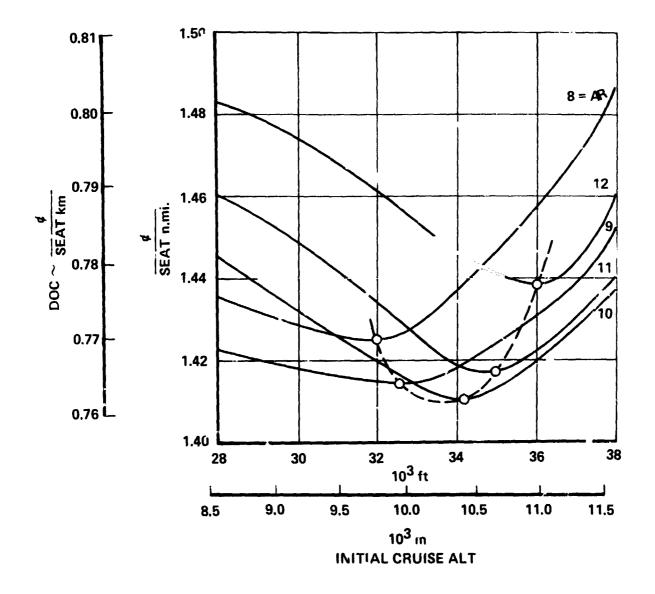
71

. . .

* *

....

•

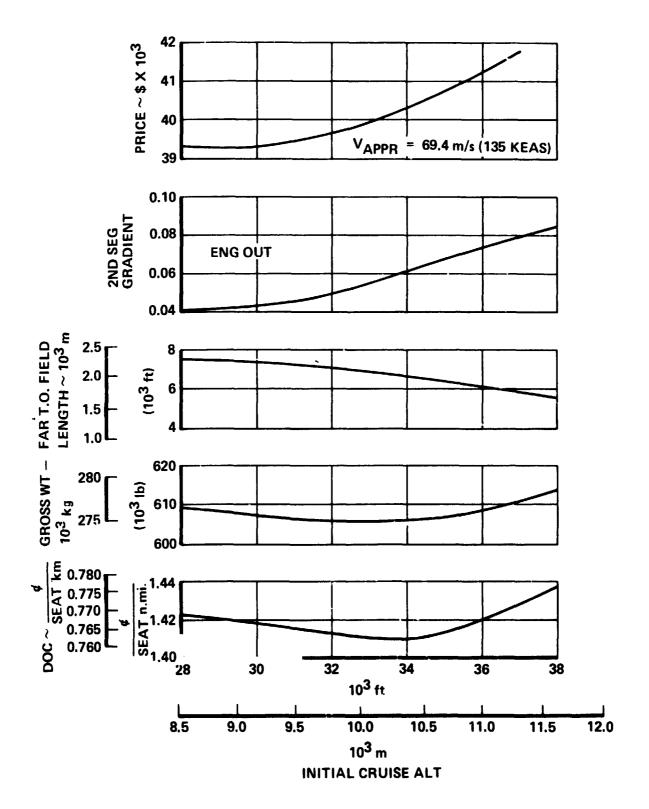

-

4 ·

•

ζ.

2



l

Figure 22. Effect of Aspect Ratio and Initial Cruise Altitude on Direct Operating Cost of the Long Range LH₂ Aircraft

72

`__

- *** ** * * *

- - . .

ţ

41

Figure 23. Effect of Initial Cruise Altitude on Performance and Cost of the Long Range LH₂ Aircraft

73

No provision was made for a passageway through or around the forward tank to permit movement between flight station and passengers. In the absence of such communication, the flight station is provided with special lavatory and galley facilities.

Passenger accommodations are shown in Figure 25 which shows the 10/90 percent class mix and seat spacing of 0.965 m (38 in.) and 0.86 m (34 in.) respectively, for first class and coach. Seven abreast seating is used in first class and 10 abreast in coach. The arrangement includes doors, lavatory and galley facilities in keeping with the requirements of FAR 25 and current widebody standards. Stairwells at each end of the cabin allow access to either deck in flight.

All cargo is contained in the pressurized fuselage, below the lower deck, where space is provided for cargo containers plus an additional 17 m^3 (600 ft³) for loose cargo.

<u>Wings:</u> The wing has as aspect ratio of 10, and a sweep of 30°. The high lift devices include 15 percent leading edge slats and 35 percent double-slotted fleps where shown. Spoilers are used in flight for direct lift control, and for landing ground run deceleration. Conventional ailerons are fitted outboard of the flaps.

Landing Gear: The main gear consists of two six-wheel bogies mounted aft of the rear spar. They retract inward into the fuselage. The space between the retracted gear contains the hydraulic service center. The forward gear is a two-wheel strut arrangement retracting forward under the flight station.

Hydrogen Tank and Systems: The hydrogen tank structural concept selected for purposes of this study is the integral type described in Section 3.1.2. All aircraft structural loads in addition to the fuel dynamic and pressure loads are taken by the tank shell. Loads are transferred from the vehicle structure to the tall at each end by low heat-leak boron reinforced fiberglass tubes arranged in an interconnect truss structure. Seven inches of closed-sell plastic foam insulation, e.g., Rohacell 41S, covers the tank. This is then wrapped by a vapor shield (Kapton) which is to pr vent cryopumping in event a crack develops in the foam insulation. A fiberglass reinforced composite layer covers the entire tank section to provide a smooth rerodynamic surface and protection from physical damage.

The tank is thus generally protected from mechanical damage by the foam insulation and its fiberglass cover. Further special protection from both foreign object damage and damage from maneuvers such as over-rotation or tail scrape is provided on the bottom of the tank. An energy absorbing, aluminum honeycomb structure is supported from

74

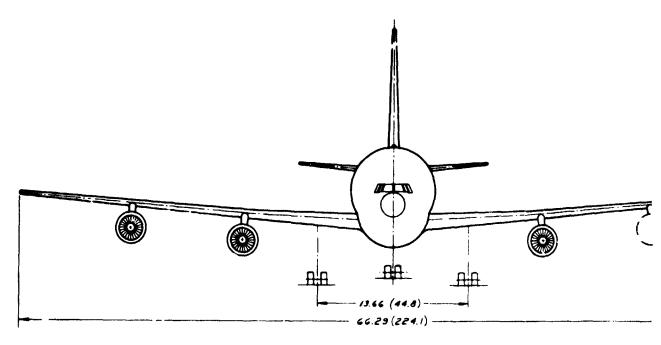
.

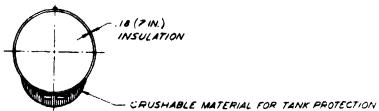
.)

Ĵ,

, ≜ ng

CAN MALE HANG		HORIZ. TAIL	VERT. TAIL
	466.4 (5020.2)	65.0 (699.6)	68.6 (738.0)
Tr	10	4.5	1.6
SPAN M (FT)	68.29 (224.1)	17.10 (56.1)	10.47 (34.4)
ROOT CHORD M(IN)	10.51 (413.6)	5.85 (230.2)	10.06 (396.1)
TIP CHORD M (IN		1.75 (69.1)	3.02 (118.8)
TAPER RATIO	0.3	0.3	0.3
MAC M (IN)	7.49 (294 8)	4.17 (164.1)	7.17 (282.3)
SWEEP RAD. (DEG	0.524 (30)	0.524 (30)	0.524 (30)
T/C ROOT (S)	10	9	9
T/C TIP (X)	10	9	9

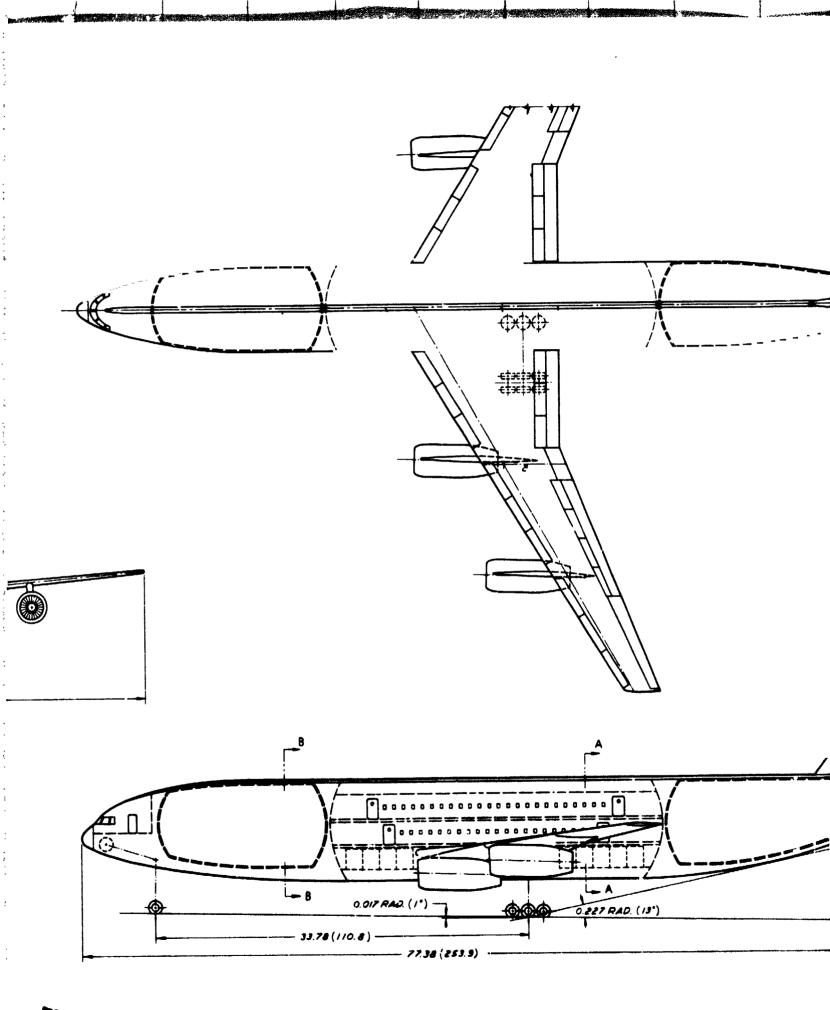

DESIGN GROSS WT . 266.429 KG (587,365 LB.)


POWER PLANT - (2) TURBOFANS INSTALLED THRUST (EA.)-175, UNL N (39,353 LB.)

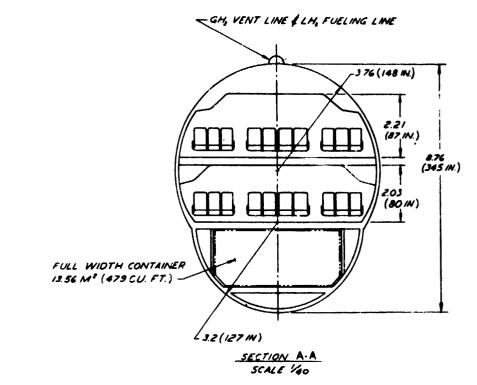
PASSENGERS · 400

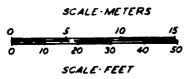
FUEL (LH,) - 68,424 KG. (150,847 LB)

RANGE - 9,265 KM RADIUS (5,000 N.M. RADIUS)



Survey of


the second second


•

Ĵ : . *

DIDOUT PRANE 2

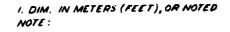
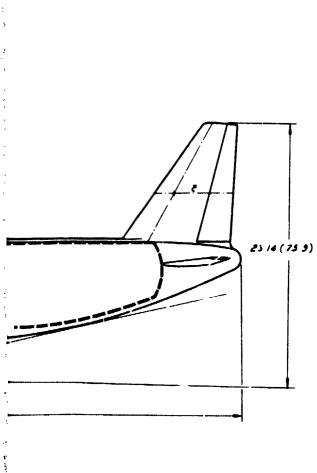
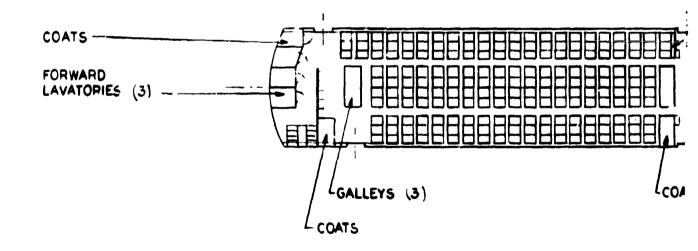



Figure 24. General Arrangement: Long Lange, Internal Tank LH₂ Transport


75

1

ž

COATS / STORAGE FIRST CLASS 40 PAX, 7 A / 5 29.87m (98 FT)

HOLDOUR TRAVE

ORIGINAL PAGE IS OF POOR QUALITY

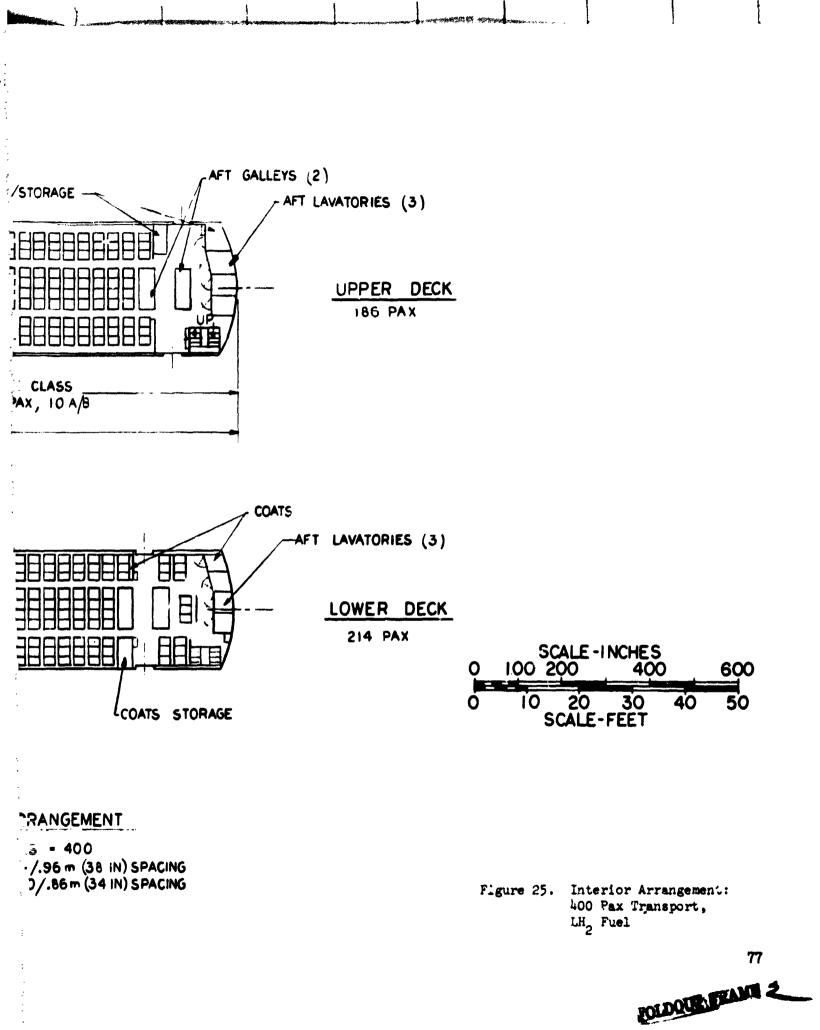
1

٦

J

ž

]


- - -

3 -] -]

SEATING ARRANGEMENT

TOTAL PASSENGERS = 400FIRST CLASS = 40/.96 m (38 in) SCOACH CLASS = 360/.86 m (34 in) S

BOBDING PAGE BLANE NOR ELANE

the tank bottom. In this manner protection is also pro ided for plumbing, electrical wiring, and control systems routed adjacent to the tank.

i i

1 :

Li

ì

. . . .

ł

Ĵ,

÷

ź

.)

11

The tank and mounting is designed for both inflight structural and fatigue loads (fail safe considerations) and to withstand the emergency crash load requirements of FAR 25 with a full fuel load.

6.3.3 <u>Vehicle Pata.</u> - All weight, performance, and cost data are presented in Section 6.5.

6.4 Jet A Airplane (Aircraft No. 8)

6.4.1 <u>Parametric Investigation.</u> - The results of the preliminary parametric investigation are shown in Figure 26. The data show that the takeoff field length is critical since it exceeds the original constraint of 3048 m (10 000 ft). It also indicates that minimum DOC is achieved with an aspect ratio of 11. This aspect ratio was then used for the following tradeoff study. It should be noted that because the original preliminary assessment of the design characteristics of aircraft No. 7 indicated it might have a gross weight well in excess >1 453,600 kg (1 million 1b), it was planned that the airplane would have six engines. Subsequently, the final design was changed to four engines when it became apparent the thrust requirement could be met without resorting to excessively large engines.

At the conclusion of the initial parametric investigation, the question of the validity of the original takeoff field length specification of 3048 m (10,000 ft) was raised by the NASA technical monitor as perhaps being unduly restrictive. For an aircraft of this size and purpose, it is logical to assume it would characteristically operate from the major airports of the world where long, nodern runways would be available. Accordingly, a special study was made to determine the effect various field lengths ranging from 2740 m (9000 ft) to almost 4880 m (16,000 ft) would have on the long range Jet A aircraft design and performance. Figure 27 presents the results of this investigation. A series of aircraft designs was generated, each of which meets the guideline constraints, except for the specified field length. For each, the DOC, gross weight, initial gruise altitude, second

PRECEDING PAGE BLANK NUT FILLEN

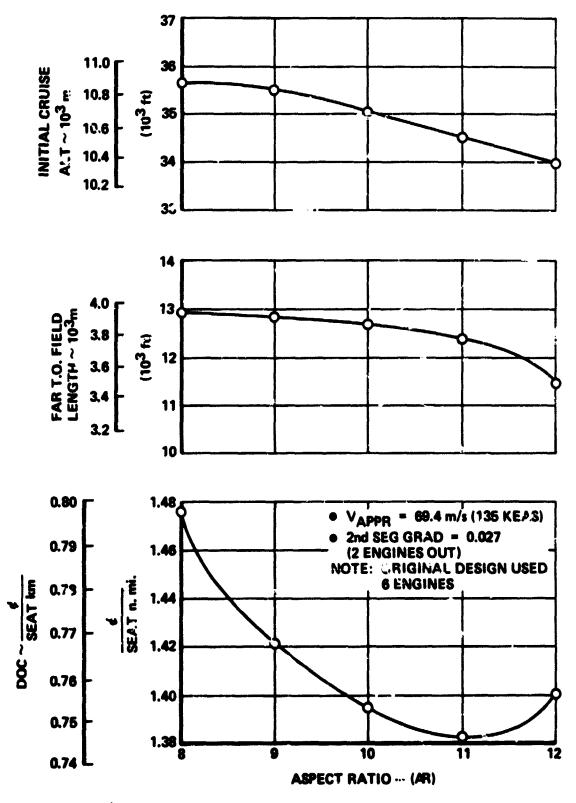
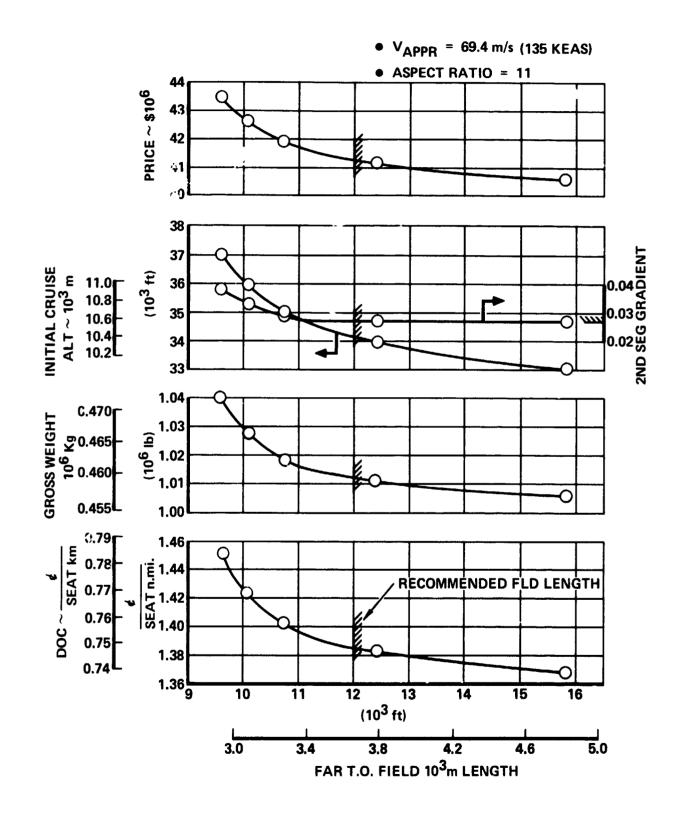



Figure 26. Aspect Ratio Selection for Long Range Jet A Aircraft

80

;

4

57 12 14

1

1

t - man

1 - AV

t transf

t . •--•

Breat and a second

And Colored

Law and

The second s

NY AL

C · 2

1

ł

......

ŕ

:

1

i

1

.....

Figure 27. Recommended Field Length for the Long Range, Jet A Aircraft

segment climb gradients, and aircraft production price are all plotted to show the effect of FAR takeoff field length.

In addition, data on existing runway lengths and reference conditions of some of the major airports in the world which have high traffic densities was compiled and tabulated. These results are shown in Table XIV. Evaluation of these data showed that all the airports marked with an asterisk could be used if the subject airplane was capable of taking off from Miami which has a runway length of 3048 m (10,000 ft), elevation of 3 m (10 ft), and a reference temperature of 28.9° C. If these runway conditions are translated to the conditions of this study, i.e., 304.8 m (1000 ft) elevation and 32.2° C (90° F), the equivalent maximum allowable takeoff distance becomes approximately 3658 m (12,000 ft). This recommended field length is indicated on Figure 27.

Examination of the figure shows that considerable improvement in all of the vehicle parameters can result from increasing takeoff field length to 3658 m (12,000 ft), from the 3048 m (10,000 ft) originally proposed, and that not a great deal of further improvement would be realized if the field length requirement increased still further at the cost of eliminating the capability of operating from many of the world's major airports. Accordingly, a change to the design constraint of 3658 m (12,000 ft) FAR takeoff distance was adapted for the Jet A long range aircraft of this study.

The characteristics of the final vehicle design were generated using this constraint after modifying the ASSET inputs as required by the reduction in the vehicle size from the original estimate. For example, four engines were specified instead of the original six.

6.4.2 <u>Configuration Description.</u> - The general arrangement of this aircraft is shown in Figure 28. The arrangement is conventional with the exception of the main gear which consists of four six-wheel bogies mounted aft of the rear spar. The outboard bogies retract inward into the fuselage, while the inboard bogies retract aft into the fuselage. The nose gear consists of dual wheels which retract forward. All fuel is carried in the wing box and wing center section.

. 1

82

÷

	Runway m	Length (ft)	Ele m	vation (ft)	Ref. °C	Temp. † (°F)
ATLANTA	3,048.	(10,000)	313.	(1,026)	30.0	(86.0)
* CHICAGO	3,556.	(11,667)	203.	(666)	23.7	(74.7)
* DALLAS - FT. WORTH	3,477.	(11,408)	183.	(600)	30.8	(87.4)
* HONOLULU	3,771.	(12,373)	4.	(13)	26.5	(79.7)
* LOS ANGELES	3,685.	(12.090)	38.	(126)	23.7	(74.7)
* MIAMI	3,200.	(10,500)	3.	(10)	28.9	(84.0)
MINNEAPOLIS	3,048.	(10,000)	256.	(840)	29.0	(84.2)
NEW ORLEANS	2,812.	(9,226)	.9	(3)	29.6	(85.3)
* NEW YORK (JFK)	4,441.	(14,571)	4.	(13)	24.8	(76.6)
* SAN FRANCISCO	3,225.	(10,581)	3.	(10)	17.8	(64.0)
* WASHINGTON (DULLES)	3,505.	(11,500)	95.	(3_2)	26.9	(80.4)
* AMSTERDAM	3,452.	(11,326)	Ŀį.	(13)	17.8	(64.0)
* BRUSSELS	3,638.	(11,936)	55.	(180)	19.1	(66.4)
* COPENHAGEN	3,599.	(11,808)	5.	(16)		
* FRANKFURT	3,899.	(12,792)	112.	(367)	20.9	(69.6)
* GENEVA	3,898.	(12,790)	430.	(1,411)	21.5	(70.7)
* LONDON	3,657.	(12,000)	24.	(79)	19.0	(66.2)
* MOSCOW	3,499.	(11,480)	204.	(670)	21.0	(69.8)
* MUNICH	3,998.	(13,120)	530.	(1,740)	19.2	(66.6)
* PARIS (ORLY)	3,649.	(11,972)	89.	(292)	21.0	(69.8)
* ROME	3,899.	(12,792)	2.	(7)	25.4	(77.7)

TABLE XIV. MAJOR AIRPORT RUNWAY LENGTHS AND REFERENCE CONDITIONS

the extreme system

T .

1.2 volu entit

1 - - - - 1

A STREET

ì :

: .

11

î

ן י י

, 1

ţ

FREF. TEMP. = Mean 24-hour temperature for hottest month of year plus one-third of difference between maximum daily mean and 24-hour mean temperature.

*Airports from which subject aircraft could operate if designed to 3658 m (12,000 ft) FAR runway length, specified conditions.

83

The interior arrangement is shown in Figure 29 with a 10/90 percent first-to-coach class mix with 6 abreast, 0.96 m (38 in.) seat spacing in first class and 8 abreast, 0.86 m (34 in.) spacing in coach. A below-deck galley is used. Doors and lavatories are provided in accordance with requirements of FAR 25 and current industry standards. Storage for carry-on luggage and passenger belongings suitable for a 400 passenger aircraft is also provided. . 1

- i .

_ !

1

. . . .

6.4.3 Vehicle Data. - All performance, weight, and cost data is shown in Section 6.5.

6.5 Comparison of Long Range Aircraft

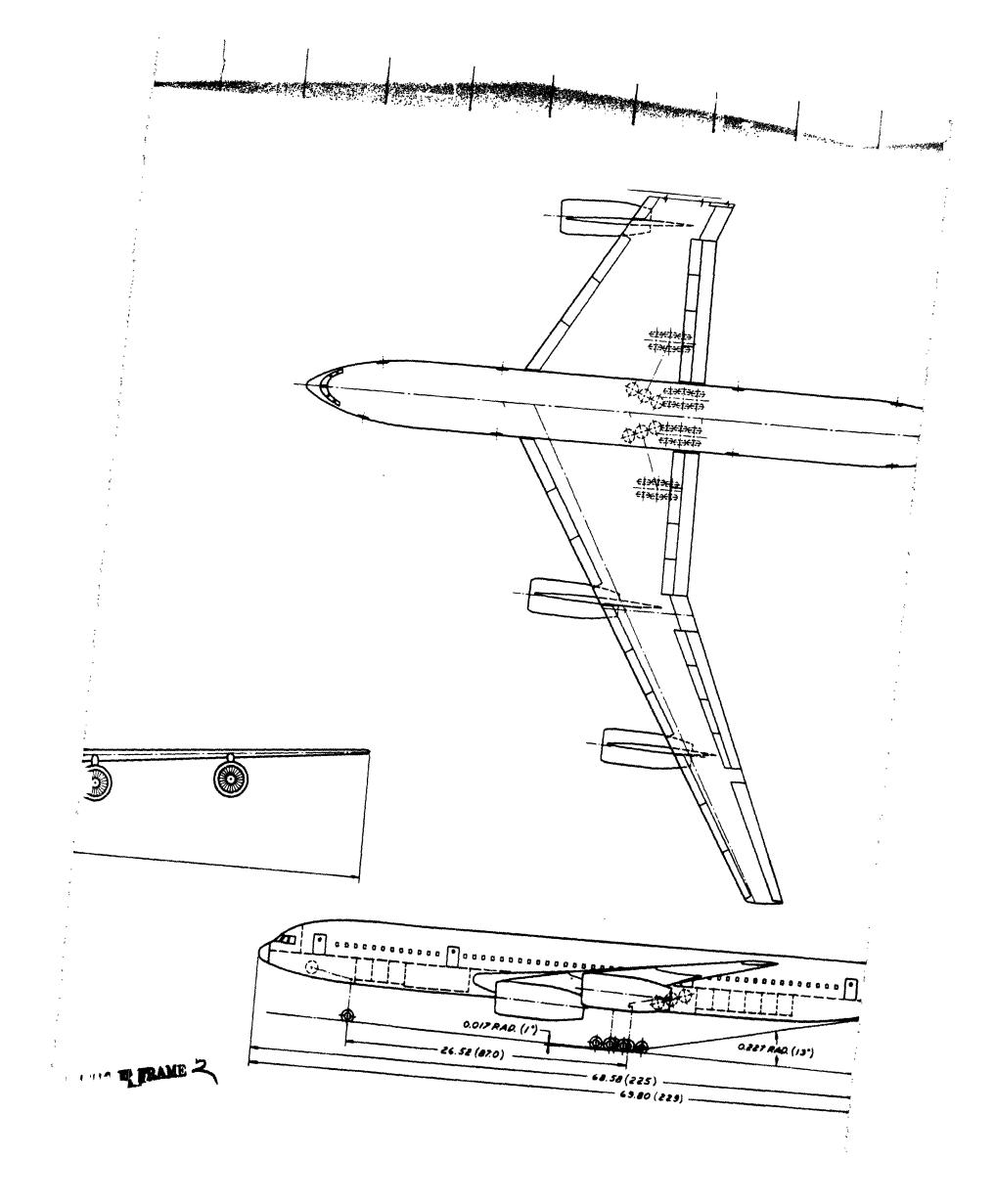
Table XV presents a summary of significant design and performance data for the LH_2 and Jet A long range aircraft. The table also shows a ratio which compares the value of each significant parameter listed for the Jet A design with that of the LH_2 fueled airplane. Copies of pertinent sheets of the ASSET computer printouts for each of these final design aircraft are presented in Appendix A-7 and A-8 for more detailed information.

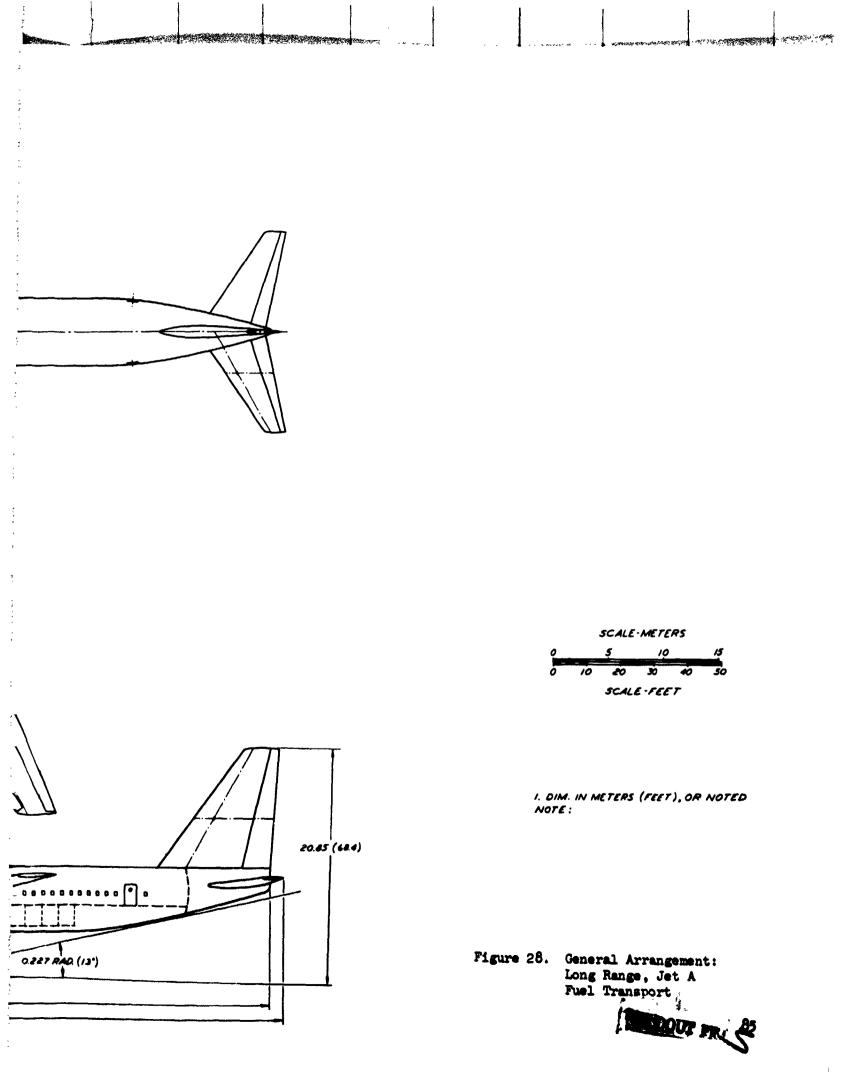
Generally, comparing the values listed in the columns of Table XV, it is seen that the LH_2 aircraft offers significant advantage in almost every category of comparison for this long range mission. The LH_2 aircraft is lighter, requires a smaller wing but a larger fuselage, uses smaller engines, can takeoff in shorter distances, and uses 25 percent less energy per seat mile in performing its mission.

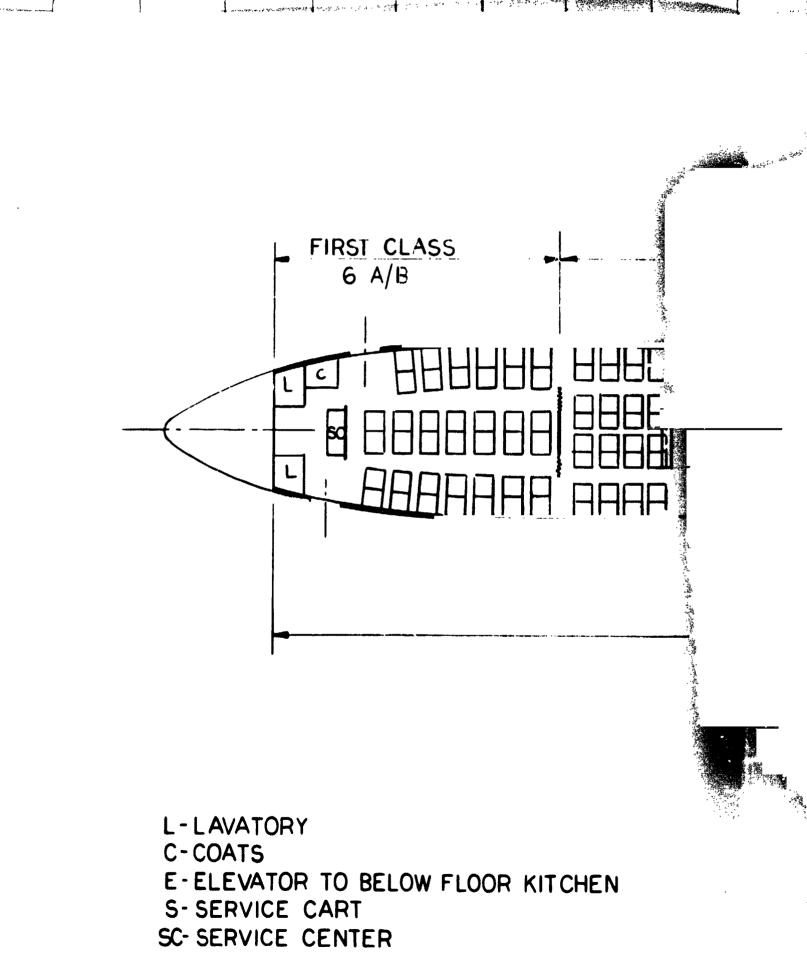
The penalties occasioned by the density and cryogenic nature of liquid hydrogen, reflected in the values shown for Lift/Drag are more than overcome by the advantage of the heating value of the fuel, indicated by the values shown for specific fuel consumption (SFC).

The heating values of the fuels used in this study are 42,760 kJ/kg (18,400 Btu/lb) for Jet A, and 119,900 kJ/kg (51,590 Btu/lb) for hydrogen. This is a ratio of 2.8 in favor of hydrogen which accounts for the principle portion of the difference in specific fuel consumptions (SFC) listed in the

CHARACTERISTICS	WING	HORIZ TAIL	VERT. TAIL	
AREA M2 (SQ FT)	661 91(7125)	10.32 (757)	70.84 (7266)	
ASPECT RATIO	11	4.5	16	
SPAN M (FT)	85 34 (280.0)	1780 (584)	1064 (349)	
ROOT CHORD M(IN)	11 93 (4698)	6.08 (2:94)		
TIP CHORD M (IN)	3 58 (141.0)	1.82 (718)	3.07 (120 9)	
TAPER RATIO	03	0.3	0.3	
MAC M (IN)	851 (3349)		734 (2873)	
SWEEP ====D. (DEG)	0,524 (30)	0 524 (30)	0.524 (30)	
T/C ROOT (%)	10	9	9	
TAN TIN (AN)	1 10	و	9	
DESIGN GROSS	L	· · ·		I
	WT - 450,206 - (4) TUROFAN INSTALLED T	KG (99 ^{-,} 517L	.&) 20,723 N (49,62.	51 <i>8</i> .)
DESIGN GROSS POWER PLANT PASSENGERS - FUEL (JET A)-	WT - 450,206 -(4) TUROFAN INSTALLED T 400 237,685 KG (1	KG (9:9-7,517 L 5 HRUST (EA): 24 523,996 LB)	20,723 N (49,62.	SLØ.)
DESIGN GROSS POWER PLANT PASSENGERS -	WT - 450,206 -(4) TUROFAN INSTALLED T 400 237,685 KG (1	KG (9:9-7,517 L 5 HRUST (EA): 24 523,996 LB)	20,723 N (49,62.	52 <i>8</i> .)

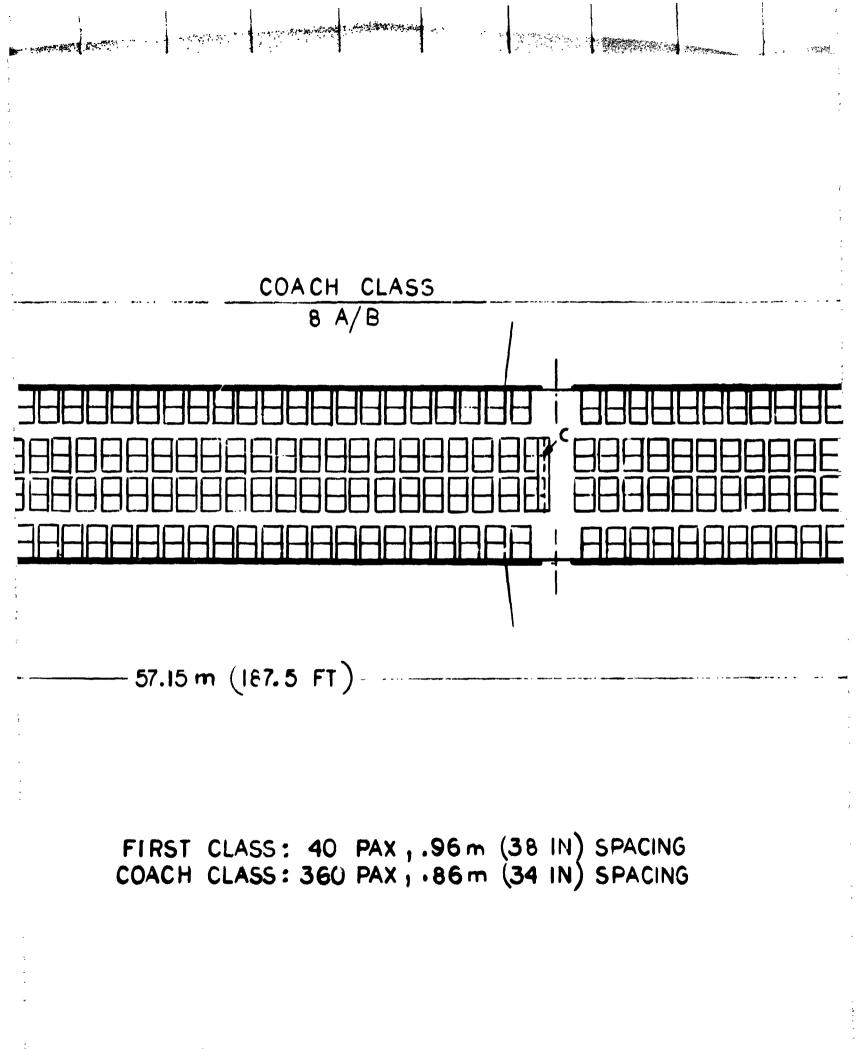


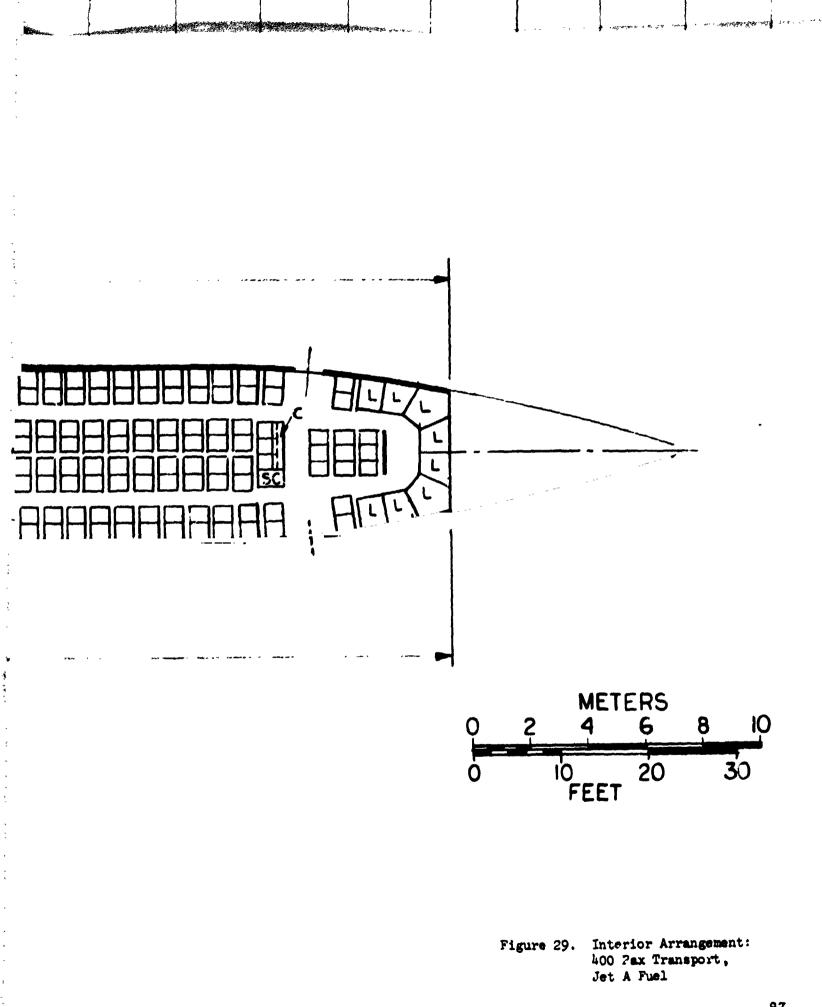

TOLDOUGH DECID


.

I

-تدادغا والمراجع




PRECEDING PAGE BLANK NOT FILMED

FOLDOUR PRAM

-

-

FOLDOUR TELES

TABLE XV. COMPARISON OF FINAL DESIGN LONG RANGE AIRCRAFT (S.I. UNITS)

(9265 km radius - 400 PAX. - Mach 0.85) (Payload - 39,920 kg)

		Aircraft No. 7 (Int. LH ₂)	Aircraft No. 8 (Jet A)	$\frac{\begin{array}{c} \text{Rat'o} \\ (\text{Jet A}) \\ (\text{Int. LH}_2) \end{array}$
Gross Wt	kg	266,430	450,200	1.69
Total Fuel Wt	kg	68,430	237,690	3.47
Block Fuel Wt	kg	59,610	208,720	3.50
Operating Empty Wt	kg	158,090	172,600	1.09
Empty Wt	kg	147,700	159,280	1.08
Aspect Ratio	2	10	11	
Wing Area	m ²	466	662	1.42
Sweep	deg	30	30	
Span	m	68	85	1.25
Fuselage Length	m	77	69	0.89
L/D - Cruise		16.8	20.3	1.21
SFC - Cruise	<u>kg</u> /daN	0.203	0.593	2.93
Initial Cruise Altitude	m o	10,360	10,060	
Wing Loading	$\frac{m}{kg/m^2}$	571	680	
Thrust/Weight	N/kg	2.63	1.96	0.75
No. Engines		4	4	
Thrust Per Engine	N	175,000	220,700	1.26
FAR T.O. Distance	m	2,107	3,649	1.73
FAR Ldg. Distance	m	1,795	1,788	
2nd Seg Climb Grad. (Eng Out)		0.066	0.034	0.52
Approach Speed	m/s	69	69	
Weight Fractions	percent	-		
Fuel	•	25.7	52.8	
Payload		15.0	8.9	1
Structure		32.6	24.6	
Propulsion (Includes Fuel Syst	tem)	14.3	5.3	
Equipment and Operating Items		12.4	8.4	
Price	\$10 ⁶	38.89	39.99	1.03
DOC	¢ cat km	0.738 ¹	0.723 ²	0.98
Energy Utilization	kJ eat km	964	1207	1.25
Max. Nonstop Range ³	km	19,590	19,980	1.02

¹DOC based on LH₂ cost = 2.85/GJ

 \prod

IJ

1

i j

1

1.1

11

\$

11

1 1

(. i.

ij

ľ

•

r . •

77

-

. 2

4

. ;

ł

:

ŧ 2

-

* · · *

1.14 . 2

;

•

:

* * * * *

2

1.

²DOC based on Jet A cost = \$1.90/GJ

³Including reserve fuel requirement.

PRECEDING PAGE BLANK NOT FILMED 89

Ĵ

2

40 · · · · ·

*

÷.

÷

TABLE XV. COMPARISON OF FINAL DESIGN LONG RANGE AIRCRAFT (U.S. CUSTOMARY UNITS)

(5000 n.mi. radius - 400 PAX. - Mach 0.85) (Payload = 88,000 lb)

		Aircreft No. 7 (Int. LH ₂)	Aircraft No. 8 (Jet A)	$\frac{\begin{array}{c} \text{Ratio} \\ (\text{Jet A}) \\ \hline (\text{Int LH}_2) \end{array}$
Gress Wt	1b	587,370	992,520	1.69
Total Fuel Wt	1b	150,850	524,000	3.47
Block Fuel Wt	1b	131,420	460,150	3.50
Operating Empty Wt	1b	348,520	380,520	1.09
Empty Wt	1b	325,630	351,150	1.08
Aspect Ratio	2	10	11	
Wing Area	ft ²	5020	7125	1.42
Sweep	deg	30	30	
Span	ft	224.1	279.9	1.25
Fuselage Length	ft	253.9	225.0	.89
L/D - Cruise		16.8	20.3	1.21
SFC - Cruise	(lb/hr)/lb	0.199	0.583	2.93
Initial Cruise Altitude	ft	34,000	33,000	
Wing Loading	lb/ft ²	117.0	139.3	
Thrust/Weight		0.268	0.200	0.75
No. Engines		4	4	
Thrust Per Engine	1b	39,350	49,630	1.26
FAR T.O Distance	ft	6914	11,970	1.73
FAR Ldg. Distance	ft	5890	5867	1 1
2nd Seg Climb Grad. (Eng Out)	0.066	0.034	0.52
Appr ach Speed	KEAS	135	135	
Weight Fractions	percent			
Fuel	-	25.7	52.8	
Payload		15.9	8.9	
Structure		32.6	24.6	
Propulsion (Includes Fuel	System)	14.3	5.3	
Equipment and Operating It		12.4	8.4	
Price	\$10 ⁶	38.89	39.99	1.03
DOC	¢ scat n.mi.	1.366 ¹	1.339 ²	0.98
ENERGY UTILIZATION	Btu	1695	2122	1.25
	seat n.mi.			
Max Nonstop Range ³	n.mi.	10,571	10,780	1.02

1

11

; ; ;

1.

¹DOC based on LH₂ cost = $3/10^{6}$ Btv = 15.48¢/1b ²DOC based on Jet A cost = $2/10^{6}$ Btu = 24.8¢/gal

³Including reserve fuel requirement

90

*

в У

,

ŝ

i t

r F

× · · · · ×

ł

-

:

:

OF POOR QUALITY

tables. The ratio of cruise SFC's, Jet A-to-LH₂, listed in Table XV is 2.93. The extra advantage given the hydrogen system over the factor of 2.8 expected from comparison of the heating values, is mostly due to the requirement to cool the high pressure turbine stages of the Jet A engine with air bled from its compressor---air on which energy has been expended and which is not available for performing useful work.

Ľ

[]

U

The ratio of block fuel consumed by aircraft using each type of fuel is in the ratio of 3.50. It might normally be expected that the fuel used to perform a mission would be in approximately the same ratio as the SFC's realized in cruise. Actually, there is a leverage factor which works to the advantage of the LH_2 aircraft. Because that aircraft user less fuel, it has a lower gross weight to accelerate and to lift to cruise conditions. This advantage, reduced somewhat by the lower L/D of the hydrogen fueled aircraft, produces an iterative fuel saving which compounds to produce the final block fuel weight relationship listed. The lower gross weight also permits a reduction in structure and propulsion weight in spite of the hydrogen tankage and insulation weight penalties.

For purposes of providing data for plotting in a late, section (Section 8), the conventional, non-stop range capability of both the long range aircraft was calculated and the results are shown as the bottom entry of Tuble X'.

Table XVI is a summary of costs calculated for the subject aircraft. The basis for these cost estimates was presented in Sect.ons 4.4 and 4.7 of Reference I. In the comparison shown the LH_2 aircraft are seen to cost less, both to develop and to produce, than the Jet A. The price of the Jet A aircraft is 3 percent greater than the LH_2 airplane.

In considering the development costs, it should be noted that the cost of basic hydrogen technology development was assumed to be funded separate and apart from the traditional aircraft development costs represented in the table. As discussed in the Reference 1 report, Section 6.0, a six year program is suggested during which such technology development

TABLE XVI.	COST	COMPARISON	OF	FINAL	DESIGN
	LONG	RANGE AIRC	RAF:	Г	

Laboration

IJ

1

Ŋ

IJ

Ü

[]

Ũ

IJ

]]

0

0

IJ

U

9265 km (5000 n.mi. radius - 200 Pax. - Mach 0.85)

	Aircraf (Int	t No. 7 LH ₂)	A'rcraf (Jet	t No. 8 A)
Development - \$10 ⁶				
Airframe	919	.64	1221	.79
Engine (Amortized in prod. cost)		0		0
TOTAL	919	.64	1221	.79
Production - \$10 ⁶				1
Airframe Cost	29	.975	30	.111
Engine (Including R&D)	5	.789	5	.884
Avionics	0	.500	0	.500
R&D Amortization (Airframe)	2	.628	3	.491
TOTAL AIRCRAFT PRICE	38	.892	39	.986
Direct Operating Cost - $\frac{\$}{km}$ $\left(\frac{\$}{n.mi.}\right)$				
Crew	0.208	(0.385)	0,208	(0.386)
Maintenance				
Airframe Labor (Including Burden)	0.194	(0.359)	0.204	(0.377)
Engine Labor (Including Burden)	0.073	(0.135)	0.129	(0.238)
Airframe Material	0.126	(C.234)	0.131	(0.242)
Engine Material	0.113	(0.209)	0.173	(0.320)
Fuel* and Oil	1.154	(2.137)	0.933	(1.728)
Insurance	0.225	(0.416)	0.232	(0.429)
Depreciation	0.858	(1.589)	0.883	(1.635)
TOTAL DOC -	2.951	(5.465)	2.892	(5.355)
TOTAL UNIT DOC - $\frac{e}{\text{seat kn}} \left(\frac{e}{\text{seat n.ml.}} \right)$	0.738	(1.366)	0.723	(1.339)

*Fuel Cost:

Jet A = \$1.90/GJ ($\$2/10^6$ Btu = $24.8\phi/gal$ = $3.68\phi/1b$) LH₂ = \$2.85/GJ ($\$3/10^6$ Btu = $15.48\phi/1b$)

92

and a state of the state of the

.

21-1-12

● 「「「「「「「」」」」を見ていた。

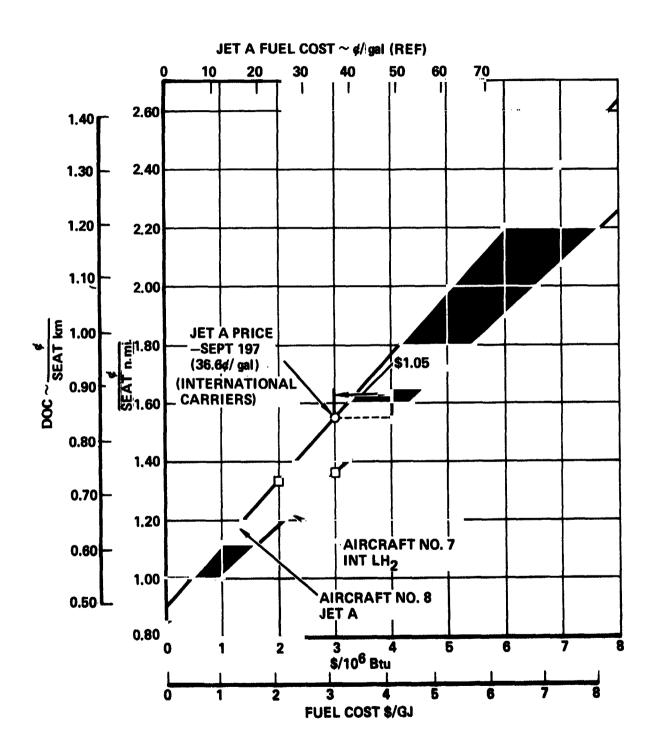
would occur before a decision need be made to proceed with development of a commercial transport airplane. The cost of this basic technology development is not included in the costs shown in Table XV.

Π

is in the second of the

.

125 282


۰.

Direct operating cost (DOC) is very sensitive to fuel cost. As noted in Table XVI, the fuel prices which were specified for use in this study to establish baseline DOC's were \$1.90 per GJ for Jet A (equivalent to $2/10^{6}$ Btu=24.8¢/gal or 3.68¢/lb), and 2.85 per GJ for LH₂ (equivalent to $3/10^{6}$ Btu's or 15.48¢/lb). The sensitivity of DOC to fuel cost is shown i: Figure 30 for the long range vehicles. The price of Jet A fuel expressed in cents per gallon is shown for reference across the top of the grid.

To provide perspective for these comparisons, in September, 1975, U.S. international air carriers paid an average of $36.6\phi/gal$ for Jet A fuel. The horizontal dotted line in Figure 30, shows that from the Jet A price of $36.6\phi/gal$, airlines could afford to pay \$1.00 more per GJ ($$1.05/10^6$ Btu) for LH₂ and still operate at equal DOC. This price differential increases with fuel costs as shown by the divergence of the fuel cost lines.

6.5.1 <u>Noise.</u> - A comparison of noise generated by the two aircraft is presented numerically in Table XVII and graphically in Figure 31. The analysis was made using the takeoff and approach paths generated for the respective aircraft in the ASSET program, and using engine parameters and procedures described in section 4.8.2 of the final report of the previous study (Reference 1).

The LH₂ aircraft designed for the long range mission is appreciably quieter in flyover, but slightly noisier in sideline and approach, compared with its Jet A fueled counterpart. The LH₂ airplane is slightly noisier in approach for reasons previously explained. Both are significantly quieter than the limit noise calculated by the proposed standard, NPRM 75-37. The differences are 10.1 and 6.5 EPNdb quieter in flyover, 8.1 and 10.2 EPNdb quieter in sideline, and 6.0 and 9.5 EPNdb quieter in approach respectively, for the LH₂ and Jet A aircraft.

IJ

-

.

[^`)

 \square

Figure 30. DOC vs Fuel Cost - 5000 n.mi. radius, 400 Pax Aircraft

TABLE XVII. NOISE EVALUATION - LONG RANGE AIRCRAFT

Ũ

[]

U

Ľ


 \Box

IJ

t K

		and the second se		
Airplane No.		7		8
Number of Engines		4		4
Fuel		LH ₂		Jet A
Gross Weight kg (1b)	266,430	(587,370)	450,210	(992,520)
Far 36 Flyover Level (EPNdB)		93.3		99.5
Limit Per NPRM 75-37		103.4		106.0
FAR 36 Sideline Level (EPNdB)		93.9		92.8
Limit Per NPRM 75-37		102.0		103.0
FAR 36 Approach Level (EPNdB)		97.9		95.5
Limit Per NPRM 75-37		103.9		105.0
Enclosed "Footprint" Contour Area				
	<u>km</u> 2	st.mi. ²	km ²	st.mi.2
80 EPNdB - Takeoff	35.74	13.80	50.38	19.45
- Approach	25.66	9.91	18.31	7.07
- Total	61.40	23.71	68.69	26.52
90 EPNdB - Takeoff	8.52	3.29	11.16	4.31
- Approach	3.13	1.21	1.84	0.71
- Total	11.65	4.50	13.00	5.02
		1		•

Figure 31. 9 EPNdB Contour Comparison - Long Range Aircraft

96

ちょうへき うちょう ち

٢

.- a. .

. .

:

V revenues

Π

 \square

]

[]

 \Box

Π

IJ

Ũ

IJ

IJ

]]

U

Π

Aircraft No. 7 has a smaller total footprint area, for both the 80 and 90 EPNdb contours. As shown in Table XVII, the area of the 90 EPNdb contour for the LH₂ airplane is $1^{.65} \text{ km}^2$ (4.5 mi²) vs 13.0 km² (5.02 mi²) for the Jet A design. These areas are the total of approach plus takeoff.

Π

6.6 Sensitivity Factors

The sensitivity of the large aircraft to increases in inert weight was briefly explored. Tables XVIII and XIX present the data which were generated for Aircraft Nos. 7 and 8, respectively. In each case, data for the baseline aircraft are presented, followed by columns representing changes in the parameters which would result from modifications in the design of the aircraft assuming 4536 kg (10,000 lb), was added to the inert weight before design freeze. For example, if detail design of the aircraft indicated that the structure was going to be 4536 kg (10,000 lb) heavier than the original allocation, in order to perform the design mission the aircraft would have to grow. The results are shown in the tables for selected parameters for both the LH₂ and the Jet A fueled aircraft.

The effect of this type of change is indicated in terms of growth factors in the tables. Gross weight and block fuel weight changes are expressed per unit of inert weight increase which caused the change. The change in airplane purchase price is also evaluated per unit of original inert weight increase. Changes in direct operating cost and energy utilization are both expressed in terms of the <u>total</u> inert weight change which perturbed the original design. Each of these growth factors is an expression of the rate of change of the given parameter as a function of a specified unit change in the variable.

The significant conclusion from this exercise follows from comparing growth factors for the LH_2 airplane from Table XVIII with corresponding factors for the Jet A design from Table XIX. The Jet A airplane is significantly more sensitive to changes in each of the parameters than is the LH_2 design. For instance, the gross weight of the Jet A airplane must increase 2.48 kg (5.49 lb) for every kilogram (pound) increase in inert weight, whereas the LH_2 design only requires 1.27 kg (2.8 lb) increase in gross weight to

					OF 4536 kg 200 ib)
		BAS	ELINE	Increase in	Inert Weight
Besic Data					
Gross Weight	kg (lb)	266,430	(587,370)	279,170	(615,460)
Total Fuel Weight	kg (ib)	69,430	(150,850)	70,980	(156,470
Block Fuel Weight	kg (ib)	59,610	(131,420)	61,770	(136,180
Empty Weight	kg (Ib)	147,700	(325,630)	153,290	(337,940
Price	\$10 ⁶	31	3.89	4	0.27
DOC	$\frac{\phi}{\operatorname{sect} \operatorname{km}}\left(\frac{\phi}{\operatorname{sect} \operatorname{n.mi.}}\right)$	0,738	(1.366)	0.762	(1,412)
Energy Utilization	set km (Stu	964	{1 695 }	999	(1 756)
Growth Factors					
Gross Weight	(kg tb) kg t5)			1.27	(2.8)
Block Fuel Weight	(kg Hb)			0.22	(0.48)
Price	\$/kg \$/lb			304.	(138)
DOC	¢ seet km/4536 kg (¢ seet n.mi./10,000 lb)			.025	(0.046)
Energy Utilization	kJ seet km/4535 kg (Btu seet n.ml./10,000 lb)			35.0	(61)

TABLE XVIII.SENSITIVITY TO INERT WEIGHT INCREASE - BEFORE
DESIGN FREEZE - AIRCRAFT NO. 7

 $\|$

compensate for an unexpected 0.454 kg (1 lt) increase in inert weight. The increase in block fuel required by the Jet A vehicle is 1.01 kg (2.23 lb) per pound of inert weight increase; the value for the LH₂ airplane is only 0.22 kg (0.48 lb). For every 0.454 kg (pound) increase in inert weight the purchase price of the Jet A airplane goes up \$197; the LH₂ design, \$138. The growth factors for DOC and energy utilization are expressed in terms of 4536 kg (10,000 lb) increase of inert weight because these parameters are relatively insensitive.

. .

1 co 1 co 1

ŧ

TABLE XIX. SENSITIVITY TO INERT WEIGHT INCREASE - BEFORE DESIGN FREEZE - AIRCRAFT NO. 8

Π

[]

[]

[]

•

· · · · · · · · · · · ·

2

والمراجعة المراجع المراجع والمراجع المول

· · · · · · · · · · · · · · ·

;

					0 F 4536 kg 100 ib)
		BAS	ELINE	Increase in	Inert Weight
Besic Deta					
Grass Weight	kg (Hs)	450,200	(992,520)	475,300	(1,047,800)
Totsi Fuel Weight	kg (Ho)	237,690	(524,000)	249,520	(550,100
Block Fuel Weight	kg (lb)	208,720	(400,150)	218,820	(482,400
Empty Weight	kg (ib)	159,290	(361,150)	167,570	(309,400
Price	\$10 ⁶	3).99	4	1.96
DOC	· · · · · · · · · · · · · · · · · · ·	0.723	(1 .339)	0.756	(1.398)
Energy Utilization	<u>k.j</u> sout km (sout n.mi.)	1,205.	(2117)	1,263.	(2219)
Growth Factors					
Gross Weight	trg (fb) trg (fb)		(0)	2.49	(5.49)
Block Fuel Weight	ka (tb.) ka (tb.)		(0)	1.01	(2.23)
Price	\$/kg (\$/lb)		(0)	434	(197)
DOC	¢ seet km/4536 kg (seet n.ml./10,000 kb)		(0)	0.032	(0.009)
Energy Utilization	h.j seet km/4536 kg (Btu seet n.mL/10,000 kb)		(0)	58.	(102)

ORIGINAL PAGE IS OF POOR QUALITY

đ

.....

į

· · ·

. ;;

7. RESEARCH AND DEVELOPMENT RECOMMENDATIONS

Technology development required for LH_2 fueled transport aircraft is essentially as described in the final report of the previous study (Reference 1). For convenience, the recommended development program schedule from that report (Figure 99, p 302 from Reference 1) has been updated and is presented as Figure 32. Of the items recommended, a preliminary assessment of task 4, "Airport Fuel Supply System Analysis" has been funded and the work is in progress.

In addition to the technology development listed in Figure 32, a very significant event for which there is an immediate need is an assessment of the impact the initiation of use of hydrogen as fuel for commercial transport aviation would have on society in general.[#] In a sense this effort would be a preliminary study of task 9, Figure 32. since one output would be a hypothetical but realistic scenario depicting the transition to hydrogen. In addition, the economic ramifications, the institutional barriers and incentives, and the social dislocations and opportunities of all major stakeholder classes in society would be disclosed. Stakeholder classes whose participation in the evolutionary scenario would be described include the following:

- airlines
- aircraft manufacturers
- fuel suppliers
- airport operators
- consumers
- government regulators
- work forces
- general public

"This study suggested by Stanford Research Institute, September 26, 1975.

100

<u>;</u> 14

Π

IJ

 \square

[]

5 · · · · · · · · · ·

:

l

[]

• • • • • • •

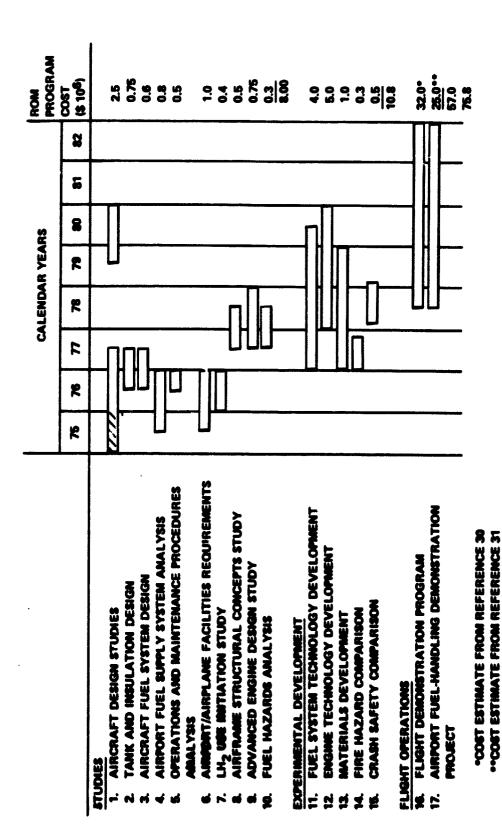


Figure 32. Technology Development Program

الدورية المتعليه المولية المتعالم المالية المال

ş

きょくと さいしちち きちま

While not classified as a "technology development," this study would provide important input and an order of priorities for the technical work. In addition it would acquaint, and hopefully convince, many stakeholders of the need for early conversion of commercial aviation to hydrogen fuel. 1

[]

Ī

 \square

IJ

Π

IJ

[]

[]

[]

 \int

AL STREET

∏ ts

2

۰. ۲

\$

.....

.

•

£

.

٩

weight a little and

47.14 A.1.4

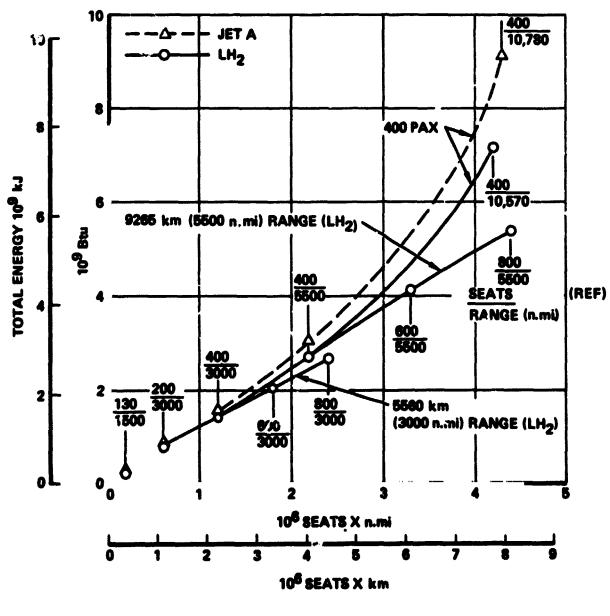
こ アイアル

8. CONCLUSIONS AND RECOMMENDATIONS

This study explored an enlarged matrix of passenger/range mission requirements to determine the comparative desirability of LH₂ vs Jet A fuel, relative to the missions studied in the original program (Reference 1).

The analysis showed that even for short range missions the internal tank arrangement for LH₂ fueled aircraft is clearly preferred from a performance and cost point of view over the design concept which uses external tanks. In order to provide a fineness ratio for the externally mounted tanks which is aerodynamically acceptable, the surface-to-volume ratio of the tanks is increased to the point that insulation must be both thick and therefore heavy to achieve acceptable boiloff percentages.

The results of the study of small payload - short range aircraft, designed to carry 130 passengers 2780 km (1500 n.mi.), showed that use of LH_2 offers no performance advantage compared to a Jet A fueled design. This mission appears to represent an approximate crossover point. Payload/range requirements which involve use of larger Jet A fuel loads show increasing advantage for using LH₂ fuel. It is probable that aircraft designed for even shorter ranges and smaller payloads would begin to show net disadvantages for LH₂ fueled aircraft. The advantages of using the higher energy fuel are mitigated by the penalties involved: weight of tanks, insulation, and fuel system, plus the increased drag due to the larger volume required for the LH₂ fuel and the insulation surrounding the tanks. The aircraft are essentially equal insofar as noise is concerned. They are both significantly quieter than limits calculated according to the newly proposed change to the noise standard (Reference 3).


Analysis of aircraft designs for the medium range mission, which involves carrying 200 passengers 5560 km (3000 n.mi.), showed the internal tank LH_2 aircraft to have marginally superior characteristics, compared with the Jet A design. It is considerably lighter in gross weight but slightly heavier in empty weight. The Jet A aircraft requires 9 percent more energy to perform

the design mission. The JH_2 design is 4 EPNdB quieter in Marver but slightly noisier in sideline and approach than its Jet A constarpart. Its 90 EPNdB contour is slightly scaller.

The long range mission involved a requirement the reprying 400 passengers 9265 km (F000 n.mi.), landing, then taking off without refueling and flying another 9265 km segment with full payload. Full reserve fuel calculated by ATA international definition was provided for each segment. The LH₂ fueled aircraft showed important advantages over the Jet A design for this mission. It is lighter, requires a smaller wing but a larger fuselage, uses smaller engines, can operate from shorter runways, and uses 25 percent less energy per seat mile in performance of the design mission. The LH₂ airplane would cost less both to develop and to produce. A differential of \$1.00 more per GJ (\$1.05/10⁶ Btu) can be paid for LH₂, relative to a current price for Jet A, and still provide equal DOC. The LH₂ airplane is nearly 6 EPNdB quieter in flyover, but slightly noiser in sideline and approach compared to the Jet A design. Both aircraft are significantly quieter than the noise limit calculated according to the pending revision to FAR 36. The LH₂ airplane has a slightly smaller 90 EPNdB contour.

A study of sensitivities of the long range aircraft to increases in inert weight before design freeze showed the LH_2 design to be considerably less sensitive.

Results of analyses from the previous study of subsonic passenger transport aircraft (Reference 1) are combined with those from the present work and are plotted in Figures 33 and 34. The total energy (represented by the energy content of the block fuel) required to perform various payload-range missions is displayed as a function of the mission requirements (expressed in available seats times design range in Figure 33. Two characteristics are plotted, the trend of energy requirement for aircraft of a given passenger capacity - with range as the variable, and the energy requirement of aircraft designed for a given range - with passenger capacity as the variable.

Ω

6

[]

[]

U

U

r S

.

^ :

•

-

.

2 -

÷.

.

- 4 - 5

474° 12 1744

- - よ、 - 歌~ も

and the latest

'a

DESIGN MISSION CAPABILITY

Figure 33. Total Energy vs Design Mission Capability ·

105

ENERGY UTILIZATION - kJ/SEAT km 1000 800 600

1400

1200

2500

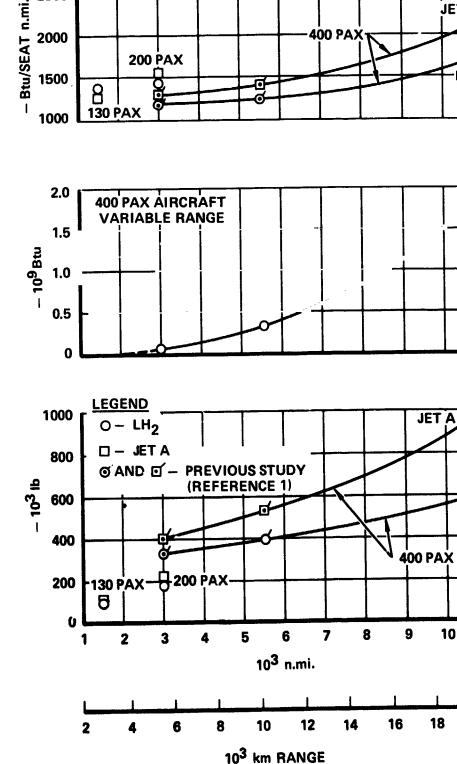
2000

1500

200 PAX

2.0 DIFFERENCE IN TOTAL ENERGY REQUIRED (JET A – LH₂) –10⁹ kJ 1.5 1.0 0.5

500 400 GROSS WEIGHT – 10³ kg 300


0

0

÷

いたちかいたちから

JET A

LH₂

ρ

ĨH₂

11

20

400 PAX

0 0

Figure 34. Growth Characteristics

The figure shows that the energy requirement varies almos⁺ linearly as passenger capacity increases from 400 to 800 seats in aircraft designed for a given range. On the other hand, as the range requirement changes in aircraft designed for a constant number of passengers, the energy requirement varies exponentially. In other words, more energy is required to increase the mission capability (seats x distance) of a given aircraft configuration by increasing its range than by adding to its passenger seating capacity. It is also apparent that the energy requirement for Jet A fueled aircraft increases substantially faster than for aircraft fueled with LH₂.

Three additional relationships for the 400 passenger aircraft are plotted in Figure 34. Gross weight, energy utilization, and the difference in energy required by the Jet A fueled aircraft - relative to the LH_2 - to perform the various design missions, are all plotted vs range. For reference, points representing the 130 passenger and 200 passenger aircraft design are also shown.

The advantage of using LH_2 as fuel in transport aircraft increases with the amount of energy required to perform the mission. The crossover point, above which LH_2 can be used to advantage, and below which Jet A is more energy efficient, seems to vary somewhat with the passenger load. For the 130 passenger Mach 0.85 aircraft shown in the lower left corner of Figure 33 the crossover point is approximately the 2780 km (1500 n.mi.) design range, which requires about 0.264 kJ (0.25 x 10⁹ Btu). For a 400 passenger Mach 0.85 aircraft the crossover appears to be just under 3700 km (2000 n.mi.) design range, a mission which needs approximately 1.054 kJ (10⁹ Btu).

In view of the obvious advantages of LH₂ fuel in long range aircraft an aggressive program of technology investigation and development is recommended. In particular, a societal impact study is recommended for immediate undertaking.

Appendix A

APPENDIX A

.

I

I

T.

(manual)

I

Support of the second se

Į

TIL.

Ē

Sec. 2

ŝ

... ...

1. 1. 1. N.

;

SELECTED PAGES OF ASSET COMPUTER PRINTOUT FOR EIGHT AIRCRAFT

A-1	Internal Tank LH ₂	١	
A- 2	External Tank LH ₂	>	Short Range Aircraft
A-3	Jet A	•	
A-4	Internal Tank LH _o	١	
A-7	1110011101 10111 2m2		
A-5	External Tank LH ₂	}	Medium Range Aircraft
A-6	Jet A)	
A-7	Internal Tank LH ₂	}	Iong Pongo Aironoft
A-8	Jet A	ļ	Long Range Aircraft

109

•••

INT. LHE M1 55 LIQUID HYDRAFEN----BASIC DESIGN MISSION/130 PASS/ 1500 N MI

All a state of the state of the

P. Samera ÷

Barando B

n ninger a ninger Brannen ar fil

Ü ,

-reaction in

5. A.M.S.

ť

.

£

•

くいいたいとういたたい

the trade on Cultural St

NUM PARK

1/H N/S LAM ¥ 1/R 1/0

ORIGINALI PAGE IN OF POOR QUALITY

0.345 30.00 107.8 16.00 0€*0 16.60

PRECEDING PAGE BLANK NOT FILMED

	с	C T N F I C U A A 1 1 D N		6 E J E T E	*
n InG	AREA(SQ.FT) 911.5	SPAN(FT) TAPER RATIO 94.47 0.300	APER RATIO 0.300	C/4 SWEFP L.E. SWEFP (DEG) (DEC) 30.000 32.260	E. SWEEP L.F.P/CHORD (dec) 32.260 C.O
	CR (FT) 14.69	CT (FT) 4.41	MAC(FT) 10.47	CRE(FT) S 13.29	CRE(FT) S WET(SQ.FT) REFL(FT) 13.29 1568.6 10.47
WING TANK	CRAR1(FT) 13.29	CBAR2(FT) 5.15	FTL(FT) F 37,77	FTL(FT) FVWING(CU FT) 37,77 0.00	έναπα (CU FT) 0.00
FUSELAGE	LENGTH (FT) 139.47	5 MET(SQ FT) 5100.5	BWW(FT) 13.00	EQUIV D(FT) 13.32	\$\$1150 FT) 14.30
	RW(FT) 13.00	BM(FT) 13.66	51 00.49	FVB(CU FT) 1007-29	
TAIL	SHT (50.FT) 94.04	SMTX(SQ.FT) HT PFF L(FT) SVT(SQ.FT) 77.54 4.68 89.96	I REF L(FT) 4.68		SV14(50.FT) VT REF L(FT) 89.96 A.25
PROPULS ION	ENG L(FT)	ENG D(FT)	PCD L(FT)	POD D(FT)	PCM S WET NO. POLOS INLET L(FT) 150. FT)
	7.22	4.9]	16.16	5.37	\$45.09 2. 0.0

Aircraft No. 1 LH2 Internal Tank 130 PAX, 1500 n mi range Mach 0.85 A-1

1 - 4

1.0.1

SS I .. LIQUED HYDROGEN----BASIC DESIGN MISSIGN/I BO PASS/ 1500 N MI

うちょうかい したい 御堂 ひと いうてきまた

4

1

1. . . .

the set of the set of

į

.

2

* * * * *

.

; · · · ·

·

x

.

? ,

a sea and a sea a se

....

.

1/4 0.345 LAN W/S ¥ 1/P 1/C

0.30 10.00 30.00 167.8 10.00

	PEUNDS	0/0	POUNDS	0/0
DESIGN GROSS WEIGHT	98247.	100-00		
FUEL	7764.	7.49		
ZERO FUEL WEIGHT			40893.	
PAYLOAD	28600.	79.11		
CPERATING WEIGHT EMPTY			42293.	63.40
DPERATIONAL ITEMS	2871.	2.92		
STANDARD ITENS	1457	1.48		
FMPTY METCHT-MFC.			67945.	
	7973.	8 _0.A		
TATL	100	60		
	11445	11 - B-		
A AMPTIME CEAR				
ELICAT CONTROLS				
	1606			
PERMISSION SYSTEM	1052	12.76		
ENCINE ADDR				
TARE				
	•			
UL STATER (LESS VIL) Emtime fomtadi (11.			
•				
1108	•			
	•			
WYDRALAL ICS	948.	0.96		
ELFCTR JCAL	2586.	2.63		
ELECTRONICS	968.	0 ° ° C		
FURMISHINGS AND EQUIP.	9440.	9.61		
AIR CONDITIONING	1873.	1.01		
ANT 1-ICING	127.	0.14		
AURISLIARY POWER UNIT	R30.	0 . A 4		
MISCELLMEDUS	•0	0"0		
DES IGN RESERVE	••	0•0		
NO. OF PASSENGERS	130.			
MO. OF CREW	7.			
STRUCTURAL T/C	12.50			
FLEL VOLUME REQD	1761.0			
WING FUEL VOLUME AVAILABLE	0-0			

Appendix A

1

•

. . .

.....

1

1

, 1

IJ

SUMMARY MISSION

Law and a

. ţ :

i

* :.

1

1 i 244

1

1 11

U

ĩ

•

• -----

F Math With Wi															
1 0. 0.0 0.00<	GRENT	1N1T ALTITUDE (FT)		INIT MEIGHT (LO)	SECHT FUEL (LN)	TCTAL FUEL (LA)	-	TOTAL DIST (NMT)	SFGMT TIME (MIN)	TOTAL TIME (HIN)	EXTERW STCRE TAB JD		EXTERN F T ANK Tab ID	AV6 L/D RAT10	AVG SFC (FF/1)
1 0. 98706. 56. 10. 10. 10. 10.0 </td <td>AKEOFF</td> <td></td> <td>0.0</td> <td>98257.</td> <td>40.</td> <td>. 64</td> <td>č</td> <td>•</td> <td>14.0</td> <td>14.0</td> <td>3</td> <td>-83101.</td> <td>2</td> <td>0•0</td> <td>6.124</td>	AKEOFF		0.0	98257.	40.	. 64	č	•	14.0	14.0	3	-83101.	2	0•0	6.124
0. C.378 GH352. 14.4. 2.66. 13. 14.1. 2.66. 13. 14.1. 2.66. 13. 14.1. 2.66. 13. 14.1. 2.66. 13. 14.1. 2.66. 13. 14.1.	POWER		0.0	9820F.	56.	105.	••	•	1.0	15.0	•	A3401.	•	0•0	01.0
100000.4459799.31.7.7.7.1.0.11.0.11.0.10.13.0.1100000.6399739.1306.1703.322322.40.759.80.61310.0.13.01300000.6499654.2606.4372.979.1130.1170.20.81341.0.13.01300000.64909754.26.04372.941.017.117.216.20.93911.0.13.141000000.64909797.72.441.072.13.117.216.20.13.1413.141000000.64909797.72.441.072.17.216.20.13.1413.141000000.64909797.72.470.172.17.216.20.13.1413.141000000.49909797.72.470.172.17.216.20.13.1413.141000000.49909797.72.470.172.17.216.20.13.141000000.49909797.72.1900.10.17.010.1413.141000000.49909797.72.1900.10.13.1413.141000000.499091940.110.210.110.210.110.110.141000000.499091940.110.2900.110.210.210.110.110.141000000.	1148		C.378	52	1=4.	260.	13.	13.	2.9	17.9		83101.	ċ	67 • <u>1</u> 1	0.161
10000.0.6.39793.1380.1703.332.332.40.750.41301.0.1310.<	נכנו	10000.	0.456	97998.	58.	LE	7.	20.	1.2	14.1	ć	.10158	ċ	13.00	n.184
36000 6-450 8474. 2006 6-450 8474. 2006 6-4101. 6-5 110.1 110.2 0.1 310.1 0.1	1 746	10000	0.638	.9639.	1386.	1703.	.26E	352.	40.7	5°.8	ċ	.10168	:	69.11	0.ž12
36000. 0.430 91486. 4.1 4.15. 51. 190.1 6. 9321. (1) 4.15. (1) $(1$	RUT SE	36000.	0-650	96554.	2668.	4372.	. 198	1 250.	110.4	170.2		.101-8-	•	13.61	112-0
10000 0.638 9342. 13. 4.28 8. 1300. 1.2 1300. 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.4 1.4 1.4 1.5 1.3 1.2 <	E SCENT	36000	054-0	-9 with		4415.	-15	1001.	6.5	176.7	÷	83201.	:	11.61	-1.716
I 100000 0.456 917 7.6 314.7 7.2 $18.4.2$ $0.$ 3371 $0.$ 3371 $0.$ 3371 $0.$ 3371 $0.$ 3771 $0.$ 3771 $0.$ 3771 $0.$ 3771 $0.$ 3771 $0.$ 3771 $0.$ 3771 $0.$ 3771 $0.$ 3771 $0.$ 1701 $0.$ 13011 $0.$ 13711 $0.$ 13711 $0.$ 11010 $0.$ 10010 $0.$ 0.000 $0.3196.$ $1429.$ 0.010 0.100 0.010	ECFL	10000.	0.638	\$	13.	4428.		1309.	1.4	174.0	• C		••	13.13	47.336
36000. 1.8410 3171. 4640. 4973. 190. 1000 6.9101. 1.90. 1.9101. 6.91100 6.911	ESCENT	10000.	0.456	• 342 4 •	74.	4506.	32.	141.	7.2	184.2	•		••	15.50	0.847
1300. 0.244 9378. %6. 5061. 0. 1500. 0.244 9378. %6. 5061. 0. 1500. 0.2 4101. 0. 16.01 0. 0.0 9196. 0. 9061. 0. 1500. 0.0 210.8 0.0 0. 0. 0.0 0. 0. 0. 0.0 0.0 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NU SE	36000.	0.850	.15169	469.	4975.	150°	1 400.	19.6	204°B	:	-10169-	.,	13.75	6.211
0. (0 93196 (9061. 0.1 1700. 0.10 2108 (0. 0.0	OITER	1500.	0.248	.28262.	A6.	5061.	. .	1 500.	6.0	230.8	•:	.[0[Fa-	••	16.07	0.146
0. 0.0 93196. C. 5001 -1306. 0. -210.6 0. -210.6 0. </td <td>E SF T</td> <td>•</td> <td>0-0</td> <td>•90[10</td> <td>•</td> <td>.1902</td> <td>••</td> <td>1 -00.</td> <td>0.0</td> <td>210.8</td> <td>.</td> <td>••</td> <td>•3</td> <td>0-0</td> <td>0*0</td>	E SF T	•	0-0	•90[10	•	.1902	••	1 -00.	0.0	210.8	.	••	•3	0-0	0*0
36000. 0.550 93196. 1429. 6490. 0. 0. 0.0 0.0 1.0.1 0. 13.67 0. 0.0 41767. 0. 6490. 0. 0. 0.0 <td>ESET</td> <td>••</td> <td>0-0</td> <td>93196.</td> <td>. 0</td> <td>5061.</td> <td>-1406 -</td> <td>ċ</td> <td>-214.8</td> <td>0*)</td> <td>•0</td> <td>ч</td> <td>••</td> <td>0 ° 0</td> <td>0•0</td>	ESET	••	0-0	93196.	. 0	5061.	-1406 -	ċ	-214.8	0*)	•0	ч	••	0 ° 0	0•0
0. 0.0 91767. 0. 6400. 0. 0. 0.0 60.0 0.0 </td <td>RUI SE</td> <td>16000.</td> <td>0-850</td> <td>.991£6</td> <td>1429.</td> <td>. 90 .</td> <td>••</td> <td>•</td> <td>0°09</td> <td>0•09</td> <td><u>.</u></td> <td>- 101 EN-</td> <td>••</td> <td>13.61</td> <td>(I?*0</td>	RUI SE	16000.	0-850	.991£6	1429.	. 90 .	••	•	0°09	0 •09	<u>.</u>	- 101 EN-	••	13.61	(I?*0
0. 6.37F 91767. 142. 6632. 12. 12. 2.7 62.7 0. 83101. 6. 15.27 100000. 0.4556 91625. 23. 6654. 3. 15. 6.5 3.2 6. 83101. 6. 13.05 100000. 0.4550 91675. 23. 6654. 3. 16. 6. 83101. C. 13.65 100000. 0.550 91209. 44. 7091. 15. 10.4 73.6 0. 83101. C. 13.15 200000. 0.550 91209. 44. 7091. 15. 10.4 73.6 0. 83301. C. 13.15 200000. 0.550 91116. 7. 7141. 47. 7.1 F3.1 C. 83301. C. 12.97 100000. 0.545 91106. 7. 7148. 47. 151. 7.1 F3.1 C. 83301. C. 12.97 100000. 0.545 9109. 7.1 174. 7.1 17.1 17.1<	ESE T	•	0.0	4] 767.	•	.0649	••	•	0.0	0-04	ċ	••	. 0	0-0	0.0
100000 0-456 73. 6454. 3. 15. 0.3.2 0.3.2 0.3.101. C. 13.45 100000 0-54.7 91603. 393. 7046. 70. 645.0 73.6 0. 83101. C. 13.45 100000 0-54.7 91603. 393. 7046. 70. 64. 70.6 73.6 0. 83101. 0. 13.45 20000 0-54.7 9116. 7. 716. 7.1 63.1 0. 91.67 0. 13.46 100000 0-54.7 91116. 7. 7141. 47. 14.7 7.1 63.1 0. 13.47 100000 0-54.7 91116. 7. 7141. 47. 14.1 7.1 63.1 0. 13.491 100000 0-54.7 9110. 7. 74.1 7.1 63.1 0. 13.491 100000 0-54.5 910.6 5.4 84.2 0. 93.01	LTMB	••	6.376	67	142.	6632.	12.	12.	2.7	62.7	••		ċ	15.27	0.161
100000 0.5447 91603. 393. 7046. 70. 84. 10.4 73.6 0. 83101. 0. 13.15 200000 0.6550 91209. 44. 7091. 15. 100. 2.4 76.0 0. 63101. 0. 15.15 200000 0.6550 91209. 44. 7091. 15. 100. 2.4 76.0 0. 63301. 0. 15.67 7 100000 0.5447 91116. 7. 7141. 47. 7.1 63.1 0. 63301. 0. 12.67 7 100000 0.5447 91116. 7. 7148. 4.7 141. 7.1 6.4 89.2 0. 12.67 12.67 800000 0.4550 71 717. 5.4 89.2 0. 6.4 15.25 900000 0.4550 70. 7274. 250. 3.6 94.0 0. 6.101. 0. 15.66 900000 0.245 9093. 6.1 7274. 250. 3.6 94.0	CCEL	10000.	0.456	91625.	23.	6654.	e.	15.	¥•0	43.2	ċ	.10168	:	13 . 95	C.175
300000: 0.6550 91209. 44. 7091. 15. 100. 2.4 76.0 0. -03101. 0. 15.67 7 300000: 0.7M0 91166. 50. 7141. 47. 7.1 F3.1 7. 83301. 0. 12.97 7 100000: 0.547 91116. 7. 7148. 4. 151. 0.4 73.8 0. 12.97 7 100000: 0.547 91116. 7. 7148. 4. 151. 0.4 73.01. 0. 12.97 7 100000: 0.545 91109. 57. 7205. 25. 174. 5.4 84.2 0. 0. 14.01 0. 15.25 300000: 0.456 9109. 70. 7274. 250. 3.6 94.0 0. 63301. 0. 15.45 80000: 0.456 9109. 7. 7274. 250. 3.6 94.0 0. 63301. 0. 15.46 90000 0.2445 9109. 7. 7.0 <	1746	10000.	0.547	91603.	393.	7048.	70.	. 7 6	10.4	73.6	•	R3101.	•	13.15	(.153
7 30000. 0.700 1166. 50. 7141. 47. 14.1 7.1 63.1 C. 83301. C. 12.07 100000. 0.5447 91116. 7. 7148. 4. 151. 0.4 7. 14.01 0. 12.07 0. 12.07 100000. 0.5447 91116. 7. 7148. 4. 151. 0.4 7. 14.01 0. 14.01 0. 14.01 0. 14.01 0. 14.01 0. 14.01 0. 14.01 0. 14.01 0. 14.01 0. 15.25 15.25 175. 5.4 89.2 0. 15.25 15.25 15.25 15.25 15.25 15.25 15.250 3.2 30.0 0. 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25	Rut se	30000.	0.650	.ens1e		7041.	15.	100-	2.4	76.0	ċ	.10168-	•0	14.67	0.164
100000. 0.947 91116. 7. 7148. 4. 151. 0.8 83.8 0. 83301. 0. 7 100000. 0.456 91109. 57. 7205. 25. 175. 5.4 84.2 0. 83301. 0. 300000. 0.4560 91522. 70. 7205. 25. 260. 3.8 93.0 0. 83301. 0. 300000. 0.4560 91552. 70. 7274. 25. 260. 3.8 93.0 0. 83301. 0. 300000. 0.4560 91552. 70. 7574. 25. 260. 3.8 93.0 0. -03101. 0. 1500. 0.2455 90993. 84. 7358. 0. 200. 6.0 99.0 0. -6101. 0.	ESCENT	30000	0.700	91166.	50.	11411.	47.	147.	1.1	F3.1	Ċ	83301.	:	12.97	-1.275
I 00000. 0.456 910°. 57. 7205. 25. 175. 5.4 84.2 0. 83301. C. 30000. 0.650 91552. 70. 7274. 25. 250. 3.6 93.0 0. -83101. 0. 30000. 0.650 91552. 70. 7274. 25. 250. 3.6 93.0 0. -83101. 0. 1500. 0.245 90993. 84. 7358. 0. 200. 6.0 99.0 0. -8101. 0. 91257.3 FUEL A. 7356.4 FUEL A. 7356.2 0. 200.0 6.0 99.0 0. 0.	fat	10000.	0.547	91116.	۲.	7148.	;	151.	6.A	2 * (i E	č	.10554	•••	14.01	1.705
30000. 0.650 91552. 70. 7274. 25. 200. 3.8 91.0 08101. 0. 1500. 0.245 90913. 84. 7358. 0. 200. 6.0 99.0 06101. 0. 98257.3 FUEL A: 7364.4 FUEL R: 7358.2	escent	10000.	0.456		57.	7205.	25.	175.	5.4	84.2	•	.10668	3	15.25	U-88 Y
1500. 0.245 90943. R4. 7358. D. 200. 6.0 99.0 DAilol. O. 98257.3 Fuel A: 7364.4 Fuel R: 7358.2	RUT SE	30000	0.650	52	7 0.	7274.	25.	200.	3.6	0.69	••	-83101.	ċ	15.66	(le9
•8237.3 Fuel A= 7364.4 Fuel B=	DITER	1500.	0.245	9 0943.	. 4 R	7358.	°.	• 002	Q*9	0*66	ċ	-1015A-	•	16.04	0-14B
	6 Rei Te	• 8257.3	FUEL			₩EL R=	7358.2								

ORIGINAL PAGE IS OF POOR QUALITY

• • • • • i ng

Appendix A

1

4956555 110145640 5344546 1740054 17400544 12482684 1321747 3 *2 505 25 58 • R AND D FEVELIEMENT TFFMMJCAL FATA UESIGN ENGINEENING DEVELOPMENT TCOLING EEVELOPMENT TEST ARTICLE FLIGHT TEST ARTICLE FLIGHT TEST SPECIAL SUPPORT EQUIPPENT DEVELOPMENT SPARES FNGINE DEVLECPMENT AVIONICS CEVLEOPMENT TOTAL R AND D 2.9876 2360 -1243. 1-4601 2.7247 2163. 1.4016 1115. 5 2.4618 1965. 4162-1 1.5830 2.1969 A59. 7A 49 A2 A. 00 Å. 1.9760 1523.1 1429518.00 226066.60 617745.38 N. MI Und Clasm 3556301.00 5482470.00 TR-HR \$/TRP 0/0 22.05 7.27 3.75 3.75 3.77 2.5.89 2.5.89 2.3.42 100-00 514489.81 73178.00 1074711.06 91055.01 10500.81 230582.81 12771.75 64037.75 64037.75 64037.73 64.697.32 61507.32 212208.00 212208.00 11275.54 90520.56 90520.54 81274.25 65034.75 163887.50 227017.38 458070.69 0-4216 0-6216 0-0549 0-0649 0-6492 0-4490 0-4490 0-4490 0-4490 0-4490 0-4490 0-4490 0-4490 0-4490 0-4490 0-4490 0-4214 1758.1 UMMARY MJLE ENC. CHANCE DADER 0.0 BUALITY ASSURANCE 33324%.19 AIRFAME MARANTY AIRFAME FEE AIRFAME FEE AIRFAME COST FNGINE WARANTY ENGINE WARANTY ENGINE FEE ENGINE COST AVIONICS COST RESEARCH AND DEVELOPMENT RESEARCH AND DEVELOPMENT RESEARCH AND DEVELOPMENT DIRECT DPERATING COST-DDLLARS/N. CREW AIRFRAME LABOR AND FURDEN MAINT. ENGINE LABOR AND BURGEN MAINT. AIRFRAME MATERIAL WAINT. ENGINE MATERIAL MAINT. 0-0 19452244 11743,44 10-0 1332951 94 62 .58 675 07 .69 3753 67 .75 18 55 .53 7 37 .11 8 43 .25 21 86 .88 FUEL MAD DIL Insurance Deprectation (tycluding spares) SHSTAINING ENGINEERI 242570+25 ŝ COST TOTAL ENTY HEG. COST TOTAL DOC S/N. HILE TECHNICAL DATA PROC. TOOLING MAINT. MISC. ENCINE AIR INDUCTION FUEL SYSTEM START SYSTEM ENGINE CONTROLS ENN/TIMUST REV. LUBE SYSTEM TOTAL PROPULSION INSTRUMENTS HVDRALLICS ELECTRICAL ELECTRICAL ELECTRUNIC RACKS FURNISHING APU APU SYS. INTEGRATION LANDING GEAR FLIGHT CONTROLS NACFLLES PROPULSION WING TAIL BODY

Appendix A

5614-1 3.5134 .0375

1500.

1372. 446401

0. 216209120.

ō

۲.

ī

•••••

. .

.

;

•

ł . .

ţ

t internetie

.....

- [

. Í

- ;

• ¹

-

. .

•]

*****___ł

IJ

، ، ي

.

۰,

ì •

. . . .

114

ANALYSIS PARAMETRIC ASSET

٠.

ì

3

3

: 2.014

-

;

:

¥ ۲

۲ .

÷

;

1 . . .

•••

1 -- ---

.

Barrison. n 1

:

1. ł, and a

ł. n - - x

> : ĺ:

ł

ł

L

ι.

t tu

11.1

1 Announced A

:

SUMMARY ID NO. 101 NOVEMBER 12 1975

ORIGINAL PAG OF POOR QUAL	AJRCRAFT MORL		00.000 00.34 00.000 00.440 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.00000 00.00000 00.00000 00.0000 00.00000000	102 034 1000 1000 15.00 1906 471 10.6710000000000000000000000000000000000		10.00 0.00		ш	5 39800 5 398000 5 398000 5 398000 5 398000 5 4000 5 40000 5 40000 5 400000 5 4000000 5 400000 5 4000000000								
	23 CBM5/A 5 MILE FLIGHT PATH MISSION 24 MISSION SYM(1) 25 MISSION SYM(2)		1.412 1.412 CMARACTERISTIC 36.000 35000 5056 9099	1.416 ICS 75000 5091	35000 35000 5120	1.413 36000 5058	1015	1.416 35000 5094	35000 35000	1405 1400 1405	د د ه	са 0 0	с с с с	: ; ; ;	C ũ		••
	CUNSING DUTU: 20 CETLING PURIJ 36293 36117 35 27 TAKEDFF DST(1) 4713 4754 4 28 CLIMB GAD(110.1779 0.1754 0.11 28 CLIMB GAD(110.1779 0.1754 0.11	0.1779 0.1779 0.1779	36117 4744 1754 0.	•16 36 0.	119	4 36249 4 4703 0.1740 0.	36123 35924 474 4775 1754 0.1757 0.	•	3582° 4804 1720 1	26307 4693 1781 0	د ہ ¹ ہ	ن د د	0 0 ° 0	°, °°,	ు ంలెం	0 3 ° 0	03 C
	30 CLIMB GRAD(210.027) 0.0764 0.02 31 AP SPEE0-KT(11) 135.3 135.3 13 32 CTOL LUGG D(1) 57.2 57.3 13 34 AP SPEE0-KT(1) 135.3 135.3 13 35 CTOL LUGG D(1) 57.2 57.3 14 35 AP SPEE0-KT(12) 149.2 149.1 14 35 AP SPEE0-KT(13) 135.5 135.5 13 35 AP SPEE0-KT(13) 135.5 135.5 13 36 CTOL LUGG D(1) 57.4 6574.4 6774.4		.0764 135.3 135.3 159.1 159.1 159.7 135.7 135.7 135.7		135.9 135.9 149.1 149.1 135.5 135.5	5.0 0.0244 0.0275 0. 5.3 135.3 135.2 0. 738 573 573 574 5572 149.0 5.5 135.5 135.3 5.5 135.5 135.3 746 5745 1741	135.3 5772 5772 5772 5772 135.3 135.3			<u> </u>	~				• • • •	6 9 9 3 9 6 3 5 5 3 3	

Appendix A

ſ

· · · · · · · · · · ·

.

.

?

;

· č

i

l

		- SWEFP L.F.R/CHUKF 106.63 31.901 n.0 71.50.673 F1F 1.F73 3742.2 10.44	υ°υν ελευχίζι ει)	501155 FT) 120.30		SVTXISC.FT) VF 5FF L (FT) 134.7A 10.20	The Source of the Source of Source o	MU PUNS 2.	
	د ۲ ۲ ن	C/4 "VEEP L.F. SWEEP Infe) (DEG) 10.660 31.901 CKELFT) S METISQ.FT) 1742.2	v°UL NTNC(CI) E1) EVEC	FQUIV (* (FT) - SP] (13.92 - 13.9	۴۷۴ (CU: FT) ۵.۵۰		POD 1(FT) PCD S WET (Su, FT) 6.44 700,37		
	-	7. PFK RATIF C 0.40C M.CFT1 IC.78	91°66 11115 - MM	64W(FT) 13.00	504[50 FT] 504[50 FT]	SHTKESG.FT1 HF PGF LEFT) SVTESG.FT1) 176.66 12 139.7P	P(1) L(FT) P 14.16	\$\$150 FT) \$ WET(40 FT) \$07,31 \$206,4	(
	ענון דיע אידינין שיקים ע בייים בייברן מבייבי ביים ע	SPAN(FT) 98.32 CT (FT) 5.91	ГРАК?(FT) 6.56	5 NETCO FT) 2477,0	ЬМ(FT) 12.66	SHTX156.FT) H 174.66	ENC [.[FT]] 5.43	LFR(TH(FT) 45 .68	
1/1	ان. در.	APEA(**FT) 1617.e Ce(FT) 14.70	(,r261(67) 13.61	113.00 113.00	6-4(FT) 33.66	111° (1111) 111° (1111) 141° (1111)	FYC L((T)) 1,55	12***2 12**51	
1 / L	10• Co		yayar ohin	دانوا ورا		T AJ 1		Fig L Pr'ns	

A-2 Aircraft No. 2 LH₂ External Tank 130 PAX, 1500 n mi range Mach 0.85

Appendix A

.

•

. . .

1

116

ext its

41 SS

ŧ

			u/c				65-23																															
85 I N			Phumps			100286.	71686-			£7272.					·																							
IN N 0051 /S	1/N	0.4.0						_		_				_												_	_				_	-						
30 P.45	N/S	v.av	u/u	2	84.8			2.61		•		- 0		-		17 .44																						
1/NUI 351	1.14	0.901 00.0E	SUNUNA	Ineens.	9616.		• • • • • • •	2886.	15.24			10701	30.37	16.44.	1043 ·	"titol							•			842.	1027.	24.00.	* I?	578			ċ	e .	• U - I		2295.4	
SICN N	¥	U5.8															•	•	•	•																		
ASTC DE	1/4	ر ۹۰ ر															12774	1170.	•520			171		3102.	780.													
IN N 0051 /SSV4 OCT/NUISSIN NISSION DESIGN HAUGUNA MAUGUNA	1/C	10.00				-	T EMPTY			•																												AAIF
T I GUIL				DESIGN GRESS WEIGHT	FUFL	ZFRC FIFL WEICHT Bavillan	COFFEATING WEICHT EMPTY	CPERATIONAL TTENS	SYAMDARE JTERS		7.21.E		LANTING GEAR	FLIGHT CONTROLS	NACELLES	PREMILSICH SYSTEM		A JR. JKYAFT			FIG 20 CONTROL 122 CO	ENCLAP STARTING		INSIN ATION	111 - bili 146 150		HAPEAULICS	FLETRICAL				ALT TE TARY SCILLER INTY				THE TOTAL TAT	elter wilder effe	VINC FUEL VOLVE AVEIL AVEI

r,

,

. . . .

•

• •

•

3 * · * 2 · · *

•

٠

•

۶.

:

• • •

4 4

:

· · · · ·

,

.

•

: :• 1700-9

T.

tone to 4

Production 1

IJ

L

Appendix A

Ţ

\$

、 うちろう たれ ていないない こうちょうちょうしょう しょうちょう

J. 5. - 47 X

.....

-5.262 0.124 0.100 1... 0.212 0.211 -1.650 46.587 0.847 0.211 0.152 0.211 0.161 0.175 0.192 0.144 1.701 0.884 0.184 6.153 6.161 0.0 0.0 0.0 10 . 3 u 10.Je 9.79 95.21 10.35 11.74 11.61 11.78 12.44 12.77 6 . A3 12.52 12.22 11.01 10.35 11.16 12.24 13.47 14.28 AVC B110 0.0 ن • د 0.0 c.. J-0 EXTERN F TANK TAB ID ځ ċ Ľ Ľ 3 ċ : ت ċ 6 ċ ť ċ ċ ి • ċ ċ ċ Ľ Ľ ĉ ċ 3 c -10168-63101. .10168 ENGINE THRUST TAB ID .101.64 -INEER .19301. -10256 83101. -03161. . LOFFA ċ .Inlr. . LUTER-A1401. 83101. **13301.** -A3101. -10168ċ ċ -10161-AJC1. -10164--Ralel. EXTERN STORE TAB ID ċ ċ 3 ¢ ċ ċ ċ Ċ ÷ ; • ċ ċ ċ đ ċ ċ ċ ċ ĉ ċ ċ ċ ċ 20.1.9 9. 9 0*+ t C.04 171.6 1A2.5 204.4 م. به ۲۵ ٨4.8 1 N. 1 175.5 0-0 60.0 62.3 10.03 9.14 •••• TOTAL TIPE (MIN) 15.0 17.2 **۵۰.**۲ 92.5 176.6 93.5 c ÷ 121.1 1.1 °.° 21.5 SEGHT TIME (NIN) 14.0 1.0 • • 9..0E e e 6.3 -204.9 60.0 0.0 2.0 **.** 4.5 6.6 9.5 ې ن 4.4 4.7 **۲.**۵ 2.2 MISS SECAT TETAL DIST DIST (N NI) (N NI) 1 325. 1 *00 -1 40. ċċ 1 70. ċ ċ • н. 137. 266. 126. 1 500. ċ ç 140. ŝ 15. с й 140. ę ີ່ LIQUED HYDROGEN----RASIC RESIGN MISSICM/130 PASS/ 1500 N MI 944. 175. 251. 26. ċ ċ ÷3. ÷ . ç \$ 37. -• • -1500 ċ • ~ ġ 5 20. ç ċ .1623 P634. £647. 6647. •284. . 10% 185. 5703. 12. 5162. A647. P4A2. 152. 5.5 9276. -1+54 11 56. \$769. 84 R2 . 4. 20. 1. 153. 321. *11. FUFL 675. 143. 24. 411. 1.0. 1472. 1846. ÷ Ľ 110. ċ ċ 1874. ċ 152. 107. SFCWT FUEL (LR) 1.6.9. Ę Ę. Ξ. 5 INIT MEIGHT (LB) 161420. 101267. 101243. 100032. ICOAR2. 1006.25. 166617. 100550. Irc. Jen. 100002. 164100. 14144. IOT TAL . 101420. 164133. • iuvul IM254. 103754. 102254 169631 100540. 1(1-5-1). LANAS 12768 6.547 0.63e 0.850 0. 70C 0.665 0.37B 6.454 6+2+0 0. P 5. 5.43 6.450 r.240 NG LINI 0.635 5.4.0 0.85C f..37P 1.456 ن • بان د 9.450 0°0 с с с. т с, с С с. с INIT ITITUNE (FT) 14000 ċ 5-000 · ċ è 3 י טעיעיי 1.00. è SUCO. • 100001 1.00.1 10000 10000 10000 10000 ė ċ 30000 Inces. 10001 2000-ו מכועה. 10000 T TAKEDFF PCNER 1 PUMEP 2 PESCENT **NFSCENT PFSCENT PFSCENI** CPUT SF LOIVER CLPF5 CPUT SE CPUTSE SECRENT CRUI SE RESET CPUI SE LOITCR CLIME necel **RFSET** RECET CL JNP DECFL CLTMR ACCEL ACCEL

 Appendix A

. .

1

. :

4910.4

FIFL R=

4"+[44

-

FUFL

e" |U>>0]

TOCALT.

2

•

1

.....

	88.917.45A									
	24.413920									
LANTING GEAR	12.15010									
PL IGHT CONTROLS										
ī										
1.m11										
R: 4.										
Life SvSrew 2174.15										
Juga Lungu 75	12P407.13									
	71105.56									
PLFCTRICAL										
PL PLTHUNGL RACKS										
	11114.42									
10 1										
SYS. INTERATION	11.12110									
TITAL EMPTY HEG. CIST		UU"S7iUZ97	rs. m							
TECHNICAL MATA MURICIPALITY IN THE PARTY AND										
							R AND D			
AJUNI JONNI						LE VELOPHENT	INT TECHNIC	TECHNICAL PATA	EZ du I ov	•
GUALITY ASSIMANTE JA34 Pa.69						VESIGN FI	PESIGN FNGINEFRING			
attrant murativ Attrant fr							FEVELOPMENT TEST ARTICLE	TUCLE		
ALAMAPT COST	•	00-1351229	ر ۱ - یو			FL TGHT TEST	15		1414478 .	
						SPECIAL S	SPECIAL SUPPORT FOUTPPENT De Vernament valage)] PUT NT	1842FR6.	
		2113464.00	v			FNCINE PI	FNCINE DEVLE DEMENT		c	
AVICNICS COST		2024	220055.0C			AV I'M I'CS		=	••	
RESEARCH MAN HEVELVERENT			184744°.49	W"7164i E=	ç	1		•		• 26-09-04/
للاولا لمدهما إياد ولتتحمالا مدداهم		Х°								
CAFW Alexant Last Art alenth Mark	0.4100									
PIPPPPUT LETTA AND THE TURNED AND ALL AND			20443							
ATTERATE TELEVISION AND AND AND AND AND AND AND AND AND AN	- 14 J		N. N	£57.	707.	.11.	1074.	1214.	13	1500.
	0.0057		٤		,	I		1	ł	1
112 THE 11	4.720.4		N2 47 J	15w*2	1.847	1.1749	1.7711	1.7293	0464° [1.4489
	0.1120		-	2						
						2226.	2493	2746		3254
	2.1404	~ ~ ~								

r

x

ŝ

٩

•

:

.

•

· · · · · ·

· · ·

÷

.

. .

1

• ; ·

:

,

. .

Carl Andrew States and

A 314.57-1

Presson 4

Torrest of

Π

Π

Π

Ľ

U

U

1

38° - 1

Appendix A

*

: ; ; ;

> • • /

119

٠

ORIGINAL PAGE IN OF POOR QUALITY

Appendix A

¢

			•	••	• •	•	; •	•	39	0*0	0-0	0			0		• •	¢	• •	•	,	q (0	• 9	•	9	D
	30 .00 DEG		•	• •	0 C	•	• • •	0	• •	0.0	0-0	0					: C	¢	: 0		, •	•••	0 0	33	0°°	٥
			3°0	د د	ن د	د ٥٠٥	• • • •	3		0.0	0-0	3.0	ن و د د			•		4	: c		ن ب	0.0		Ĵ	ن • ن ن	c
	00.0 SWE		c °	c c	ن ہ	د • •	••••	•		0.0	0,0	3.0	د د د د				ت :	¢	: c	÷.	۔ د د	0.0		د <u>.</u>	c. c	c
	GUIARTER CH <mark>or</mark> Taffa Ratto		с с с	c c	0 C	ر ٥٠٥		ć	ې . د	c •0	0.0	C • C					c C	•	: c	ی د	ت د م	0.0 0	c c c	; c	L.C	c
~	WING CUI	C	c •	c c	GC	с с.		c	• •	ċ		0.0					6 6	•	. c	، ۲ •	ء د د	C • 0	с с с	•	0°0	c
r s > .		 	c	¢ c	сc	¢ • •		0		0.0		c							2 C	د . د .	ء د د	0.0	c (; c	0-0	c
4		د ع ر د ع ر د ع و	د د	دن	cε	с с о	ن و . ت		: ?			с с					c	•	: C	، س	. ` •		c (;	с. с	c
4 1 C	830-00 250-00 55 + 2-		•••	co	CC	• • •		•	ċċ		Ċ	. C . C	с. с.						- 0		ء • •		e () C)	C. C	C
- 2g			с ^С	00	CC	с с ;	•					с С	с с 2 с							، ت ب	د ک د		с . (; c	0.0	C
NA A P	LWCINE To SLS SCALT MUNFER DF			с о		с с с	_		-	6										، ت د	ء ۔ کِــ	c	с ,		с с	C
-	392	5.0 5.0 5.0	1-00		71480	24727	101						11.2							-2611 6		135.	5752		5	2 4 4 4 2 4 4 4 4
5 5 4		110.0	2005	12201		-	:				4				•		20102					1.911		2 · · · ·		
		0.4.9 0.4.9		S-Zavil	~ *	27476					<u>نو</u>					1	36.00			7	111		2014			1545
	.	2 - 3 - C 2 - 5 - C	2 <u>5</u> 7 <u>5</u> -		~ •				•		2			- 2						12 K 2	, , , , , , , , , , , , , , , , , , ,					
		110.0 0.45 0.45		295 eu l		2442 2013			134.	113.0			2.100	11111100			2000				61.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5				-	
	ajackaft mýrétCi Isnac oatrCi tésick setenCi		TX TX RADIUS 1. MI	CRESS WEICHT			KING BEA	N. 70 1. 2554		34 FOOV LENGTH 17 MING MIEL LIMIT	COST DATA-PILLION	ALREADE COST	20 ENCINE CEST	50		CTHIS'S		CONSTRAINS CHIVEN	24 CININ: 449(1)		TAKENEE PST(2)	s Clime Georgiason's actions of the second s				CTOL LWING SCY
		-	n y y	41		5:		n 4	- U L -	4 ~	8		2	÷٤	2	ר בי בי	21	5	~		2			. .		ň

í

, , ,

·; •

ARFAISO.FT ARFAISO.FT -28.7 -28.7 -28.7 -28.7 -14.14 -14.14 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	71 5 PANIFT 1 1 T 1 T 1 5 71 5 PANIFT 1 1 A 1 T 1 5 7 101.07 0.300 7 101.07 0.300 1 C1(F1) MAC(FT) 1 C1(F1) MAC(FT) 1 C1(F1) F1(10.06 1 C1(F1) F1(10.06 1 Sum(FT) F1(10.06 1 Sum(FT) Sum(FT) 1 Sum(FT) Sum(FT) 1 Sum(FT) Sum(FT) 1 Sum(FT) Sum(FT)	C/4 SWEFP L.F (9965) 30.000 CREET) 5 4 L2.46 5 FWUNCEU FT) 5 FOUTY DEFT) 5 FOUTY DEFT) 5 FUT (CU FT)	F 1120 FT	L.E.R/CMDED 0.0 REF L(FT) 10.08
547 (56°F7) 132°C	SHTXISQ.FT] HT RFF LIFT] SWTISQ.FT] W.2 ² *.40 12 ⁴ .74		877X (50 . FT) 125-34	VT 466 L(11) 4.70
111) 111) 1.50	FWC D1573 PTD [1573 P	POL D(FT)	PTD S NET (50° F7)	ND. PODS MLET LIFTI

and the second s

.

Aradian a contra a promonantes a barren a co ····

22 I H

1/4

Š

Lan

ŧ

ž

Z

JP Flift weiferfuce maseline design / I'm pase / I'mn M

A-3 Aircraft No. 3 JET A Fueled 130 PAX, 1500 n mi range Mach 0.85

ORIGINAL PAGE DE OF POOR QUALITY. Appendix 4

1

		PRUNDS 0/0			58953.	60353. 55.54		4 4 1 3 B	•o 21 ac																											
LAM - W/S T/W	92°00 117.0 0.348	0/0 SONUA	-	19704。 If .13	26400 24.32		2475. 2.65	1351. 1.24	8485 7.7R		1076°, v.º]				16018. °.22								871 V 13		924. (85					ن•ن ن		130.	7.	12.40	2.696. 2.696	478.4
T/F AR	11. OF.0															7660.	15 F.S	• • • •	•		- 261	101														
1/C	10.00		DESIGN SPIDS MEIGHT		ZEPSI TUPE WEIGHT PAVICAC	reseating weight Empty	CPFFAITCHAL ITEMS	STANDARS TTEMS State of the first sec		TAIL	F.14' Y	LANDING CFAS	FLTCHT CONTPOLS	NACFLL'S S	PRIPHL CITA SYSTEM				Levely.	THE STATE THE SECONDOLS			The True Level of Long and Long an	FLLCTEICAL	FLFCTF 011 CS	FURNISHINGS AND EQUIP.	AIF CONDITIONING	ANT 1-TC 14G	AUYILIAFY PPWER (MITT	PISCELLANEPUS	DE élitik se Seu Ae	NO. DE PASSESS	PIC OF COLM			WING FUEL VILUVE AVAILAPLE

NT SS

JP FIJEL FEFERENCE PACELINE DESIGN / 130 PASS / 1400 N MI

s,

÷

.

-

and the second second

1.00

A not the second of the second

:

*** * * * * *

. . .

.

2

.....

ちょうい したちちょうち たいちょうちょうちょう ちちち ないないない

them the subscript of the subscript

Martin Lawrence

1.1.1 1 1.1.1 1.1.1 1.1.1

、 , **, , ,** ,

•

1

Appendix A

ł

7

- ;

.

- 3 . 1 ł

•

. 1 .

- ,

1

. 2

- ----

. . .

. 1 ź ; : ;

;] •

******

-2

1

•

.

5 7 7

·· · ·

.

No nation of the states of the

A MARINE PARTY A TRADE

~ C M M A R MISSINN

A STATE AND A STAT

ī

7- 41.42 ふた いたいちょうかいだいのんちょ

.

Salar Street Street

Conference and the second second

ม มีเสียงการทำงาน ที่มหา้าย แล้งมีมหาร์การการแห่งกับ in ก็แห่งแก่ หรือไห้เสียดีนี้ประ

and a state we

٠

- Anton -

.

. .

• • • • • • • •

:

į

1 ł

Ĺ 1.0

10.00 M

4.14 Ser. - And the states

+ ~ *

÷ •

•

- -ł ÷ .

....

1 .

	AVG SFC (FF/T)	0.465	0.298	0.482	0-5+4	0.619	0.618	4.507	131.869	2.372	0.618	0.481	0*0	0.0	0.618	0.0	0.482	0.516	0.560	172.0	-14.768	4.771	2.491	0.569	0.485
	AVG L/D RATID	· 0•0	0.0	17.57	14.83	14.29	16.30	12.58	14.27	16.84	16.13	17.54	0.0	0.0	16.19	0'0	16.30	14.84	13.86	16.59	13 . 66	14.81	16.24	16.64	17.47
	EXT FRN F TANK TAN IO	•	••	ະ	•	ċ	• •	••	:		č	ະ	ċ	•0	• ت	ċ	••	• •	ċ	ċ	• 0	•	<u>و</u>	:	ċ
	ENGINE THRUST TAB ID	-81101.	81401.	-1011-	A1101.	£1101.	-10118-	.10618	.10618	81301.	-10118-	-81101.	•	••	-10118-	•	F1101.	81101.	e1161.	-i0114-	81301.	.1301.	81301.	-81101.	-10116-
	EXTERN Stare Tar ID	• 0	•	ċ	ن. د	•	••	•	5	č	č	•0	••	°0	•	:	ċ	•	• 0	•0	•	•0	•0	• •	•
	TOTAL TEME (MIN)	14.0	15.0	17.8	4 • 4 I	50.1	170.5	179.0	186.4	1F8.5	208°E	2112	211.5	0.0	60°0	\$0°U	62.2	62.6	4.24	75.0	83.4	84.2	1.J ⁰	1.59	1 ° o b
ș2 îm	SEGHT TIMF (MIN)	14.0	0.1	لا در	1.5	5•1E	120.3	•` • 5	5-1	ۍ • ن ۲	17.1	(J * Y	υ•υ	-211.5	0.03	0 *0	2.2	7 •0	7.2	6.1	7.5	9° U	0 • 5 5	3.0	U• 3
ĨW	TCH NI	•0	••	12.	1.	272.	1250.	1212.	1 32 .	.1361.	1 500.	1 900	1 -00.	••	••	•0	10.	12.	• 19	100		149.	180.	20.0.	W0.
1500 N	5FGMT D15T (N M1)		•	12.	:	254.	978.	67.	•	36.	139.	••	••	-1500.	••	••	10.	2.	4 b .	• U+	40.	4	27.	20.	•
1 3589 O	TOTAL FUFL (LP)	205.	393.	877.	1045.	4212.	1185F.	12021.	12064.	12340.	13384.	13645.	13645.	13645.	17204.	17204.	17599.	17659.	18575.	16991.	1905: .	14078.	19272.	194.26.	19673.
LINE DESIGN / 130 PASS	SE GMT FUEL (LE)	265.	188.	4 6 9 4	. 1/8.	.7àlt	7646.	163.	4 () •	275.	1645.	2En.	•	Ċ	1960.	•	346.	•04	01¢.	216.	167.	23.	104.	144.	247.
	INIT MFIGHT (LC)	1(9658.	108453.	168765.	1(7760.	107613.	104446.	• ? US 95	4637.	44543.	4114.	95273.	.51052	-21054	45013 .	c1453.	•1453.	91056.	° otnu's	400A2.	P9766.	R463.	fot,7c .	6433 h.	R9732.
ENCE PA	HACF NOV	ن• ن ن	0 *0	0.379	124.0	ſ.63F	u i b *0	C. F.C	0.628	0.45¢	0.8.0	0.247	0.0	u-0	069.0	0.0	0.376	C.456	142.1	0-65C	0° 100	223-0	0 - 45 E	0.645	0+242
JP FUEL REFERENCE MASE	INIT ALTITUDE (FT)	•	• •	• •	• 00031	10000	• UUU	* 712 24 *	1 1000	10000	4100U -	1560.	0.	°.	+10CO -		••	1600.	10000	30000	30000	10001	" UUUUU I	30000	1*60.
1 30	SE GPI NT	TAKFOFF PUNEN 1	BUNER 2	LIPT	ACCFL	CLIMP	C RIJ SF	DE SC ENT	הבכו ו	DESCINT	C PUJ SF	LOTTER	RFSET	RESET	35 I.14 J	13514	CL TPF	ACCH	CLTME	1:1-40	DESCENT	DFCFL	E.ESCENT	C KUTSF	rújie

Appendix A

Ì

ORIGINAD PAGE B OF POOR QUALTY

123

TDGF MT= 1066 47.7

FUEL P= 39672.0

FUFL A= 14704.4

AT AC	61P464.00									
	102654.13									
	45650.39 01010.39									
	114112-00-38									
MUBUL SINN										
X										
10										
• ^										
LUBE SYSTEM 21 89 .64										
Mililland artist	202444.50									
246761866416	130461 76									
	20-24/1T1									
CLECTIONS OF C										
ALE CONSTITUTION	170.197.63									
	11 "26.72									
	70030 01									
TRTAL FAPTY MFG. CPS1		90° 10706EL	00*10							
SUSTATA THIS FRICTINEED 1 227943 .75										
MATNT. 3COLO										
EKG. CHANGE DRAFE						E VFLUPMENT	IFNT TECHNICAL	CAL DATA	5278414.	
ETV ESSIGNCE 313187.81						NE SIGN F	RESIGN FNGINFERING		11 72 98096.	
AJREFAME VARATY AJAEEARE EES	21-754-00					DEVELOPMENT			65516176.	
ATTER COST		210466-00	60.00			INTERNITION OF	ENT ILST AKTILLE		16976500	
ERGINE WAFRAWTY	5050000					SPECIAL	CPECIAL SUPPRET FOUTPMENT	UT PMENT	1407576-	_
ENGINF FEE						LE VELOPM	PEVELOPMENT SPARES		14251270	
ENCINE CCST	1	1199663.00	£3.00			ENGINE D	ENGINE DE VLEDPMENT		0	
ALCHICS CUEL		22001	220600.00			AV TON I CS	DE VL FOREI	N.T	••	
PESEALCH AND DEVELOPMENT		6765	61.1726576			10	TOTAL R AND I	6	23679	236799904.
TUTAL FLY AWAY COST				75 66644.00	0					
FIFECT CPERATING COST-MILLARS/N.	u,	J/U								
Cerv	1624	2 . 5(
ALDERANT LEADE AND AUPDEN MINT.	_									
FWGTMA LAFTA AND FIRDEN MAINT.	0.0744		F ANGE							
RURTER FAITELE FAILE.	1000	- - - -		• / 00	• 7:18	ī	1061.	• 1771	1360.	- 00 - 1
	10.7		AUX J	1.45.04	1-4706	1.4047	1.3678	1.3776	1 .2003	.2744
	1069									
DEPERCIATION (INCLUMING SPARES)	4120		T8-HP	1.8067	2.0932	2.3797	7.6662	2.4527	3 •2342	3.5257
		•	\$/TRP	1341.	15.10	1724 .	1015.	2106.2	2296.	2449 .
										• • • • •

Appendix A

Ì

. i

- - -

. .

. :

÷

.

- 1

1.3

;

The second second

-

*** ** ***

;

¥7 . ,

. 1

.....

÷ ; 11 • 1:

1

Trans. بدائه المحتاد

> n z J ETRI ٤. PARA w)

ID NO. 103 09 1975 SUMMARY Inctober

å

Ľ

00 0 0**0000**00 - 30.00 DEG 00 ې و مومومون کړ مو کړ د م SWEE P 0.000 ې د د د د د د د د د د د د QUARTER CHORD TAPER RATIO = ء د موجود کی کی مو موجود کی کی مو MING - F1060 = 35000 INFS = 2. FNG INF ••••• •••• ••• ې ې د کې د م^کې د مخود د ب د ف د FNGTNE 1.D. -SLS SCALF 1.O NUMBEP DF FN 0.0 0 ې ې د ې و و و د ي ک و د ک ک ک ک ک و و و ک ک و د ک ک ک 0000 TLRIST 4000 13644 117.0 0.31 0.0 10.01 10.01 08885 10722 60562 86163 19163 0.548 0.548 0.548 0.548 19163 191-23 CLIMS GFAPTID. 191 TANFOFF LETTS1 77 7 4/5 1/4 1/6 1/6 AIPCRAFT 1.0.C. DA DESIGN SP

Appendix A

Appendix A

LIFT)

ء 1 م

] | |

•

-

•

; ;

. .

:

ł

. 1

- 1 _

INT. LHE PI SS LEGUED MYDRMGEN---BASIC DESIGN MISSIMN/200 PASS/ 3000 N MI

۰ ۲

å 1

ş Z

.

.

.

,

, 1 3

* * * * *

\$ 2 * 1

T/W s/h LAM 84 T/R 1/6

0.335 9.50 36.00 112.0 0.30 00-01

GEOMETRY CONFIGURATION

#1NG	AREA(50.FT)	SPAN(FT) T	APER RATIO	C/4 SWEEP	L.E. SWEEP	SPAM(FT) TAPER RATIO C/4 SWEEP L.E. SWEEP L.E.R/CHORD	
	1662.3	123.38	0.300	30.000	31, 176	0•0	
	CR (FT) 19.98	CT (FT) 5.99	MAC(FT) 14.24	CRE(FT) S 17.76	S WET (SQ .FT) 2638.7	REF L(FT) 14.24	
NING TANK	CRAR1(FT) 17.76	CAAR 2(FT) 7.01	FTL(FT) (47.43	FVWING(CU FT) 0.01	FVRDX (CU FT) 0.00	F	
FUSELAGE	LENGTH(FT) 173.35	S WET(SQ FT) 9306+3	8W(FT) 19.5R	EQUIV N(FT) 20.13	SP1(50 FT) 318.20		
	FWIET) 19.58	RH(FT) 20.58	SPW(S2 FT) 9306.31) FVR(CU FT) 5131.63	-		
TATL	SHT (SQ.FT) 212.03	SHTX(SG.FT) HT PEF L(FT) SVT(SQ.FT) 147.56 5.68 147.71	PEF L(FT) 5.68		SVTX (5G • FT) 1 67 • 71	VT REF L(F1) 11.21	-
PROPULS JON	ENG L(FT) 6.84	E46 D(FT) 4.62	P.00 L(F7) 16.12	POD (FT) 5.07	PCD S WET (50. FT) 1027.51	ND. PUCS	INLET LIFT 0.6

A-4 Aircraft No. 4 LH₂ Internal Tank 200 PAX, 3000 n mi range Mach 0.85

MT SS LIQUID HYDROGEN----BASIC DESIGN MISSIGM/200 PASS/ 3000 N MI

ź ¥....

the second second 1000000

「ないでもというない

AN PROVIDENT CO

٠

Ç 1

; ;

Ũ

U

5

· . .

. . . - Tank La

7

:

•

• ,

:

1 ł

おうちょう しんしんないちょう ちょうちょうしん

> 4/T LAM W/S 30.00 112.0 ŧ T, 1/6

9.50 0..30 10.00 63.82

¢ \ 0

	P CUND S	0/0	PCUNDS
DESIGN GROSS METCHT	179460.	100-00	
PURL ZERO FUEL WEICHT	••••	000 11	158536.
PAVLOAD	+4000	24.52	
UPERATING WEIGHT ENVIT Adeaattamat items	.1777.	6.33	•0CL+11
STANDARD ITEMS	2225.	1.24	
FMPTV WEIGHT-MFG.		6 •	104433.
	14071		
7A1L	20112	21.1	
TOUT TANDING CEAD	7676.	4.28	
LAUDING UTT	2461.	1.43	
	3465.	[°]	
JN SVSTEN	22405.	12.48	
1			
TAKE			
1 05			
INC			
\$ 01L)			
CONTROLS			
E STARTIMC			
FUEL-PLUMBING 1512.			
SWS TRUMENTS	1013.	••••	
WYDRAUL ICS	-00-1		
ELECTR ICAL	3595.	1.1.2	
ELECTRONICS	1986	6 0 0	
FURNISHINGS AND EQUIP.	14393.		
AIR CORDITIONING	187.		
ALERSTARY PRAFE INIT	.010		
	C		
LESIGN PESERVE	••	0-0	
MD. DF PASSENGERS	200 -		
MO. OF CREW			
STRUCTURAL T/C	5005 2005		
WING FUEL VOLUME AVAILABLE	0.0		

ORIGINAJ PAGE IS OF POOR QUALITY

Appendix A

LIQU	LIQUID HYDROGENBASIC	ENBA	SIC DESIGN	MOISSIM	N DOUE /SSV4 DOZ/NDISSIN	00VE /S		a a a a a	•					
SECHENT	1NIT ALTITUDE (FT)	INIT MACH ND	INIT Méight (LB)	SEGMT FUEL (LB)	TOTAL FUEL (LB)	SEGMT DIST (N M])	TOT AL DI ST (N M I)	SEGMT TIME (MIN)	TOTAL TIME (MIN)	EXTERN Store Tab In	ENGINE Thrust Tab Id	EXTERN F TANK TAB IC	AVG L/D RATIC	AVG SFC (FF/T)
TAKEOFF PUNER 1	•0	u •u	179460.	87.	87.	••	ن	14.6	14.0	•	-1016	3	0°0	0.124
5 BUNER 2	••	0-0	179773 .	100.	186.	••	ċ	1.0	15.0	•	. 104£ N	•	0*0	0.100
CL74F	ċ	975.0	179273.	284.	472.	14.	14.	3.1	1.91	ċ	.10168	•	15.85	0.161
ACCEL	10000	0.456	l'Tagan.	107.	579.	٦.	21.	1.2	E.º1	ċ	.10168	•0	13.35	0.184
CL THE	10000.	0.638	1 74 86 1.	2061.	2640.	260.	281.	9.15	51.2	•0	.101EA	•	11.49	0.213
CPUTSE	35600.	0.850	176820.	13170.	15010.	2469.	2750.	1.505	354.2	••	-63101.	•	13.74	0.211
DFSCENT	36000.	0.850	163649.	76.	15886.	51.	2 801.	6.4	360.6	••	.10118	•	10.95	-1.716
DECEL	10000.	0.638	163573.	22.	15909.	Ľ	2 101.	1.4	362.0	••	.10EEA	•0	13.03	47.438
DESCENT	10000.	0.456	161551.	130.	16047.	32.	2840.	1.1	364.1	•0	.10669	•	15.33	0.847
CRUTSE	36600 .	0.650	163412.	P28.	16875.	160.	1000	19.7	388.8	•	-63101.	•	13.63	0.211
LC 17ER	1500.	0.247	162585.	154.	17024.	••	3000	0 * 9	394°B	č	-83101.	ċ	15.59	0.147
RESET	•	0.0	162431.	••	17028.	•	3 000.	0-0	8-265	ċ	0.	•	0.0	0=0
# E SE T	••	0.6	162431.	••	17028.	-3000.	ċ	9.406-	0.0	•	••	••	0*0	0.0
CRUT SE	-000%E	0.850	162471.	1643.	18672.	••	ċ	40.0	40.0	č	-83101.	. 0	49.61	112.0
R F SE T	••	0-0	160788.	••	18672.	• •	•	0*0	40.0	••	•	••	0°0	0 *0
CL IMF	••	0.378	160788.	248.	16920.	12.	12.	2.7	42.7	••	. 10168	••	15.14	0.161
ACCFL	10000.	954-0	160539.	30.	18959.	2.	14.	0.5	43.1	••	63101.	••	13.66	0.175
CL JWR	10000	0-547	160500.	6A].	19640.	6Л.	A2.	10.1	53.3	°	.10164	•0	[[.el	0.193
CPUT SE	30000	0.655	159619.	A7.	1•727.	17.	100.	2.7	5.25	••	.10168-	•	15.43	0-1-0
CFSCENT	30000	0.700	159732.	£9.	19815.	47.	146.	7.1	63.0	• 0	83301.	••	12.93	
DECET	10000.	0.447	159644.	12.	19827.	;	150.	0.7	63 . R	•	.10FEA	••	13.93	1.706
DESCENT	10000	954.0	159672.	100.	1 9927.	24.	175.	5.4	69.1	••	.10EEA	•	15.16	0.889
CRUT SE	30000	C.655	150512.	125.	20052.	25.	200.	3°8	72.9	•0	- 10169-	••	15.42	0*1*0
LOTTER	1500.	0.246	159407.	. es e	20950.	ċ	200.	0*YE	108.4	•	-83101.	•°	15.66	0.147

MISSION SUMMARY

;

;

1

•

ŝ

2

;

: .

. . .

:

. ş

Appendix A

1

ł

. :

.]

...

. .

. .

i

.

January 1

FUEL R= 20950.3

FUEL A= 20524.1

TOGANT= 179459.6

C 0 S T S	U H H A R Y 974538.75									
TAIL Dory Landing Gear Flight Controls Macelles	15753.44 2160814.00 183404.81 173523.75 382040.50									
ENGINE 1594.36 AIP INDUCTION 112060.44 FUEL SYSTEN 11224.81 STAT SYSTEN 11224.01 STAT SYSTEN 11294.03 ENG/NUST.429.55 ENG/NUST.429.55 ENG/NUST.429.53 TUTA, PROPULSION 2137.05	848776.06									
TH STRUMENTS HYTORAILICS ELECTRICAL ELECTRONIC AACKS PUNILISHING AT CONDITIONING ANTI ICING ANTI ICING AVTI ICING SYS. BHTEGRATION	152961.56 102395.00 30400.45 316431.00 252521.31 15153.31 89491.00									
TOTAL EMPTY MPG. COST		4383688.00								
SUSTATING CHC THE RT 443379.65 TECHNICAL DATA TECHNICAL DATA PROD. TOOLING MAINT. 583652.13 NISC. PROD. TOOLING MAINT. 5836573.13 NISC. PROD. TOOLING TOOLING PROD. TOOLING PROD. TOOLING TOOLING PROD. TOOLING TOOLING PROD. TOOLING TOOLING PROD. TOOLING PROD. TOOLING TOOLING PROD. TOOLING PROD. TOOLING TOOLING PROD. TOOLING P	13 13 14 15 12 12 107 409 115.56 107 77 124.19 272 124.19	9280140.00 2538826.00 500000.00	13954926e.W	8	R DEVELOPHENT DESIGN ENGIN DEVELOPHENT DEVELOPHENT FLIGHT TEST SPECIAL SUPP DEVELOPHENT ENGINE DEVLE AVIONICS DEVL	R AND D DEVELOPHENT TECHNICAL DAT DESIGN ENGINEERING DEVELOPMENT TOOLING DEVELOPMENT TEST ARTICLE ELIGHT TEST ARTICLE ELIGHT TEST ARTICLE SPECIAL SUPPORT EQUIPMENT DEVELOPMENT SPARES ENGINE DEVLEOPMENT AVIONICS DEVLEOPMENT AVIONICS DEVLEOPMENT TOTAL R AND D	AL DATA Ticle Ipment	R206321. 182362706. 8812128. 2720322. 21019696. 2188352. 26927328. 0. 362235392.	38.	
DIRECT OPERATING COST-DULLARS/N. Crew Airframe Ladyr and Burden Maint. Englige Ladyr and Burden Maint. Airefaame Maithe Haint.	ts/N. MILE 0.344 NT. 0.1702 0.0886 0.0886	0/0 14.76 6.36 3.31 Ramge 3.67 N. HI	., 1	1236.	1509.	1942.	2295 .	2047.	.000.	
ENCINE MATERIAL MAINT. FUEL AND OIL	0-1006		:	1.5055	12421	1.4018	1.3738	1.3533	1.3376	
INSURANCE Dépreciation (twcluding spares)	0.1855	6.03 26.68 TR-HR 5/TRP 5/TRP	2.2501 2862.	2.0716 3723.	3.6932 4583.	4.4147 5444.	5.1363 6305.	9.8578 71.65.	6.5794 8026.	
TUTAL DUC S/Nº FILL	<pre></pre>									

.

• • • • • • • ; Ę 1 .

• •

* * * ŝ

. . . .

;

;

: * 1 1

•

.

. . . .

۶, .

٢, •

4

\$ * *

÷.

•

î

Neveral VEVE JAIN .

ŧi.

; ;

- 1

; Í

1 i

f

1

あんわ 白い レイス どうぎ

In ACRESSING •

1 :

; į.

> ÷ ι.

ι,

; `

ŝ.,

1 1

DERGINAL PAGE IS DE POOR QUALITY

129

Appendix A

ļ

,

PCNER CLRN CLRN VSTALL		OVERSPC DCDSTA L DTD VRDT	WE TGHT CDRN CLCLMB VTD	FLAP CLAT Tuclmb V2	CDR71 LDCLMR YG	NCPSTA CL2 XG1	C DR T TW2 XR DT	DCL 5P0 LD2 XDB	CLST XTD	LIS TI FIELDL	DCDSPO GRAD	1503
444	4.00 0.11295 0.25805 130.21	1.00 0.01063 12.12550 130.21	17946C. 0.12357 1.88959 140.07	18.00 1.96987 0.25489 146.88	0.16275 12.086 4 4 3158.51	n.01n63 1.55444 0.0	0.17298 0.25429 684.27	-0.57424 11.12763 796.01	-0.29240 4638.78	0.12411 5334.59	0.0730 0 5741.0	0. 19719
.11.1		1.00 C.01063 12.11145 134.27	179460. 0.12357 1.78643 140.07	18.00 1.91480 0.19157 145.67	0.15815 11.94464 3137.52	0.01063 1.61663 429.14	0.16878 0.19157 694.56	-0.57424 10.88595 11.21.53	-0.29240 5382.75	0. 12411 5362.75	8 067 0. 0 7 6 40 . 0	0. 19719
		60	BRAKINC Clrn Dclsp	C R U N	AKING RUNCOEFFIENTSLANDING N DCLSPO CLGRD CDGRD1 DCDSP0 DCDSPA CDGRD	Е N Т S	DCDSPA	T N G CDGRD				

CLRN DCLSPO CLGRD CDGRD1 DCDSP0 DCDSPA CDGRD 0.75479 -0.76500 -0.01021 1.19626 0.068451 0.01940 0.28436

LANDING FERFEREATCE

ROLL,FT XBRAKE,F' 227.82 2100.50	
241.44 234	241

Appendix A

í

•: .

: • •

•

<u>م</u> ہ

. .

- **.** 1

. .

. .

κ.

. .

• •

. :

·] 24

i I

J

;

TAKEOFF PFRFORMAVCF

** ** ** **

.

1

-

A THE AND AND A DESCRIPTION OF A DESCRIP

:

.

:

. . . .

* * * *

. . .

.

•

· · · · ·

۰.

1

:

ţ

*

ł

.

. ; ,

3 .

,

.

•

Ţ

م مرابع المراجع المراجع مربع

- -

- -

•

- -

ί.

••••

1

1

1.

t 7 •

		0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	179740 179499 0 20873 20924 0 114887 114595 0 158635 158535 0	23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4	164. 173.3 0.000 0.	14-017 13-995 0-0 10-941 10-915 0-0 2-570 2-540 0-0 0-500 0-500 0-0	2.677 2.675 0.0 1.340 1.338 0.0 35000 35000 0	3511 5334 5334 5382 5382	135-0 5793 5773 145-1 145-1 145-0 136-3 136-3 136-3 136-3 136-3 136-3 136-3 136-3 136-3 136-3 136-3 136-3 136-3 136-3 149-0 14	
6	UTIO = 0.300	112.0 9.50 10.000 10.000	17 9890 2 0746 2 11 5145 1 1 5143		-0	1. 066 10.956 2.610 0.500	2.680 1.340 3.6000 1.6816	36 045 5 176 5 203	5 776 5 776 5 776 5 776 5 776 5 76 5 76	
10 83484	UUATER LHUN Taper Ratio	112.4 0.50 10.00 3000	21111 21111 114292 158292	-	~0	13.908 10.901 2.507 0.500	2.674 7 1.337 34000 17165	•	139.2 135.2 143.2 139.5 130.5	
	N1NG 1 A	112.4 0.33 9.50 10.00 3060	179366 120912 6 114454 6 158454		. 167. 3 173.3 0 0.000	7 13.945 2 10.907 5 2.539 0.500	8 2.674 9 1.337 0 35000 7 17015	35396 5355 1670	145.2 145.2 145.2 145.2 15	
		112.4 0.34 9.50 10.00	2 179667 3 20761 9 158866			6 14.007 10.932 9 2.575 0.500	8 2.678 9 1.339 0 35000 4 16927	•	0.040 134.5 143.3 6201 6201 9999	
		112 • 4 0 • 34 10 • 90 10 • 00	17979 2073 2073 11505		-0	R 14.056 2 10.948 5 2.609 0.500	2 2.678 6 1.339 0 36000 1 16805	2	0.0993 0 135.8 58 02 58 02 62 85 138.5 138.5 138.5 198.5	
1975	83000 - 15000 465 - 4.	112.8 0.33 6.50 10.00 10.00	2179304 21096 2114208 2156208		-0	6 13.898 10.892 10.892 10.905 00.500	2 2.672 6 1.336 0 34000 3 17151	35113 5458 1627 1627	0406 13.401 14.401 14.401 14.401 14.401 14.401 14.400 14.4000	
NOVEMBER 11 1975	ALF 1.0 =	112.7 0.33 4.50 10.00	20899 20899 20899 20899 20899			8 13.935 4 10.898 4 2.538 0 0.500	6 2.672 6 1.336 0 15000 17003		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
NOVEN	ENGINE J.C. SLS SCALF NUMPER OF	112.7 0.34 9.50 10.00		4 C -	6. 166. .2 173.3	7 13.998 9 10.924 6 2.574 0 0.500	7 2.676 1.338 0 35000 4 16916		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		112.7 0.34 4.50 10.00 3007		6651 6651	1 1 1 0	88 14.047 83 10.939 04 7.608 00 0.500	77 2.677 35 1.35 00 36000 167%	E1096		
		113.2 0.33 9.59 16.00 3000	2025	9 0.422 1583 122.6	-0	5.0 0.5	··· ···	35098 35098 3479 0.1626 0.1626	0.0405 0 135.6 5915 143.8 143.8 143.8 134.0	
		113.2 0.33 0.50 10.00 000	1791¢ 2086 11428 15628	0.42 1583 122.		7 13.924 5 10.889 2.53/ 0.500	5 2.671 7 1.335 71CS 0 35000 4 16990		0.0413 0 135.7 5.820 5.820 6.304 6.304 6.304 6.304 6.304 6.304	
	<u> </u>	113.2 0.34 9.50 10.00 3000		172-1 172-7 172-7	14.	DMLLARS/AIRCR 14.037 13.987 10.930 10.915 2.606 2.572 0.500 0.500	0000 1000 1000 1000 1000 1000 1000 100	58725 5165 9071 -0	0.0962 135.6 5825 5825 143.9 6015 6015	
		113.2 0.34 0.50 10.00 000	179601 20707 1116894	1567 1567 122-8	165. 173.2 17 4.000	M DALLARS 14.037 10.430 2.400 2.400		19925 (1522 (1750 (1752 (0.0001 5530 5330 1143.0 1143.0 1143.0 1140.1	
	ATPCPART NOMEL	1 W/S 2 T/M 3 AR 4 T/C 5 RADTUS N• MI		10 1MRUST/EMGIME 11 ENGIME SCALE 12 MING AREA 13 MING SPAN	15 V. TAIL ARFA 16 REDY LENGTH 17 MING FUEL LIMIT	COST DATA	COSY DATA—DIRECT OF 22 9 PER 91LE 23 CENTS/A 5 #1LE FLIGHT PATH 915SIDW 24 MISSIDM 579(1) 25 MISSIDM 579(2)	COPSTRAINT CUTPUT 26 CEILING PURCU: 35997 35732 27 TARENEE DST(1) 5234 5315 28 CLTMB GRADILIO.1750 0.1706 0. 28 TAMEDEF DST(2) 571 5370	SC CLIMB CMAD(2)0.0041 0.0042 0. "1 AP SPECHT 1) 135.8 35.6 32 CTOL LWGC 0(1) 5830 5825 33 AP SPECHTT(2) 143.9 143.9 34 CTOL LWDC 0(2) 6317 6312 35 AP SPECHTT(3) 124.6 134.0 36 CTOL LWDC 0(3) 6626 6016	

1

- EXTERNAL TANK n 155 LIQUID HUDKDGEA-----BASIC DESIGN PISSION/200 PASS/ 3000 N PI

1111

•

.

มามากกระบบรายมาณ สมสารณ์เข้าใช้ได้มีสาวประการเป็น การรัก ก

•

and provide all a set to the set of the terms

ş

2 1.9

ş

. . . .

2

- 1111

•

. .

2 v · · # ·

3/1 LAP H/S H V Ĕ Z

0...30 3.011 00.UE 9.50 Ú • 0 10.00

	0 U	COMFIGURALIUN GEOMETRY		6 E D M E T I	*		
NJW2	APEA (59.67) 1674.7	SPAN(FT) 133.45	TAPER RATIO 6.400	TAPER RATIO C/4 SWEEP L.E. SWEEP 0663 (DEG) 0.400 31.401	L.E. SWEEF (DEG) 31.401	L.E.R./CHORD 0.0	
	CA (F1) 20.07	CT (FT) 8.03	NAC (FT) 14.41	CAE(FT) 5 18.30	5 WET(50.FT) 3223.2	REF L(F7) 14.91	
HING TANK	CB.M.1(FT) 18.30	C64k21F1) 8.90	F1L (F1) 1 52.16	FW4ING(CU FT) FV80X(CU FT) 6.00	FVB0X1CU F	c	
FUSELAGE	LENG MLFT) 144.70	5 NET(50 FT) '7380.0	BWW(FT) 19.58	[[]] [] []] []] []] []] []]] []	EQUIV D(FT) SP1(50 FT) 20.13 316.20		
	84(FT) 19.58	64 (FT) 20.58	Shw154 F1) 7560.60	FVEICU FT) 6.C	•		
7AIL	SHT(50.FT) 349.22	SHTXISQ.FT) HT PEF LIFT) SVTISC.FT) 251.34 E.U9 Z64.44	7 PEF L(FT) 6.09		5VTX(5Q_FT) 264.64	SVTX(SQ.FT) VT REF L(FT) 264.64 14.10	
WOESTON	ENG L(FT) 8.10	FNG D(FT) 5.63	MOD L(FT) 19.25	POL D(FT) 6.13	PCU S NET (SQ. FT) 1483.21	MD. PODS INLET L(FT) 4. 0.0	FT)
FUEL PODS	VOL (CU FT) 6676.41	LENGTHIFT) 63.71	5P1(50 FT) 181-15	\$P1(\$0 F1) \$ WET(\$C F1) 181.15 4006.8	NO PODS 2.		

A-5 Aircraft No. 5 LH₂ External Tank 200 PAX, 3000 n mi range

. .

- 1 ł - .

- •

: t

•

- •

, • •

• +

•••

.

• •

+ 7 - -

• -

• •

- • ·

. .

: 1

1

•

Ì

NISS

i

Ţ

7

. #2

Binne 9 n-\$

Alla Roman

*

. Ľ

.

.

• • • •

.

:

÷

•

,

. .

}

LAM W/S 30.00 110.6 ä ž 1/C 10.66

17 9.50 0** 0

		POUNDS	0/0	n/0 SQN024	þ
CESICN GROSS NE IGHT		201346.	160.60		
ZERD FLEL VETCHT		• • • • • • • • • • • • • • • • • • • •	61°61	11111 - 117 -	
PAVLOAD		44000-	21.22		
OPERATING METCHT ENPTY			- 	136117. 45.45	\$
OPEATICMAL ITEMS		7605.	3.76		
STANDARD ITEMS		2541.	1.23		
EMPTY AEIGHT-AFG.				125772.	
		19603.			
TAIL		.2166	1.60		
DOV		2432	2.11		
LANDTHE GEAR		8203.			
FLIGHT CONTROLS		2696			
MACELLES		5263-	2.55		
PROPULSION SYSTEM		35540.	17.14		
ENGINE	17727.				
AIR INTAKE	2048.				
EXMUST	1404.				
COOL 1145	•				
OIL SYSTEM ILESS VIL)	.11.				
ENGINE CONTROLS	:				
ENGINE SYARTING	306.				
	- (74)				
	- 6144				
		1 644.9	9 - 9		
בנבר ואזניין בו בר שימשור כ			۲, 		
ELECTROMICS Electromic and funda			5.5		
AUXILIAAY PONER UNIT		100	97-0		
MISCELLANE DUS			0-0		
DESIGN RESERVE		3	3.3		
WC. OF PASSEMGERS		200-			
NO. OF CREM		•			
SIGUE JURAL TVC GARINE MENSAL DECO		12.50			
TUCL WALVER ACRU					
		2.2			

Appendix A

11	LICUTOEACLEFAEASTC	FAEA	510 DE216N		ALESSENZED PALLY SUDE		r. K1	33 C H						
Stoner	1417 ALTITUOP 1613	L JUN Novi	1451 MF 1647 (LE)	scont Fuel CLED	1111 1111 1111	SECHT GIST FN MT	10701 1510 114 M	SEC #1 11MC (M1N)	ILTAL TIME LTIME	EXTERN STCPE TAB 10	FINCINE THAUST TAF 10	EXTERN F TANK TAB 10	AVC L/b AATID	AVG SFC (FF/1)
TAKECFF PUMER 1	ò	ں۔ ب	267346 .	124.	124.	•	•	14.6	14.0	.	- 10163-	••	0.0	6.12%
POWER 2	• 3	J.J.	217217.	148.	277.	•		1.6	ů . čl	••	.10+63	••	9 • 0	0.100
CL INE		466.7	C706%	./16	, , , , , , , , , , , , , , , , , , ,	10.	16.	č. S	17.3	••	(1016)	•	13.37	0.161
ACCEL	10600.	0.456	2(6752.		712.		16.	ۍ•د ن	16.2	•	63101.	•	10.44	0.18
CL INF	100001	463.0	210634.	2316.	3026.	206.		31 32	9 *6*	••	talel.	•	10.35	0.212
CAUISE	36000.	068.0	204316-	17360.	20406.	2526 .	2750.	5 10.	2.4.2	• •	-10163-	•	12.30	0.211
DESCENT	39000-	0.850	164937.	÷7.	20506.	;	2746.	5.É	3.44.5	••	63301.	••	9.13	-1.635
11320	16000.	0.636	1+6+46.	27.	.66693	•	2842.	1.1	4.13E	ċ	.10558	•	10.60	25.4
DE SCENT	10000.	0.454	166613.	.671	20706.	27.	.2.2		347.6	•	.19668		12.78	0.847
CAUTSE	34000.	0.850	186640.	1136.	21842.	171.	3000.	31.6	366.7	••	-63101.	•	11.51	0.211
101 TEA	1500.	0-241	145:04.	105.	22037.	••	3000.	.	7.36	•	-83101.	•	14.53	651.0
RESET	• 3	0•)	105 304.	•	22037.	••	3600.	0.0	7.26		•	•	0.0	0.0
ALSET	0.	0-0	16304.	•	22037.	-3000.	•	T. ME-	0-3	•	•3	•	0 .0	0.0
CRUTSE	34000.	0.450	105309.	3198.	25235.		3	0.00	3-70	•	-63401.	•	12.13	0.211
RESET		0-0	102111.	•	25235.	••	••	0-0	0-04	•	•	•	0-0	0.0
CL 1Mb	•0	676.0	162111.	.11.	25566.	•	;	2.5	0° 79	•	.10168	•	12.48	0.141
NCEL	10000.	0.454	.+20101	•3.	25549.	2.		6.3	6.3	••	e3101.	•	11.29	641.0
CL 1m	10000.	0.547	181 794.	n 4.	26263.		*	1.1	4.60	•	.1016		10-54	0.192
CAUISE	36000	504°3	121082.	277.	24540.	41.	100.	•••	T6.3	••	-10169-	••	13.79	0.184
DESCENT	3008	0.700	100.005.	ю5.	26645.	37.	.761	5.7	1° 79	••	.10668	••	10.41	-5.261
DECEL	10000.	0.547	10701.	15.	24454.	ч.	1.0.	6. 0	82 •V	. J	.10668	•	11.34	1.700
DE SCENT	10000.	0.454	10084.	124.	26763.	2	141.	¢4	1-78	••	43301.		12.55	0.100
CPUTSE	36000.	0.405	100542.	* 0 * 2	27043.	¥.	266.	4.4	5.6	9.	-10160-	•	11.61	0.194
LOITER	1500.	6.239	100303.	140.	27253.	••	200.	¢.0		••	-43101.	••	14.46	651.0

134

Apper Hx a

• •

• •

.

· · · ·

IJ

ULL AL 21224-1 F. 215146.35 215146.35 215146.35 215146.35 2121.173 2009.455 2121.173 2009.455 2121.173 2009.455 200	TGLINT: 2073-0.1	WING TAIL ALO LANDING GLAN FLIGAT CUNTPOLS MARFLLES PROPULSION ENGINE ALR INDUCTION FUEL SYSTEN START SYSTEN ENGTHE CONTROLS ENGTHE SYSTEN ENGTAL PROPULSION	Instruments Promant RCS ELECTRICAL ELECTRONIC RACKS FURT SUBME ANT CODITIONING ANT ICODE ANY SYS- INTEGRATION	TOTAL ENDTY NG. CUST	RIGINAL PAGE IS POOR GUALITY	BIRECT DPERATING COST-DOLLANS/N. CREM AIRFAARE LABOR AND BUNDEN MAINT. EMGINE LABOR AND BUNDEN PAINT. AIRFAARE MAIENIAL MAINT.	FUEL AND OIL	DEPATOR (INCLUDING SPALS)
120-1 For the Filler For the	ut 11	64-1515 5-*5605 5-*506601 90*56401 90*56401 90*56401 90*56401 90*56401		151	500704.01 0.00 0.00 0.00 0.00 779204.03 779204.03 710 710 710 70 70 70 70 70 70 70 70 70 70 70 70 70	IST-DOLLARS/I HDEN NAINT. EN PAINT. HT.	•	IS INAS SHALLS
Distance Distance 0 0 0 0 Distance 0 0 0 0 0 0 Distance 0 0 0 0 0 0 Distance 0 0 <td>></td> <td></td> <td>2011 2012 2012 2012 2012 2012 2012 2012</td> <td></td> <td></td> <td></td> <td>~~</td> <td></td>	>		2011 2012 2012 2012 2012 2012 2012 2012				~~	
INVIGATION OF AND D OFVELOA WAT FLOWING A AND D OFVELOA AND D OFVEL				3114	-			
Dividing and Divid	0.KE31			-00				
PrvELD. MEMT TECOMICAL VIA DIVELD. MEMT TECOMICAL VIA DIVELDOMENT TECOMICAL VIA					3			
					10000000000000000000000000000000000000			
					MD D ECMBICAL ECMBICAL EA 1MC EA 1MC EA 1MC ES 1 ATTIC ES 1 ATTIC ES 1 EU PAREN AND D			
						• R		
					11400134 1775140 1775140 177514 17751	2639.	•••••	

•

;

、 日本語言語語を描述し、 1.1

, States -

•

. 5-6401.4 W

1

• • • •

.

. •

р

ş

s

,

. .

•••••

;

`. - l

I

T

Smalt at 14

1.

11.

ţ 1.

5 \$ -

].

; . 4 Visity, Mark

* * * *

teration setting

Sandy Contra

Ľ L Your

Contraction of

Ľ

U

The Score

sans in an

Appendix A

ł

.

ALALYSIS PARAMETHIC ASSET

1.

10100

Ę

7

, ¥,

2

......

.

3

.

Р 1.

2

.

SUMMAPY IC AG. 1CA NOVEMELE (5 1975

T MLDEL DATE SPEED					EN	ENCINE 1 D	1			3	ATMG OTA	LTEE CA	CUANTER CHORD SWEEP	u	000	
	0 SCNIC			-	R N	SLS SCALE 1.0 = 35600 NUMBER DF ENGINES = 4	1.0 = ENGINE	35000 35000		13		FR RATI	C = 0-400			
2 1/M 2 1/M 3 AK 4 1/C 5 ADDIJS N. H1	111.2 5.43 9.50 10.00 10.00	111.2 0.42 9.50 10.00 3660	111-2 0-4-1 10-05 30000 30000	111-2 0-41 9-50 3000	111.6 0.43 9.56 10.00 3000	11-C	111.6 0.42 9.50 10.66 3000	111.0 0.41 0.40 0000 0000	110-8 0-430 9-50 10-60 3000	116.8 0.425 0.50 10.00 3000	110-8 0.420 9-50 10-70 3000	110.8 0.415 0.415 10.60 30.00	110.6 0.430 9.50 10.00 3000	° • • • • • •	0 • • • • • • • • • • • •	0,000 0,000 0,000
GRCSS WEIGHT 20 FUEL WEIGHT 20 OP. WT. EMPTY 11 Zerg FUEL WT. 11 THRUST/EMGINE 31	207122 2 27196 135924 1 179924 1	207177 20 27443 2 135734 13 174734 17 179734 17	7178	207202 27898 135304 179304	207196 27206 135966 179988	207251 27453 27453 135797 179797	207255 27677 27677 135577 176577	20 7260 27909 135370 179370 21505	27271 27218 150052 150052	207327 27464 135862 179862	207331 27688 135643 179643	207357 27921 139436 139436	207346 27229 136117 180117	00000	00000	••••
	1863 1863 133.0 346. 262.	1863. 1863. 133.0 346. 262.	0.622 1863. 133.0 262. 262.	0.614 1863 133.0 346. 262.	1867 133.2 133.2 263. 263.	6.629 6.629 133.2 347. 263.	0.622 0.622 1867. 133.2 347. 263.	263. 263.	1871. 1871. 1871. 264. 264.	264.7 264.7	2622 0.622 1871 133.3 346. 264.7	0.615 0.615 348 264 744				
WING FUEL LIMIT DATA	T 0.000 0.000 1 DOLLAKS/AIRCK 17.051 17.010 12.995 12.989 3.556 3.521 0.500 0.500	0.000 0.000 0 DOLLAKS/AIRCRAFT 17.051 17.010 16 12.995 12.989 12 3.556 3.521 3 8.6417MC 7051	2 3 8 5 9 2 3 8 5 9 2 3 8 5 9	0.000 16.923 12.973 3.450 0.500			0.000 16.974 12.987 3.467 3.467 0.500	0.500 0.500 0.500	0.000 13.008 3.558 0.500	0.000 17.026 13.003 3.523 0.500	0.000 16.482 12.994 3.488 0.500	0.000 16.939 12.986 3.452 0.500	- HH			0 0000
5	3.248 1.624 CHARACT 38000 22010	2010 22197	3.259 1.630 5 37000 22414	3.263 1.632 36000 22595	3.249 1.624 38600 22018	3.254 1.627 37006 22206	3.260 1.630 37000 22424	3.26 ⁵ 1.632 36000 22605	3.250 1.625 38000 22027	3.255 1.627 37000 22215	3.261 1.631 37000 22433	3.266 1.633 36000 22615	3.251 1.626 38000 22036	00 00 00	00 00 00	00 00
CUNSTRAINT OUTON 24 CFILING PMR(1) 38325 38116 37 27 TANEOFF DST(1) 4256 4303 4 28 CLING GRAD(1)0.2430 0.2388 0.23 29 TAKEOFF DST(2) 4116 4159 4 30 CLING GRAD(2)0.1458 0.1428 0.13 31 AP SPEED-KT(1) 135.3 135.3 13	38325 3 4256 4259 0.2 4116 1458 0.1 1553 1	38116 37 6303 4 6303 4 4159 4 4159 4 1558 0 13513 13	798	37575 4398 4398 -2303 0. 1754 1369 0.	37575 3833 5 38126 37808 3758 5 35345 4398 4256 4295 4342 4389 4243 2303 0.2431 0.2389 0.2354 0.2504 0.2432 0 4271 4108 4151 4207 4262 4106 4271 4108 4151 4207 4262 4106 4389 0.1459 0.1429 0.1460 0 135.1 135.2 135.1 135.0 135.1	38126 4.295 4.295 2389 0. 4151 1429 0. 135.1	37808 4342 4242 1400 0.	37608 37585 35345 38135 37817 37594 4342 4384 4243 4287 4334 4381 -2346 0.2504 0.2432 0.2390 0.2348 0.2305 0 4207 4262 4100 4143 4196 4253 -1400 0.1370 0.1460 0.1431 0.1441 0.1371 0	38345 4243 42432 0. 4100 11460 0.	38135 4287 4287 4143 1430 0. 135.0	37817 4334 4348 0. 4196 1401 0. 134.9	375% 4381 4381 4381 4253 4253 4253 4253 4253 13410	38135 37817 37594 38354 4287 4384 4381 4235 6234 0.2348 0.2305 0.2433 0.0 4143 4196 4253 0.02100 1041 0.0 11510 0.1411 0.1311 0.1461 0.0 135.0 134.9 134.9 135.0	0 0 0 0 0 0		00 0 0

Appendix A

19. ý

1.1

1

·

۲ Ъ

1

: {

•

للاستراك المعاليات والمراسي

•

· · · · · · ·

•

:

• • • •

· · · · · ·

** ******

Ţ

.

. .

an or or an ∎or or an

• •

• • • • ;

÷,

· · · ·

; ; ;

•

. .

----And \$1.7.

1 4

1 t

l

ź

ì

-

1.1

-1 *** 1 -

÷

\$ 117 .

• • •

÷

، ا ، د THE LODE / STIDUE / BOIST WEITING STRUCTURE TRUE TO THE ST

5.257 まくて 20.00 20.00 Š 21 4.75 ٩٢ 0..0 1/1 10.60 1.10

.

	نہ ں		2 0 -	- - - - - - - -	>		
	AKF	<pre>{</pre>	APER KATIC	CPAR(FT) TAPER KATTI' CZA SMLEP L.E. SMEEP L.E.«XZCMUK) (GLE) (GLE) (GLE) (GLE)	L.F. SWEEP ITEG	L . F . ~ /CHI' KI	
	1663.	Ač.751	Q115 • 1	30.000	116.56	ن• 0	
	LF (FT) 20 -1 0	CT (FT) e+03	MAC (FT) 14.33	(FI (+T) S 17.52	[AF (+T) S WET (SW.FT)]7.52 2742.1]	REF L(F1) 14.33	
WING TARK	CFAF1(FT) 17.93	CBAK2(FT) 7.05	+TL (FT) 1 44,27	+TL(FT)	FVRCX (CU F1) 277.05	Ē	
FUSELAGE	LENGTH(FT) 144.70	S WET(S& ET) 7540.0	AWW(FT) 19.54	20.13 20.13	SP1(56 FT) 314.20		
	AW(FT) 19 . 58	вн(FT) 20.58	SAWISU FT) 75R0400) FVF (Cl ^{, F} T) 909944,60	-		
TAIL	SHT (50.FT) 296.30	SHTX(SQ.FT) HF REF L(FT) SVT(SU.FT) 203.11 7.36 221.56	r REF L(FT) 7.36		SVTX(SU.FT) 221+5n	SVTXISU.FT) VT RFF L (FT) 221.5n 12.41	-
PROPULS ION	ENG LIFT)	ENG DIFT)	P00 L(FT)	PCD 0(FT)	PCO S WET (50. FT)	NU. PODS	MLET LIFT)
	6.89	4.65	16.25	5.07	1034.05	;	0-0

A-6 Aircraft No. 6 JET A Fueled 200 PAX, 3000 n mi range Mach 0.85

/

E

.

. . . .

۰ ۱

•

, Ъ

A CONTRACTOR REPORTED AND A CONTRACTOR

ļ

Ì

51.62 6/0 FLUNES 1117e7. 146767. 1 J2 006. (· · ·) 21: 424. 10: 00. 611:47. 22:15 20.20 2,2,4 C 1170 JPAL14 stauf lates * 1)(11)74 2003. 171/2. 24434. 26434. 8542. 3012. 3530. 1052. 1755. 3774. 1642. 1643. 3431. 211. 211. 0. 20(. - 20(. - 20) 8 - 8 - 8 - 12 - 50 1219 - 5 \$-75 111844 1364 1073 0 11 645 264 320 0 532 0. 0 10-41 THE REALING WEICHT FRETV Dremational Itéme Standari: Items CCOLINC DIL SYSTEM (LESS DIL) ENGINE CONTRIDLS ENGINE STARTING TANKS NO. OF PASSENGERS NO. OF CALM Structural I/C Fire Volume Reod Mime Fuel Volume AvailAble ZERO FUEL WEICHT Payloal F4PTY WEIGHT-MFG. INSULATION INSULATION FUEL-PLUMBING INSTRUMENTS HYDRAULTCS ELECTRICA. ELECTRICA. ELECTRICA. ALR CONGITIONING ANTI-ICING LESTON CRUSS WEICHT FIEL WING TAIL EUDY GEAR EUDY CONTRILS FLIGHT LONTRILS NACELLES NACELLES ATT INTACE ATT INTACE

de fuer sufskendi ekstetta. Exsten Zood vers Zood i Mi TZC − TZ − ak − Ler vZ − TZU

....

....

;

ł,

and a state of the state of the

•

K 1 **F**

Landard - Charles

ľ

horden offi

•

;

;

138

Apprendix /

•

,

· · ·

• •

, ,

:

, ,

: .

;

`,

÷ ,

....

•

•••

1

ش ۔

~ 7

~ •

~ .

e. .

•••

••••

ŝ and a second a ------

۲ ، 1 1 1 :v٦ • -. . -- ,

ì

, -4

÷

.

:

;

. . . .

ĩ

,

.

ļ

•

۶

.

``` ,

;

. . . . . . .

-

•

.

\$

5 m2 " 3 

C \$ \* 4

: ;•

7-

p

4 4,

-----

\*\*\*\*\*

:

.

ŧ 21

2

-

2.11

¢ -4 .

\*\*\*\*\* ٤. ¥.

!..

.

. .

| ۰<br>م              | PleL GIGLAEMORE E21 | 1. 1. J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | LITTE CIN                    | LTM: FISHER Z 466 FASS          | 1 2244 )             | suff e                  | ۰.          | w] 5¢                          |                                         |                           |                         |                                         |                     |                      |
|---------------------|---------------------|-------------------------------------------------|------------------------------|---------------------------------|----------------------|-------------------------|-------------|--------------------------------|-----------------------------------------|---------------------------|-------------------------|-----------------------------------------|---------------------|----------------------|
| SEC PE NT           | L JTT               | 11.11<br>17.4<br>17.4<br>17.4                   | 1114<br>1124<br>1124<br>1124 | 1 ( )<br>1 - 1 - 1<br>1 - 1 - 1 | (87)<br>1671<br>1687 | :E(KT<br>[]·T<br>[' \'] |             | (721 x )<br>341 x 1<br>1 x 1 5 | 16 fal<br>1 Jel<br>1 Jel<br>1 (21 (21 ) | EXTER<br>Stree<br>Tape 1. | 11114<br>1440°T<br>12°1 | 5 Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | AVC<br>LZF<br>KATHU | AVG<br>SFC<br>(FF/T) |
| 7.85 CFF<br>61.86 R | ۳.<br>۲             | 1 <b>.</b> 1                                    | . In làu                     | • A 5 5                         |                      | •                       | •<br>;      | ] 4 . ()                       | 1 4 . [                                 | :                         | -1101.                  | ÷                                       | 0 <b>•</b> 0        | 0.465                |
| ENER 2              | <b>.</b> 0          | 0°3                                             | - 276-212                    | - 4. F                          | e 36 -               | •                       | •           | 1.0                            | 11                                      | •<br>•                    | ·10-1-                  | :                                       | с <b>-</b> о        | 0.298                |
| CL IPE              | Ģ                   | 0.370                                           | .]h ]t.                      | Tür o.                          | 1761.                |                         | 17.         | ) • E                          | 11. e                                   | :                         | +11ul.                  | :                                       | 17.65               | 0.483                |
| עננו                | 101 00 .            | 015                                             | :1522.                       | 374.                            | .[A05                | •<br>•                  | •<br>•<br>• | 4-1                            | 7.0.2                                   |                           | A1101.                  | •;                                      | 15.00               | 0-545                |
| CL JMF              | 10000               | 3 29*9                                          | 214147.                      | 1.18.                           | 41 E4 .              | • 50 ¢                  | 32B.        | 37.2                           | 57.4                                    | ÷                         | .10118                  | •                                       | 14.07               | 0.623                |
| CRUT SE             | J⊷CûÙ.              | (.+*C                                           |                              | 2241 F                          | 46781.               | .422.                   | .750.       | 247.2                          | 7.4.7                                   |                           | -61101.                 | ••                                      | 15.24               | 0.616                |
| DESCINT             | .000 FF             | 0.940                                           | 176143.                      | 247.                            | 47027.               | 3                       | 2 409.      | 7.5                            | 162.1                                   | Ċ                         | d1301.                  |                                         | 12.08               | 9                    |
| DECEL               | 10030               | 0.434                                           | しょうそうしゃ                      | • <del>4</del> 9                | - 7446.              | •<br>•                  | . HI4.      | 1.5                            | 562.7                                   | ċ                         | e1301.                  | • 3                                     | 14.66               | 133.291              |
| DE SCENT            | 10000               | 5445                                            | .549427.                     | 424.                            | 47522.               | •<br>•<br>•             | 2 652 .     | 7.7                            | 271.4                                   | • œ                       | -1301-                  | ;                                       | 16.43               | 2.374                |
| CRUISE              | 34000               | 0.850                                           | 104401.                      | 2016.                           | 4 4408.              | 148.                    | 3 000       | 16.2                           | 384.6                                   | <b>۔</b>                  | -61101.                 | •3                                      | 15.08               | 0.414                |
| LOTTER              | 1500.               | C+2+1                                           | 167316.                      | 464.                            | 50076.               | •<br>ت                  | 3 (00) -    | 0.4                            | 1*+hi                                   | •                         | -10118-                 | •                                       | 16.54               |                      |
| RE SET              | °.                  | 0.0                                             | 1 66 94 7.                   | <b>°</b>                        | \$6076.              | .,                      | 1000.       | 0.0                            | 4.505                                   | •                         | • •                     | •0                                      | 0.0                 | 0-0                  |
| RESET               | ••                  | c.0                                             | 166847.                      | • 3                             | \$C076.              | -3000-                  | •••         | 4°36E-                         | ر • ر                                   | j                         | •••                     | 3                                       | <b>0.</b> 0         | 0-0                  |
| C KUT SE            | 38000.              | 0.456                                           | 166447.                      | 66 B.3 .                        | 56759.               | ċ                       | ••          | 0.00                           | 90*09                                   | ċ                         | -HULLA-                 | ł                                       | 15.07               | 0.416                |
| RESET               | ••                  | 0.0                                             | 160165.                      | •                               | \$6754.              | ••                      | 3           | 0*0                            | 60° U                                   | •0                        | ••                      | •                                       | 0.0                 | <b>9</b><br>0        |
| CL THB              | ••                  | C.378                                           | 16016%.                      | 719.                            | \$7477.              | .11                     | 11.         | 2.5                            | 62.5                                    | ;                         | . 10118                 | 3                                       | 15.43               | 0.482                |
| ACTEL               | 10000               | 0.450                                           | 159440.                      | 110.                            | 57587.               | 2.                      | 14.         | 0.4                            | 0°29                                    | •                         | .10118                  | ••                                      | 14.57               | 0.514                |
| CL THR              | 1 0000 .            | 1 22 0                                          | 154336.                      | 1773.                           | 5¥36Q.               | 56.                     | .11         | H.6                            | 71.6                                    | •                         | .1011.                  | •                                       | 13.69               | 0.549                |
| CAUT SE             | 10000               | 0.070                                           | 157567.                      | 414.                            | \$ 9763.             | 29.                     | 160.        | 4.3                            | 75.4                                    | •0                        | -81101.                 | •                                       | 15.79               | 172-0                |
| DESCENT             | 30000°              | 6.700                                           | 157160.                      | 201.                            | 60024.               | <b>4</b> 8 <b>.</b>     | 148.        | 7.4                            | 83°2                                    | •                         | .10618                  | 3                                       | 13.47               | -14.785              |
| DECEL               | 10:00.              | 0.547                                           | 156899.                      | 37.                             | 60061.               | i                       | 153.        | ٩.0                            | 94.0                                    | •                         | A1301.                  | •                                       | 1.1                 | £.;                  |
| DE SCENT            | 1 0000              | 0.456                                           | 1:6862.                      | 301.                            | 60362.               | 26.                     | 178.        | 5.7                            | д.°                                     | •<br>•                    | .10518                  | •                                       | 15-87               | 2***2                |
| CRUT SE             | 30000               | 0.470                                           | 156501.                      | 303.                            | 6045.                | 24.                     | 200-        | 3*F                            | 92.h                                    | <b>ن</b>                  | -01161.                 | •                                       | 15.75               | 172.0                |
| LC' FER             | 1500.               | 0.252                                           | 156258.                      | 442.                            | 6110e.               | •                       | 200.        | 6.0                            | 7 ° 7                                   | ÷                         | -61101.                 | •                                       | 16.37               | 0.443                |
| TOGANT=             | 216423.9            | FIRL A=                                         | A* 61136.6                   | _                               | FUEL R.              | 61106.3                 |             |                                |                                         |                           |                         |                                         |                     |                      |

DEIGINAE FAOR IN DE POOR GUALTY

ļ

ł

Appendix A

. . ,

,

:

• • •

;

;

.

.

•

\*

\*\* \*\* \* \* \*

;

• • • • • £ i

ı

ţ Ł

| TOTAL FEATURE (BACINECT         017735-0.00           SUSTAINAGE MARKET         2-2173-31           SUSTAINAGE MARKET         2-2103-31           SUSTAINAGE MARKET         2-21473-31           SUSTAINAGE         2-21473-31 <th>MIM<br/>TAIL<br/>ROFY<br/>LAWTHE SEAL<br/>ACTURE<br/>MACLUES<br/>MACLUES<br/>MACLUES<br/>MACLUES<br/>MACLUES<br/>MACLUES<br/>MACLUES<br/>MULTICH<br/>STAT SYSTEM<br/>STAT SYSTEM<br/>STAT SYSTEM<br/>STAT SYSTEM<br/>STAT SYSTEM<br/>STAT SYSTEM<br/>STAT SYSTEM<br/>STAT SYSTEM<br/>STAT SYSTEM<br/>TITAL PRIPULSION<br/>TITAL PRIPULSION<br/>TITAL PRIPULSION<br/>TITAL PRIPULSION<br/>STAT SCORT<br/>STAT SCORT<br/>STAT STAT<br/>STAT STAT<br/>STAT</th> <th>1215552 (1)<br/>7214551<br/>11152 (0)<br/>11152 (0)<br/>20542 (0)<br/>20423 (0)<br/>20423 (0)<br/>115653 (0)<br/>115653 (0)<br/>115653 (0)<br/>115653 (0)<br/>12653 (0)<br/>12653 (0)<br/>12653 (0)<br/>12653 (0)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | MIM<br>TAIL<br>ROFY<br>LAWTHE SEAL<br>ACTURE<br>MACLUES<br>MACLUES<br>MACLUES<br>MACLUES<br>MACLUES<br>MACLUES<br>MACLUES<br>MULTICH<br>STAT SYSTEM<br>STAT SYSTEM<br>STAT SYSTEM<br>STAT SYSTEM<br>STAT SYSTEM<br>STAT SYSTEM<br>STAT SYSTEM<br>STAT SYSTEM<br>STAT SYSTEM<br>TITAL PRIPULSION<br>TITAL PRIPULSION<br>TITAL PRIPULSION<br>TITAL PRIPULSION<br>STAT SCORT<br>STAT SCORT<br>STAT STAT<br>STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1215552 (1)<br>7214551<br>11152 (0)<br>11152 (0)<br>20542 (0)<br>20423 (0)<br>20423 (0)<br>115653 (0)<br>115653 (0)<br>115653 (0)<br>115653 (0)<br>12653 (0)<br>12653 (0)<br>12653 (0)<br>12653 (0) |                                  |   |                 |                                                                                                                 |                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---|-----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| N. MILE 0/0<br>U.3956 1445<br>0.1966 6.92<br>0.1966 6.92<br>0.1344 5.59 RANGE<br>0.1344 5.59 RANGE<br>0.1344 5.59 RANGE<br>0.1344 5.59 RANGE<br>0.1372 5.33 DOC<br>0.1277 5.00<br>0.6777 5.00<br>0.6774 25.24 10.4035 1.3609 1.3022 1.2642 1.2376 1.217<br>0.6774 25.24 10.4035 1.3609 1.3022 1.2642 1.2376 1.217<br>0.6774 25.24 10.405<br>2.4056 100.00<br>2.4056 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SUSTAINING ENCINEERI ~241 P3.3F<br>FECMICAL DATA C.0<br>FECMICAL DATA C.0<br>FECMICAL DATA 554574.13<br>MISC. TOOLING MAINT. 554516.75<br>ENG. CHANGE ORICE 154160.75<br>ENG. CHANGE ORICE 592815.13<br>MISC. CHANGE ORICE 592815.13<br>MIRTANE MEANTY<br>AIRTANE FE<br>AIRTANE FE<br>AIRTANE FE<br>AIRTANE FE<br>AIRTANE FE<br>AIRTANE COST<br>ENGINE FE<br>ENGINE COST<br>ENGINE COST<br>AVIOLICS | <b>H</b>                                                                                                                                                                                            | 9561114.0<br>2148231.0<br>500000 |   | 3.              | DEVELOPM<br>DEVELOPM<br>DEVELOPM<br>PEVELOPM<br>FLIGHT<br>FLIGHT<br>SPECIAL<br>DEVELOPM<br>AVIONICS<br>AVIONICS | R ANIL D<br>LNT TECHNIG<br>NGINERTING<br>HNT TUCLIM<br>ENT TEST AL<br>EST SUPPORT EQU<br>EVLEOPMENT<br>LUEVLEOPMENT<br>LUEVLEOPMENT<br>TAL R AND T | CAL DATA<br>6<br>Rticle<br>uipment<br>0 | 77 204 08<br>11 19 11<br>14 17 11 19 11<br>14 19 14 16<br>19 19 19 19<br>19 19 19<br>19 19 19<br>19 19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>1 | ;<br>;;<br>;; |
| 0.0777 26.09 C/ASM 1.463% 1.3609 1.3022 1.2642 1.2376 1.217<br>0.1775 7.38 7.45M 1.463% 1.3609 1.3022 1.2642 1.2376 1.217<br>0.0794 25.24 10-MR 2.345H 3.0537 3.7616 4.4696 5.1775 5.8855<br>2.4056 106.00 5.7765 3457. 4209. 4961. 5713. 0465.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DJRECT OPERATING COST-DOLLARS/N.<br>CREW<br>Alryame Labor and Bundew Maint.<br>Encime Labor and Bunder Maint.<br>Encime Maituíal Maint.<br>Encime Material Maint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                                   |                                  |   | 1270.           | lol6.                                                                                                           | 1962.                                                                                                                                              | 230n .                                  | 2654.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i             |
| 0.6794 28.24 TB-HR 2.345H 3.0537 3.7616 4.4696 5.1775 5 <b>.885</b><br>\$/TRP 2705. 3457. 4209. 4961. 5713. <b>6465.</b><br>2.4056 1u6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6277                                                                                                                                                                                              |                                  | - | 1.3604          | 1 - 302 2                                                                                                       | 1.2642                                                                                                                                             | 1.2376                                  | 1.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRECIATION (INCLUDING SPARES)<br>TOTAL DOC S.M. MILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                  |   | 3.0537<br>3457. | 1.7616<br>4209.                                                                                                 | 4 . 4696<br>4961 .                                                                                                                                 | 5.1775<br>5713.                         | 5.0055<br>6465.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ļ             |

Appendix A

• 4

- -

. .

• • : 

÷ ;

• ; . • •

. .

۰.

- ! - !

- 1 - -

.

7 10 4

÷

Appendix A

|                                    |                     |                 |               |                                   |             | دا مه درد<br>در مه درد                | Ji Au I         | 101                                   |                       |                       |                                           |                                |                                         |                     |                 |        |
|------------------------------------|---------------------|-----------------|---------------|-----------------------------------|-------------|---------------------------------------|-----------------|---------------------------------------|-----------------------|-----------------------|-------------------------------------------|--------------------------------|-----------------------------------------|---------------------|-----------------|--------|
| AIKRAET MudCLIS<br>1.C.C. DAT      |                     |                 |               |                                   |             | ria INC Jul<br>CLS Scalt<br>NUMSER FF |                 | <pre>c10(c<br/>+50(c<br/>f = ±.</pre> |                       | 33                    | MJRL L''ARTER (MLFC<br>MJRL TAPLE RATIU = | ючакТЕР (мсР[<br>Тарке каТ]∪ ≖ |                                         | Swfe P = 1<br>0+360 | ი•იც <b>ინნ</b> | ى      |
| 1 W/S                              | 0.161               | 1-1.6           | 1.1.1         | 9.151                             | 136.6       | 130.1                                 | ז ייי 1         | ". JE[                                | 120.6                 | 9.UEL                 | 130.0                                     | 150.6                          | 4.051                                   | 130                 | 130.4           | 4.061  |
| 25                                 | (**24               | 1 - Z - D       | ړ∙د≀          | <br>                              | 0.75        | 2.2.5                                 | 0.21            | 0-10                                  | 0.24                  | 0. / v                | 11.2E                                     | 0.28                           | <b>8</b> /*0                            | 0                   | 0.284           |        |
| 3 40                               | 9.75                | 0.T.            | а.<br>Д       | 7.7%                              | 0.74        | · 2 ·                                 | 1L*n            | 1. °                                  | c. 75                 | 9 <b>•</b> 7 <u>:</u> | a. 75                                     | 0.74                           | £                                       | 4°21                | 41.4            | 5.3    |
|                                    | 10.00               | 10.00           | 1C.CC         | 10.CC                             | 10.66       | 10.00                                 | 16.66           | 10.00                                 | 16.60                 | 10.05                 | 10 <b>.</b> 06                            | 10.00                          | 10 . (M                                 | 10.60               | 10.00           | 10-00  |
| 5 RADIUS № MI                      | 000-                | յութ            | 1117.HE       | 3000                              | 3006        | 0-1)-C                                | -)-J U E        | 3006                                  | 0 <sup>.0</sup> 0z    | 30.00                 | UUUE                                      | 0002                           | 36.66                                   | 306                 | 3100            | 88     |
| 6 GRUSS WETCHT                     | 220212              | 216845          | 216744        | 216 739                           | 217065      | 216929                                | 604912          | 21 6400                               | 217145                | 210484                | 216471                                    | 216902                         | 217204                                  | 2170.1              | 1 6532          | 216923 |
| 7 FUEL WEIGHT                      | 60 65 T             |                 | F (144 B      | 61076                             | +0~04       | 10410                                 | 29409           | 61096                                 | 10423                 | 60437                 | 60×85                                     | 61116                          | 6 (1442                                 | 60900               | 61007           |        |
| 8 (P. 41. 'MPTY                    | 11214-              | 411965          | Lileuc        | 111663                            | 112164      | 11_000                                | 121111          | 111704                                | 112.24                | 112047                | 11 1 6 6 3                                | 111745                         | 11.266                                  | 12001               | 422111          | -      |
|                                    | 156144              | 155405          | 155866        | 15.003                            | 1561144     | 31.30.11                              | 1 55 - 41       | 155704                                |                       | 150147                | 155663                                    | 155745                         | 156766                                  | 1961                | 155024          |        |
| 10 THRUST/ENGING                   | 15660               | 15505           | 1524.9        | 15240                             | 150'0       | 15.10                                 | 16291           | 15.64                                 | 15634                 | 15514                 | 15347                                     | 15286                          | 1 5434                                  | 1441                | 15462           | _      |
| 11 FNGINE SCALE                    | 0.446               | 60              | 0-44 C        | 0.437                             | 1 +++ 0     | 0.44.2                                | 0.440           | (                                     | 5.43                  | 0.443                 | 07440                                     | (1.4.27                        |                                         | 0.445               | 0               | _      |
| IZ WING AREA                       | 1657.               | 165°.           | 1655.         | 1644.                             | 1660.       | 1650.                                 | 1656.           | ]e+7.                                 | 1663.                 | 1661.                 | 1641.                                     | leel.                          | 1 + + + + + + + + + + + + + + + + + + + | 104                 | 1664.           |        |
| 13 MING SPAN                       | 127.1               | 127.0           | 127.0         | 127.0                             | 127.2       | 127.4                                 | 127.1           | 127.1                                 | 127.3                 | 127.3                 | 127.0                                     | 127.2                          | 127.4                                   | 127.4               | 127.4           | 127.4  |
| 14 H. TAJL AREA                    | 101                 | 294.            | 244.          | 244                               | 295.        | 101                                   | 245.            | 295.                                  | 296.                  | 296.                  | 205.                                      | 295.                           | : 07.                                   | 207.                |                 |        |
| 15 V. TAIL AREA                    | 276.                | 220.            | 220.          | 120.                              | 221.        | . 21 .                                | 220.            | 220-                                  | 221.                  | 221.                  | . [2]                                     | 221.                           | - 22 -                                  | 22.1                |                 | 22-    |
| Ie BOUT LENGTH                     | 144.7               | 14.7            | 144.7         | 144.7                             | 1           | 144.7                                 | 144.7           | 144.7                                 | 144.1                 | 144.7                 | 144.7                                     | 144.7                          | 144.7                                   | 144.7               | 144.            | _      |
| 17 WING FUEL LIMIT 0.879           | T 0.874             | 0.878           |               | 0.675                             | 0.441       | 0.4.4.0                               | 0.874           | 0.477                                 | (, . PP .             | 0.882                 | 0.981                                     | 0.475                          | U . MBc                                 | 0. R 45             | G. R83          | 0.01   |
| COST DATA                          | POLLAPS             | /A IRCR A       |               |                                   |             |                                       |                 |                                       |                       |                       |                                           |                                |                                         |                     |                 |        |
| 10 FLVAMAY COST                    | 13.766              | 13.786 13.360 1 | 262.61        | 13-716                            | 13.393      | 13.365                                | 13.32E          | 13.315                                | <b>J3</b> •346        | 13.370                | 13.343                                    | 13.320                         | 13.404                                  | 13.374              | 13.24           |        |
| 29 A TREMANE CUST                  | 16.700              | 10.625          | 10.673        | 16-663                            | 1C.7C 4     | 10.641                                | 1 C. 678        | 10.665                                | 10.709                | 10.695                | 10.683                                    | 10.673                         | 16.714                                  | 16-700              | -               | -      |
| 20 ENGINE CUST                     | 2. IAA              |                 | 2.160         | 2.147                             | 2.1+9       | 2.174                                 | 2.150           | 2.147                                 | 2.184                 | 2.175                 | 2.161                                     | 2.148                          | 2.190                                   | 2.1 2               |                 | Ň      |
|                                    | 0*500               | 0.500           | <b>0.</b> 500 | 0.500                             | 0.500       | 0.000                                 | 0.500           | 0.500                                 | 0.500                 | 0.500                 | 0.500                                     | 0.500                          | 005*.0                                  | 0.500               | 00              | 0, 20  |
| <u>5</u>                           | OPERATING COST      | IC COST         |               |                                   |             |                                       |                 |                                       |                       |                       |                                           |                                |                                         |                     |                 |        |
| 22 S PER WILE                      |                     | 2.449           | 5-40 0        | 2.404                             | 2.412       | 404-2                                 | 2.406           | 2.404                                 | ¿.413                 | 2.410                 | 2-407                                     | 2.405                          | 2 .414                                  | 2.41]               | 2.408           | _      |
| 23 CENTS/A S MILE                  | 1.404               | 1.204           | 1.263         | 1.202                             | 1.206       | 1.205                                 | 1.263           | 1.4202                                | 1.206                 | 1.205                 | 1.264                                     | 1.202                          | 1.267                                   | 1.200               | 1.204           | 1.203  |
| FLIGHT PATH MISSION CHARACTERISTIC | N CHARAC            | TERISTI         | S             |                                   |             |                                       |                 |                                       |                       |                       |                                           |                                |                                         |                     |                 |        |
|                                    | 00066               | 0.00            | 14001         | 0004E                             | 0006        | 35060                                 |                 | 0007                                  | 00006                 | 35000                 | 100046                                    | 00045                          | 00056                                   |                     |                 |        |
| CONCLUSION STALL                   |                     | < 704 t         | 1144          | - 200C                            | 1016        |                                       |                 |                                       |                       | 560.44                | ****                                      | AC ONC                         |                                         |                     | 20774           | 2000   |
|                                    | 11045               | 11020           | 11799         | LAAFE                             | 94045       | 31076                                 | 23504           | 33494                                 | 240.44                | NEGEC                 | 00865                                     | 0.0465                         | 14.040                                  | 12025               | 23616           | COVER  |
| 27 TAFFORE OSTON                   | 7676                |                 | 7415          | 7887                              |             | 1775                                  | 044             |                                       |                       | 21.55                 | 4426                                      | 2000                           | 1695                                    |                     |                 |        |
| 28 CLIMB GRAD(1)0-1304 (. 1249 0.1 | 1304 0-             | 1289 0.         | 1273 0-       | 273 0.1256 u.1305 0.1289 0.1274 0 | 1105 0-     | 1289 0-                               | 1274 0-         | 0                                     | 0 42 (100 001 0 001 0 | 1290 0-               | 1274 0-                                   | 1259 0.                        | 1366.0                                  | 1291 (              |                 |        |
| 29 TAKEOFF DST(2)                  | 7879 7879           | 7879            | 7950          | A622                              | 4622        | 786 4                                 | 7.2             | P006                                  | 4771                  | 784.8                 | 4142                                      | 1941                           | 2161 1062 CENT 4077 1647                | Ē                   | 7904            | 21.02  |
| 30 CLING GRAD(2)0                  | .0684 0.0678 0.0667 | 0678 0.         | .0667 0.      | 0656 0.                           | 0664 0.067P | ್                                     | .0 447 0.0654 0 | U655 U.                               | 6690 0.               | -                     | - 2                                       | .0617 0.0690                   | 06 90 0.                                | 0679 0              | 1668 0 0 050 .  | 0058   |
| 31 AP SPEED-KTELJ                  | 135.4               | 135.3           | 6.451         | 135.2                             | E.251       |                                       | 1 35.2          | 135.1                                 | 135.2                 |                       | _                                         | 135.0                          |                                         | د                   | 135.0           | 9.461  |
| 32 CTUL LVDG D(1)                  |                     | 5768            | 5785          | 5781                              | 5766        | 5782                                  | 2774            | 5775                                  | 67.80                 | 5776                  | 5773                                      | 5769                           | 5774                                    | 5770                | 5767            | 5763   |
| 33 AP SPEED-KT(2)                  | 143.2               | 343.2           | 143.2         | 143.1                             | 143.1       | 1-2-1                                 | 143.0           | 143.0                                 | 143-0                 | 143.0                 | 1+2.9                                     | 142.9                          | 142.9                                   | 142.9               | 1+2.8           | 1.2.6  |
| 34 CTOL LNDL U12)                  |                     | 652V            | 6246          | 6252                              | 6255        | 6252                                  | 5469            | 6245                                  | 6248                  | 6245                  | 6242                                      | 6÷29                           | 6242                                    | <b>2</b> 3          | 6739            | 223    |
| 35 AP SPEED-KT(3)                  | 1.0.3               | 150.3           | 150.3         | 150.3                             | 150.2       | 150.2                                 | 1-0-2           | 150.2                                 | 1-0-1                 | 150.1                 | 150.1                                     | 1:001                          | 144.9                                   | 144.5               | 149.9           | 149.9  |
| 36 CTOL LNDG D(3)                  | 6706                | 6705            | 4044          | 6704                              | 8008        | 649F                                  | 6697            | 6646                                  | 664]                  | 6640                  | 6640                                      | 668Y                           | 6664                                    | 6684                | 6662            | 28 99  |

rect trivelate purches

. . .

ĩ

:

Ą

₩B

. .

\*\*

Kutter t

7-

i de la composición de la comp

₩10.94444

\*\*\*

Test and

t and the

Transie -

Participal P

T.

I

\$

ŧ

\* .. .

. . 141

De House of the In

ġ

LILJIE PYTAUGEM-----ASIC (LESTUM MISSIUN/400 PASS/ICCOG N.M. PISS NT. CM.E.

•

and a sheet

. . . . .

;

. . . . . . . . .

•

.

•

}

T/C 1/A A3 1AM M/S 7/A

10.46 4.36 14.80 20.40 117.4 4.20F

|                       | CHURD                                                                                     | ktf L(FT)<br>24.57            |                                             |                         |                          | VT AŁF L (FT)<br>23.03                                     | NC. PODS JNLET L(FT)<br>4. 0.0                          |                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------|--------------------------|------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|
|                       | t SMEt FL_E.R/CHURD<br>(DEG)<br>52.260 0.0                                                | 2                             | FVPUX (CU F1)<br>0.06                       | SP1(54 F1)<br>552.00    |                          | SVTX(SQ.FT) VT AL<br>737.97                                | PRD S NET NC.<br>(SG. FT)<br>253A.0A                    |                                                                                      |
| ruwfiguralır çleritry | SPAN(FT) TAPEK KATIN L/4 (MEEP L.L. SWEEP<br>(LEG) (DEG)<br>222. A. G. AOC 31. 700 32.260 |                               | דעשואל (כני 14) בערטאלכט 14)<br>סיסני סיסני | EGUIV D(FT)<br>26.51    | ) FVE(CU FT)<br>36996.96 |                                                            | PCD D(F1) P(<br>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | A-7<br>Aircraft No. 7<br>LH2 Internal Tank<br>400 PAX, 5000 n mi radius<br>Mach 0.85 |
|                       | TAPEK KATIN<br>G.300                                                                      | 4AC (FT)<br>4AC (FT)<br>24-57 | FTL(FT] F<br>01.5E                          | 844(FT)<br>24.66        | 58W(50 F7)<br>18124.55   | 47 REF L(FT)<br>12.71                                      | POD L(FT)<br>24.8t                                      | A-7<br>Aircraft No. 7<br>LH2 Internal Tank<br>400 PAX, 5000 n m<br>Mach 0.85         |
| 8 F F G F             | 524. 04.                                                                                  | CT (FT)<br>10.34              | ChAk 2(FT)<br>12.09                         | 5 NETISG FT)<br>18129.6 | ен(FT)<br>28 <b>.7</b> 5 | SMTRISQ.FT) MT REF L(FT) SVT(S4.FT)<br>522-69 12.73 737.97 | ENG D(FT)<br>7.45                                       | A-7<br>Aircraft  <br>LH2 Inter<br>400 PAX, 5<br>Mach 0.85                            |
|                       | AKLA(SU.FT)                                                                               | CR (FT)<br>34.47              | LEAR](FT)<br>31.81                          | LENETHIFT)<br>253.87    | 641FT)<br>24.66          | SHT(50 FT)<br>645.64                                       | FNG L(FT)<br>10.54                                      |                                                                                      |
|                       | M I NG                                                                                    |                               | WING TANK                                   | FUSELAFt                |                          |                                                            | PR(1PUL S 101                                           |                                                                                      |

Appendix A

•

. . . . .

ĩ

•

,

•

.

•

. . . .

. . .

,

.

ω.

- .

. .

۰,

- 1 - 1 - 1

.

i

| Annual Annual Annual |                                                |                 |                             | • .                |                       |          | 1     |  | transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>transfer<br>tr | Second and the second | andores d<br>Antoines d<br>A |    |   |
|----------------------|------------------------------------------------|-----------------|-----------------------------|--------------------|-----------------------|----------|-------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----|---|
|                      |                                                |                 |                             |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 10 |   |
|                      | LIC.                                           | LIGUID HALFOGEN | 10 (10 STUD) #              | 1551CN/~r0         | N/+LO PASS/BOLLO A HI | 54E #    |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | r  |   |
|                      |                                                | 1 3/1           | T/R AH                      | LAN W/S            | N/1 %                 |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      |                                                | ن<br>10°01      | 9 <b>0*51</b> 9 <b>c*</b> 9 | 30.71 05.94        | ا•د دو                |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ł  |   |
|                      |                                                |                 |                             | PRUNDS             | 0/0                   | STNINDA  | 0/0   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | LESTEN GLOSS WETCHT<br>FUEL                    |                 |                             | 587366-<br>150848. | 1 cc =00<br>2 4 •68   |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | ZERO FUEL                                      | 1647            |                             |                    | 94.4E                 | 4765 JB. |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ł  |   |
|                      | UPLRATIONAL ITENS                              | HE JCHT FHPTY   |                             | 15466.             | č. 6. Š               | 3-8-14.  | 46.45 |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | STANDARD TTENS<br>ENDIT NEIGHT-NEG.            | -MFG.           |                             | 7430-              | 1.27                  | 375627   |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      |                                                |                 |                             | 71300-             | 12-15                 |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | BODY                                           |                 |                             | 64242              | 10.44                 |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | LANDING GEAR<br>Flight Controls                |                 |                             | 33466.<br>7056.    | 5.70<br>1.20          |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ł  |   |
|                      | MACELLES<br>PROPULSION SYSTEM                  |                 |                             | 9252.              | 1.58                  |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | ENGINE                                         |                 | 31644.                      |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | AIX INTAKE<br>Exmaust<br>Conn PMC              |                 | 3587.<br>2813.              |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
| 0                    | DIL SYSTEM (LESS DIL)                          | .ESS 01L)       | 11.                         |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 1  |   |
|                      | ENCINE STARTI                                  |                 | 536.<br>30962.              |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | INSULATION<br>FUEL-PLIDE INC                   |                 | 11920-                      |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | JOSTRUMENTS                                    |                 |                             | 1324.              | 6-23                  |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
| P                    | E'LECTRICAL                                    |                 |                             | 5463               | 1.02                  |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 1  |   |
| 10                   | FURNISHINGS AND EQUIP.                         |                 |                             | 28400.             | 40.4                  |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | AIS CONDITIONING<br>ANTI-ICING                 |                 |                             | 5926.              | 10.1                  |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | AUXILIARY PONER UNIT                           |                 |                             | 1116.              | 0.19                  |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
| ,                    | NISCELLANEGUS<br>Design reserve                |                 |                             | ••                 | 0.0                   |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      |                                                |                 |                             |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 1  | - |
|                      | ND. OF PASSENGERS                              |                 |                             | +90.<br>1          |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | STRUCTURAL T/C                                 |                 |                             | 11.                |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      | FUEL VOLUNE REGU<br>NIMG FUEL VOLUNE AVAILABLE | ATLABLE         |                             | 0 • 0<br>0 • 0     |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |    |   |
|                      |                                                | i<br>1          |                             |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apj                          |    |   |
|                      |                                                |                 |                             |                    |                       |          |       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                            |    |   |

,

:..

143

pendix A

۶

÷ •

÷.,

÷

i k L

5~

, . . . . .

| רויח               | LINUD PYLKI GPN             |                    |                              | VILSEA.               | UFCING MISSINATED PASS/ILUCO | 5710000                |                         | -155                   |                       |                           |                              |                            |                      |                      |
|--------------------|-----------------------------|--------------------|------------------------------|-----------------------|------------------------------|------------------------|-------------------------|------------------------|-----------------------|---------------------------|------------------------------|----------------------------|----------------------|----------------------|
| SICHLAT            | LN LT<br>ALT 1744 +<br>(FT) | INIT<br>MACH<br>MC | 1271<br>1435<br>1457<br>1457 | 516MF<br>FUEL<br>11.0 | 1776<br>Fuel<br>Fuel         | SFGHT<br>VIST<br>IN HI | Tutal<br>LIST<br>( M N) | 56641<br>TIML<br>(MIG) | ILEAL<br>JAIL<br>JAIL | LXTEPN<br>STCAL<br>TAB TD | t NC-INE<br>THRUST<br>TAF ID | EXTLAN<br>F TANK<br>TAB JD | AVI.<br>L/D<br>Ratio | AVG<br>SFC<br>(FF/T) |
| JAKLINE<br>PLUEN 1 | 3                           | <b>0</b> •.)       | ÷€7346.                      | 429.                  | . (3.                        | • 3                    | •<br>U                  | 2 H a 1                |                       | ••                        | -fulta-                      | •0                         | <b>0</b>             | 111-0                |
| PUWER 2            | •<br>•                      | ن• ن               | stey37.                      | 443.                  | •C1•                         | <b>.</b>               | • •                     | 2.0                    | C•08                  | с.                        | £3401.                       | •                          | 0*0                  | *60*0                |
| LL INS             | ;                           | U. 374             | 5 24 4 4 4 4                 | ****                  |                              | 17.                    | 17.                     | \$ • Y                 | 33 <b>.</b> t         | ů.                        | -10168                       | •                          | 10.1                 | 0.152                |
| KCel               | 10000                       | 46**U              | 5695560.                     | 324.                  | 2140-                        | :                      | 24.                     | 1.5                    | 35.4                  | ••                        | e3161.                       | •                          | 16-90                | 0.173                |
| CL INB             | 10000                       | 0.63E              | 5P4226.                      | 6 <b>J</b> 00.        | .9598                        | 365.                   | <br>                    | 2 . 42                 | 86.1                  | •0                        | .10168                       | •                          | 15.33                | 0.201                |
| CRUISE             | 34000                       | 168.0              | 574427 <b>.</b>              | ±7687.                | 5682n.                       | •358 •                 | • 154.5                 | 6.463                  | 6]4.5                 | ••                        | - to tea-                    | •                          | 36.85                | 0.199                |
| UESCENT            | 35000.                      | 0-850              | \$26540                      | 7+9.                  | 67574.                       | 11                     | 4464.                   | 19.3                   | 1.150                 | •                         | #33UL.                       | •                          | 16.68                | -5.477               |
| <b>CRUISE</b>      | 34000                       | 0.850              | 514746-                      | 1724.                 | 64244.                       | 136.                   | * UUU \$                | 16.7                   | 4°.X'                 | •                         | -83101.                      | •                          | 10.66                | 0-199                |
| LOITER             | 1500 -                      | 4-277              | 53~066.                      | •20+                  | 49701 -                      | • ی                    | • 000+                  | Q•9                    | 6 W                   | ••                        | -83101.                      | •                          | 19-61                | 0.145                |
| NESET              | . 0                         | 0*0                | 517465.                      | •                     | .10794                       | <b>.</b>               | 5000 <b>.</b>           | 0-0                    | 1-0-1                 | ••                        | •                            | •                          | 0-0                  | 0-0                  |
| CL 1MB             | <b>.</b>                    | 0.376              | 517665.                      | <del>7</del> 6.       | *959UL                       | 15.                    | \$015.                  | 9 <b>.</b> 3           | 6:9.3                 | <b>.</b> г                | -totee                       | :                          | 18.02                | 0.152                |
| ACFL               | 1 00 00 -                   | 954-0              | s 14409.                     | 274.                  | 10110.                       |                        | €022 •                  | 1.3                    | ¢ 61 . ()             | ••                        | 83161.                       | ċ                          | 15.78                | 611.0                |
| CL INB             | 10000                       | 0.634              | 510635.                      | 4737.                 | 75467.                       | 244.                   | 5272.                   | 36.7                   | 1.100                 | ••                        | .10158                       |                            | 14.53                | 0-200                |
| CRUISE             | 37000-                      | 0-850              | 511896.                      | 53276.                | 128743.                      | 4478.                  | .0679                   | 1•155                  | i                     | ••                        | -83101.                      | •                          | 16.64                | 0.199                |
| IE SCENT           | 35000 -                     | 0-850              | 458622.                      | 706.                  | 124451.                      | 107.                   | -1284                   | 18.1                   | ••••                  | ••                        | .10668                       | •                          | 15.69                | -5.807               |
| Chui Se            | 34006.                      | 6.850              | +57914.                      | 1610.                 | 131061.                      | 143.                   | 1(000.                  | 17.6                   |                       | ••                        | -1016-                       | •                          | 16.61                | 0-144                |
| LDITER             | 1500.                       | 0.254              | +\$6303.                     | 356.                  | 356. 13141 <b>8</b> .        | ••                     | 0. 10000.               | 9•0                    |                       | •                         | -10168-                      | •                          | 10.53                | 0-145                |
| NESET              | •                           | 0-0                | 455447.                      | •                     | 131418.                      | ••                     | 0. 10000.               | 0-0                    |                       | •0                        | •                            | •                          | 0-0                  | 0.0                  |
| rese T             | •                           | 0.0                | 445447.                      | •                     | 131418.                      | -10000.                | •                       | *****                  | 0.0                   | •                         | •                            | 0                          | 0-0                  | 0.0                  |
| CRUISE             | 34000 -                     | 0.150              | 455947.                      | 10415.                | 10415. 141873.               | •                      | 3                       | 115.0                  | 0.411                 | •                         | -63101.                      | 5                          | 16.52                | 0-144                |
| nese t             | •                           | 0.0                | 4455.22 ·                    | •                     | 1418131                      | •                      | •                       | 0.0                    | 115.0                 | •                         | •                            | •                          | 0-0                  | 0.0                  |
| C. ING             | •••<br>•                    | 876.0              | .5532.                       | .1162                 | 2311. 144143.                | <b>.</b>               | 78.                     | 12.7                   | 1.771                 | •                         | .10168                       | •                          | 15.70                | 0.174                |
| <b>STUD</b>        | 30000.                      | 0.650              | +43222+                      | 13AV.                 | 145532 .                     | 122.                   | 200.                    | 10.6                   | 146.3                 | .0                        | -10169-                      | •                          | 17-05                | 181.0                |
| DESCENT            | 30000-                      | 0.100              | **1833.                      | <b>6</b> 11.          | 246143.                      | 8                      | 290.                    | 16.1                   | 142.4                 | ••                        | .106EA                       | ••                         | 16.15                | -2.140               |
| 35 IND             | 38000.                      | 0-+30              | 441222.                      | 1254.                 | 147397.                      | 110.                   | +00+                    | 10.8                   | 179.2                 | ••                        | -10169-                      | •                          | 17.82                | 0-161                |
| LDITER             | 1500-                       | 0.254              | + 300 6B .                   | 3433.                 | 150829.                      | ••                     | •00+                    | 0°09                   | 2-962                 | ••                        | -1016 <b>0</b> -             | •                          | 18-50                | 0.145                |
|                    |                             |                    |                              |                       |                              |                        |                         |                        |                       |                           |                              |                            |                      |                      |

Appendix A

į

-

;

,

1

- -

.....

\*, **†** 

- i

ه . : ه م

- :

\* \*

\* ,

. .

. .

• •

\* \*

• ¥

j

......

144

**V U M M L F V** 

|                                                                                                                     | 00-151-54-           |             |          |         |                            |                                                |             |            |         |
|---------------------------------------------------------------------------------------------------------------------|----------------------|-------------|----------|---------|----------------------------|------------------------------------------------|-------------|------------|---------|
|                                                                                                                     | 85-44433             |             |          |         |                            |                                                |             |            |         |
| FLUT                                                                                                                | -26 Steb .00         |             |          |         |                            |                                                |             |            |         |
| LANDING GEAL                                                                                                        | 765335.69            |             |          |         |                            |                                                |             |            |         |
| FLIGHT CIMTROLS                                                                                                     | ******************** |             |          |         |                            |                                                |             |            |         |
| NAGELLES                                                                                                            | 40 + D ( + 0 +       |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |
| ~                                                                                                                   |                      |             |          |         |                            |                                                |             |            |         |
| I SYSTEM                                                                                                            |                      |             |          |         |                            |                                                |             |            |         |
| 345                                                                                                                 |                      |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |
| PULSICIA                                                                                                            | ~1r7424.00           |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     | 14.7401 04           |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |
| TYURAULICS                                                                                                          | 44-441447            |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |
| A IR COMDIT CONTROL                                                                                                 | BK* 60909*           |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     | 34407.00             |             |          |         |                            |                                                |             |            |         |
|                                                                                                                     | 86°9211 []           |             |          |         |                            |                                                |             |            |         |
| SYS. INTEGRATION                                                                                                    | 414123.44            |             |          |         |                            |                                                |             |            |         |
| TUTAL ENPTY NFC. COST                                                                                               |                      | 14248744.00 | 8        |         |                            |                                                |             |            |         |
| SUSTATINTE ENGINEERI 1362116.00<br>Ticomical Cata<br>Prod. 1002 The Raint, 1793666.0<br>Prod. Tech Maint, 1793666.0 |                      |             |          |         |                            | AND D                                          |             |            |         |
| NAME ONDER                                                                                                          |                      |             |          |         | DEVELOPH<br>DESIGN E       | DEVELOPMENT TECHNICAL<br>DESIGN ENGINEERING    | CAL DATA    | 19143248.  |         |
|                                                                                                                     | 1241214-00           |             |          |         | DEVELOPMENT<br>DEVELOPMENT | HENT TUOLING<br>TENT TEST ARTICLE              | G<br>RTICLE | 240449216- |         |
| A JAFFA MARE FEE<br>A JAFFA MARE COST                                                                               |                      | 29975296.00 | 8        |         | FLIGHT TEST                | FST                                            |             | 54272448.  |         |
| EAGINE WARRANTY                                                                                                     | 240150.4             |             |          |         | SPECIAL<br>GEVENDER        | SPECIAL SUPPORT FOULPMENT<br>Geveltament saafs | UL P NGNT   | 5104967.   |         |
|                                                                                                                     | 00°00€070            | 00-11746473 | 8        |         |                            | FINGTIME DEVLEDPMENT                           | _           | -0         | • •     |
| AVIONICS COST                                                                                                       |                      | 00 00004    | 88       |         | AVIONICS                   | AVIONICS DEVLEDMENT                            | NT          |            | •       |
| RESEARCH AND DEVELOPMENT                                                                                            |                      | 2427556.00  | 00       | ę       | TC                         | TOTAL R AND D                                  | ٥           | *          |         |
| TUTAL PLT AWAY UUSI                                                                                                 |                      |             |          | 8       |                            |                                                |             |            |         |
| IECT OPERATING COST-COLLARS /1                                                                                      | ±                    | 0/0         |          |         |                            |                                                |             |            |         |
| LACT<br>A DECAME I AAAB AND BLADEN MAINT.                                                                           |                      |             |          |         |                            |                                                |             |            |         |
| FACTOR LAND AND BURNEN MAINT.                                                                                       | 0.1352               | 2.47 RANGE  | 3        |         |                            |                                                |             |            |         |
| AIRFRAME MATERIAL MAINT.                                                                                            | 0.2342               | 2           | HI 6264. | 688 T.  | 7510.                      | 6132.                                          | 0755.       | .1766      | 10000-  |
| ENSING MATERIAL MAINT.                                                                                              |                      |             |          | 1.7453  | 1.7807                     | 1.1750                                         | 1.475.1     | 1446-1     | 1-3663  |
|                                                                                                                     | 0-4163               |             |          |         |                            |                                                |             |            |         |
| DEPRECIATION TINCLUDING SPARES                                                                                      | S                    | 24.07 18-18 | -        | 15.0478 | 16.32.00                   | 17.5922                                        | 18-8645     | 20-1367    | 21.4089 |
|                                                                                                                     |                      |             |          |         |                            |                                                |             |            |         |

•

)

÷ .

• • •

ċ

*.* .

1

е I

1

1

÷

•

•

• • ;

÷

! \*

. .

•

•

.

ŗ

4 --- ....

Appendix A

Ļ

2

1

ć

11.1

;

į

145

DEIGINAL PAGE IS DE POOR QUALITY **X : 1 S** z PARFITELC

رد م

SUMMARY TO 1:0- 101 SEPTIMER CS 1575

| AINCVART MUDELC<br>LateCo DATE1<br>LateCo DATE5  |                |               |               |          |                             | ENGINE 1.(<br>SLS SCALE<br>NUMBER DE | 181 - 181<br>1  | 1))()<br>1))()<br>1 * * 1 |          | 33       | HING GUAFTER CHURL<br>WING TAFFR RATIO = | TER CHUCK<br>R RATIO | CHURL: SWLLP<br>1110 = 0.300 | 4        | 30 •60 LFG |          |
|--------------------------------------------------|----------------|---------------|---------------|----------|-----------------------------|--------------------------------------|-----------------|---------------------------|----------|----------|------------------------------------------|----------------------|------------------------------|----------|------------|----------|
|                                                  |                |               |               |          |                             |                                      |                 |                           | ι,       |          |                                          |                      |                              |          |            | •        |
|                                                  | 11e.6          | 114.0         | 114.6         | 110.0    | 116.5                       | 116.5                                | 2.011           | 111.5                     |          | 117.0    | _                                        | 0                    | ~                            | ~        | _          | 0.0      |
|                                                  | 1.27           |               |               | 0.27     | 7                           | 0.27                                 | (               | ()                        |          | 0.216    | ن<br>د                                   |                      |                              | -        |            | 0        |
|                                                  | 10.00          | 1:            | 11            | 10-04    | 10.00                       | 16.00                                |                 | 10.00                     |          | 00-04    |                                          |                      |                              |          |            | 0-0      |
|                                                  | 10.00          | 14.00         | 11.11         | 10-00    | 10.00                       | 10.05                                |                 | 0,000                     |          | 10.00    | ۔<br>د                                   | ۔<br>د               | ۔<br>د                       | ,<br>    | 0.2        | •        |
| S KAUIUS N. MI                                   | 10000          | 1000          | いいり           | 00001    | 14000                       | 10000                                | 00001           | 00001                     | 11 000   | 10 000   | 2                                        | 5                    | 0                            | •        | •          | •        |
| A CANSS IN TRAF                                  | 528518         | 5 M 4 (10 5   | 54466         | 584077   | 5+8242                      | 20105                                | 5H7615          | 5.E4230                   | 24 TAA   | 14 7365  | ĩ                                        | C                    | 0                            | 0        | •          | 0        |
| V ENLA METCHT                                    |                | 11115         | 2-20-10       | 1 508 20 | 151364                      | 151046                               |                 | 1.0545                    | _        | 150847   | J                                        | •                    | c                            | 0        | 0          | •        |
|                                                  | 14016          | 13 4 3 4 M    | 1351          | 154277   | 148856                      | 5400V3                               | 349060          | 34 46 75                  | 34624N   | 146518   | Ģ                                        | 0                    | 2                            | 0        | 0          | •        |
|                                                  | 437162         | 437046        | +17694        | 11244 4  | 4 10 459                    | 437063                               | UN OFF A        | *37675                    | 420240   | 43651B   | J                                        | •                    | 3                            | •        | ، د        | ο.       |
|                                                  | 3913¢          | 54463         | 27.10c        | 1.400+   | 11106                       | 39-03                                | 39006           | 60645                     | 34060    | 3 4353   | -                                        | 0                    | <b>ن</b>                     | •        | <b>.</b>   | 3        |
|                                                  | 1.116          | 1.126         | <b>ččl.</b> I | 1.14     | 1.116                       | 1.1:6                                | 1.133           | 1.143                     | 1.114    | 1.124    | 0°C                                      | 0.0                  | ۰°                           | 0.0      |            | •        |
|                                                  | 5073.          | 507B.         | -073.         | 507A.    | \$ (149.                    | 5048.                                | *077°           | 5044                      | 580.     | 5 620.   | ¢                                        | •                    | •                            | •        | • j        | •        |
|                                                  | 225.2          | 224.3         | 224-2         | 225.3    | 224.7                       | 224.7                                | 224.6           | 224.7                     | 1.423    | 224.1    | 0°°C                                     | 0.0                  | <b>c</b> •0                  | 0.0      |            | •••      |
|                                                  | 716.           | .111          | 711.          | 712.     | 705.                        | 705.                                 | 71.5.           | 704.                      | .02      | 1.0.1    | ;                                        | •                    | 3                            | •        | 5.         |          |
|                                                  | 750.           | 751.          | 7.1.          | 752.     | 74.                         | 744.                                 | -772            | 746.                      | 71.      | 738.     | 5                                        | •<br>•               | 3                            | •        | _          | •        |
| TA BUCY LENGTH                                   | 254.1          |               | 253.h         | 253.8    | 2.462                       | 2.4.0                                | 253.7           | 253.7                     | 2.2.2    | 253.9    | 0°0                                      | 3°0                  | 0.0                          | ò        | •          | •••      |
| IT WING FUEL LIMIT 0.000                         | 1 0.000        |               | 100° u        | 000.0    | 000                         | 000-0                                | 0.00            | 00°0                      | 100-0    | 0.000    | 0.0                                      | 0.0                  | 0 <b>-</b> 0                 | 0.0      | 0-0        | 0-0      |
| COST WATAMILL JOT: DOLLAKS/AIPCRA                | DOLLAR!        | LA BCRA       | F.T           |          |                             |                                      |                 |                           |          |          |                                          | •                    | •                            |          |            |          |
| 18 FLYAMAY COST                                  | 177.80         | 28.441 34.014 | 34-054        | 34.123   | 34.460                      | 36.451                               | 34-972          | 39.056                    | 34.847   | 30.692   | 0.0                                      | 0.<br>U              | 0.0                          |          | 0.         |          |
|                                                  | 32.679         | 32.679 32.716 | 32.703        | 22.745   | 97449                       | 32.656                               | 37.644          | 32.647                    | 32.550   | 12 .6U3  |                                          | 0.0                  | 3-0                          |          |            |          |
| A ENGINE COST                                    | 5.762          | 5.103         | 5.830         | 5.875    | 5.760                       | 5.796                                | 5.829           | 5.871                     | E 54 - 1 | 5.789    | 0.0                                      | 0.3                  | 0.0                          |          |            |          |
| 21 AVIONICS COST                                 | C.>0C          | 6.500         | 5.46.3        | 6.566    | 3                           | 0.500                                | C-5 CO          | 0.500                     | 204-2    | 0.500    | 0.0                                      | °.0                  | 0-0                          | 0.0      | 0.0        | 9        |
| COST DATADIRECT                                  | OPERATING COST | Mr. COST      |               |          |                             |                                      |                 |                           |          |          |                                          |                      |                              |          |            |          |
| 22 5 PEA NILE                                    | 5.415          | 5.441         | 5.478         | 5.465    | 5.470                       | 5.473                                | 5.469           | 5.470                     | 10 × 1   | 5 . 4 65 |                                          | 0.0                  | 0.0                          | 0.0      | 0.0        | 0.0      |
| 23 CENTS/A S AILE                                | 1.369          | 1.370         | 1.369         | 176-1    | 1.366                       | 1.368                                | 1. 367          | 1.364                     | 1.369    | 1.366    | 0.0                                      | 0.0                  | 0.0                          |          |            | 0.0      |
| FLIGHT PATH MISSICH CHARACTERISTIC               | IN CHARA       | TERISTI       |               |          |                             |                                      |                 |                           |          |          |                                          | (                    | ţ                            | G        | •          | •        |
| LUNAS NOISSIN X                                  |                | 34600 34600   | 34000         | 35000    |                             | 34600                                | 34000           | 34000                     |          | 000+6    | 5.                                       | 0                    | <b>.</b>                     | <b>,</b> | 9 0        | •        |
| 25 HISSION SVN(2)                                | 111974         | 111974 131661 | 111776        | 131242   | Inter                       | 131623                               | 140141          | 230111                    | 151627   | 131417   | c                                        | 2                    | 2                            | 2        | 2          | >        |
|                                                  |                |               |               |          |                             | 01011                                |                 | 47676                     |          | 33055    | c                                        | ą                    | d                            | d        | 0          | 0        |
|                                                  |                |               | 0714C         |          | 501 CC                      | 1 VUCC                               | N822            | A767                      | 477P     | 6414     | • •                                      | • c                  | • •                          | • •      | 0          | 0        |
|                                                  |                |               |               | 1244 0.  | 246 11-1246 0-1215 U-1231   | 0 1621                               | 0.1246 0.1.62 ( | 1:62 6                    | 5        | 10 9221. | 0.0                                      | 0-0                  | 0.0                          | 0.0      | 0.0        |          |
| 20 CLIMP WAULITVILLE V<br>30 TAKENEE DET131 AR74 |                |               | •             | 104      | 0.40                        | 6150                                 | [029            | 6736                      | -        | 6683     | -                                        | 0                    | •                            | 0        | 0          | •        |
|                                                  | 2 8440-0       | 0660 0        | 0 17 0.       | 0602 0.  | 0 11 0.0002 0.0047 0.0650 0 | 0650 0.                              | 0669 0.         | 0444 0.06A1 0.0646 0      | 0 00 00  | 04-1 0   | 0.0                                      | 0-0                  | •••                          | 0.0      | 0.0        |          |
| 31 AP SPEED-AT(1) 134.4                          | 134.4          | 4-461         | i 34.5        | 12.5     | 134.7                       | 1.461                                | 14.8            | 134°B                     | 135.0    | 135.0    | 3 <b>-</b> 0                             | 0.0                  | 0.0                          | •••      | ••         | <b>0</b> |
|                                                  | 5853           | 5455          | 5.81          | ~~~~     | 1762                        | 5673                                 | 5375            | 5876                      | 2680     | 5890     | 0                                        | 0                    | 0                            | 0        | •          | •        |
|                                                  | 137.0          | 137.0         | 137.C         | 137.0    | 1.7.3                       | 137.3                                | 137.3           | 137.3                     | 137.6    | 137.6    | 0-0                                      | 0.0                  | ••<br>•                      | 0        | ••         |          |
| -                                                | <b>1</b> 000   | <b>C</b> 10   |               | 199      | n627                        | - 20-                                | 103             | 603Z                      | ŝ        | 6047     | э.<br>,                                  | •                    | •                            | ، د<br>، | ə (        |          |
|                                                  | 139.6          | 139.6         | 139-6         | 1.4.     | 13*.                        |                                      | 9.96T           | 5.0CT                     | 140.2    | 140.2    | ، د<br>•                                 | 0 °                  | •••                          | •••      |            |          |
| The Crock Linds D(3)                             | • 1 • 1        | 6 i e e       | 47079         | 6177     | 6187                        | 6187                                 | 6168            |                           |          | 9029     | 2                                        | 2                    | >                            | >        | >          | >        |

Appendix

. .

. .

• •

. .

, ,

. .

. .

• •

. 1

ς. β

;  î

\*

4 JET 2 **.** . . JO FLEL AFFFRENCI EASFLANE RESICH Z WIN PALE ZIGNIG M. 42

۱ ۱ ۱

そうちょう かんしょう しょうちょう ひょうしょう しょうしょう しょうしょう the state of the s

\* ۰. .

• 124 • · ·

:

1

.....

.....

4 ÷

,

, ;

:

{

. . . . . .

•

-

1 . . .

. . . . . .

• LA VAUSINT AS

ì

٠

\* -\* \*

,

5 . 7 . Water by we of a the w 

ţ **(** .

İ.

Ü

1 -5 1 -

-÷ .

> 1) 1 J T/R AR LAM M/S C.PO 11.00 SC.FO 124-2 77C 10+60

1

|             | 5                     |                                                            | 4 <b>7 1</b> 0 12    |                                            | ~                                                                                    |                            |                   |
|-------------|-----------------------|------------------------------------------------------------|----------------------|--------------------------------------------|--------------------------------------------------------------------------------------|----------------------------|-------------------|
| 9NL N       | AP+ A(50.FT)          | SPAL(FT)                                                   | 14PF4 24710          | C/4 SWEEP                                  | SPAL(FFT) TAPFR AATIN C/4 SMFTP L.E. SWFFP L.F.R <b>/CM</b> (PD<br>FDFC) (FFG) (FFG) | .F.R.K.HC PD               |                   |
|             | 7124.0                | 274.4                                                      | JUE* U               | 30.000                                     | 92,050                                                                               | 0.0                        |                   |
|             | CP(FT)<br>39.14       | CT (FT)<br>11.74                                           | LC (FT )<br>27.0]    | CKF(FT) :                                  | CKF(FT) S WET(SU.FT)<br>37.24 134P2.9                                                | 465 L(FT)<br>27 <b>.91</b> |                   |
| ujne tam-   | [FA9]{FT}<br>37+24    | (FAF2(HT)<br>13.73                                         | FTL (FT )<br>1 20.04 | FWJN6(CI1 F1)<br>A17A.2(                   | FV6041CU FT)<br>1194.63                                                              | E                          |                   |
| FUSEL AGF   | LENCTH(FT)<br>225.00  | 5 WEYLSE FT)<br>1443540                                    | 19.5A                | EC1114 D1F7)<br>19.56                      | SP1(5Q FT)<br>301.10                                                                 |                            |                   |
|             | hu (FT)<br>19.5A      | BM(FT)<br>10.5a                                            | 14 00'-16 FT         | 5434.00 FTJ FVFICU FTJ<br>4434.00 99449.00 | Ē                                                                                    |                            |                   |
| Tait        | 247 (SC.F1)<br>757.05 | SHTYISC.FT) HT FFF LIFT) SV1(50.FT)<br>All.94 13.01 767.47 | T REF LIFT)<br>15.01 | 5VT (50 .FT)<br>7r2 .47                    | SVTX (5C. F T)<br>7£2.42                                                             | VI REF L (FT)<br>23.92     |                   |
| PROPULS TOW | ENG LIFT)<br>11.70    | EMG 0(FY)<br>E.37                                          | P(D) L(FT)<br>27.59  | PCD D(FT)<br>9.12                          | POD S WFT<br>150. FT)<br>31c3.69                                                     | MD. PrDS W                 | #117 LIFT)<br>0.0 |
|             |                       |                                                            |                      |                                            |                                                                                      |                            |                   |

A-8 Aircraft No. 8 JET A Fueled 400 PAX, 5000 n mi radius Mach 0.35

Appendix A

•

ł



147

|                                             |        | 5 851 <b>00</b> 51 | 012 1 3      |                     |     |  |
|---------------------------------------------|--------|--------------------|--------------|---------------------|-----|--|
|                                             |        |                    |              |                     |     |  |
|                                             |        |                    |              |                     |     |  |
|                                             |        | PINTLA             | o <b>/</b> o | POINT               | 0/n |  |
| tersten chinss neticht                      |        |                    | د<br>۱۰۰ من  |                     |     |  |
| RIEL NEED EIEL METCHT                       |        |                    |              | 468521.             |     |  |
| PAVLDAD                                     |        | - 8000 -           | 5 °A 7       |                     | ;   |  |
| (DEEATING WETGHT EMPTY<br>Amenational Items |        | 15490              | 1.54         | • • • • • • • • • • |     |  |
| STANDARD ITENS                              |        | 11074.             | 1.40         |                     |     |  |
| ENPTY MELCHT-MFG.                           |        |                    |              | 351146.             |     |  |
|                                             |        | 104457.            | 1C.77        |                     |     |  |
|                                             |        | 10100<br>10100     |              |                     |     |  |
|                                             |        | 53142              |              |                     |     |  |
| E ICHT CONTROL C                            |        | 11054.             | 1.1          |                     |     |  |
|                                             |        |                    | -1-1         |                     |     |  |
| PROPIL STON SYSTEM                          |        | 5300%              | 41,4         |                     |     |  |
| E NG 1 MG                                   | 54788. |                    |              |                     |     |  |
| A LA THTAKE                                 | 1547.  |                    |              |                     |     |  |
| E 204 ALIST                                 | 3645.  |                    |              |                     |     |  |
| COTIL THG                                   | •      |                    |              |                     |     |  |
| OIL SYSTEM (LESS DIL)                       |        |                    |              |                     |     |  |
|                                             |        |                    |              |                     |     |  |
|                                             | 2222   |                    |              |                     |     |  |
|                                             | c      |                    |              |                     |     |  |
|                                             | 1477.  |                    |              |                     |     |  |
|                                             |        | 1532.              | 0.15         |                     |     |  |
|                                             |        | 7n29.              | 11.0         |                     |     |  |
|                                             |        | 4045 .             | 14"0         |                     |     |  |
| FLECTRIMICS                                 |        | 2420.              | 0 <b>.24</b> |                     |     |  |
| FURNTSHTNES AND FOUTP.                      |        | 26400.             | 2.46         |                     |     |  |
| AIR CONSTTONING                             |        | 69#2               | 0.10         |                     |     |  |
| ant1-10 mG                                  |        |                    |              |                     |     |  |
| AUTILIARY PONER UNIT                        |        |                    |              |                     |     |  |
| MISCELLANEORIS<br>Art and art front         |        |                    | 99           |                     |     |  |
|                                             |        | ;                  | <b>k</b>     |                     |     |  |
|                                             |        |                    |              |                     |     |  |
| M. DE PASSENGERS                            |        | . 07.              |              |                     |     |  |
|                                             |        | 11.                |              |                     |     |  |
| STRICTURAL T/C                              |        | 12.50              |              |                     |     |  |
| FUEL WRUNE REOD                             |        |                    |              |                     |     |  |
| ATHE FUEL VILLER AVAILABLE                  |        |                    |              |                     |     |  |
|                                             |        |                    |              |                     |     |  |

41 SS JP FILE REFILENCE MAITINE EFFLEN / ACH BALL /ICHNNIE ME TVC TVL AR LAN MIT VI

ł.

÷

1

Appendix /

1

- . . .

- ; ...

• : . . į

;

• 2

ŧ

; ;

.]

į.

| 4                  | IN FIFT FLEERINCE HASELINE   | r n n                                 |                        | LESTER X MEL PASS X10000 P | L PASS /               |                                           | ĩ           |                               |                          |                          |                                        |                              |                     |                      |
|--------------------|------------------------------|---------------------------------------|------------------------|----------------------------|------------------------|-------------------------------------------|-------------|-------------------------------|--------------------------|--------------------------|----------------------------------------|------------------------------|---------------------|----------------------|
| K CHINT            | 173)<br>AL337(NE<br>AL327(NE | N N N N N N N N N N N N N N N N N N N | 1211<br>MCTCHT<br>1151 | 13 CM<br>FUEL<br>13 F      | Ti-TAL<br>FUEL<br>(LP) | SECUL TITAL<br>FIST FIST<br>EN MID EN MID |             | 51 CM<br>1115<br>1115<br>1115 | 10 14L<br>7 14L<br>1 11L | EXTERN<br>STRF<br>Fre In | 11111111111111111111111111111111111111 | 527556<br>F 7 246<br>7 46 16 | AVG<br>L/D<br>Ratio | AVG<br>SPC<br>(FF/1) |
| TARFEFF<br>PONER 1 |                              | ر <b>• ن</b>                          | · L Isúho              | .0505                      | 1010-                  | c                                         | •<br>5      | 28 °U                         | 26.0                     | :                        | - [u[]-                                | ÷                            | <b>c</b><br>0       | 0.430                |
| Prufa 2            | •<br>•                       | 0°0                                   | • 40447 .              | 1661.                      | . I o HE               | 2                                         | ÷           | 2.0                           | 36.0                     | •                        | .10714                                 | ċ                            | 0.0                 | 0.201                |
| ti l'IJ            | •                            | 0.378                                 | • PN62C •              | 4798.                      | te89.                  | 24.                                       |             | и.                            | 36.55                    | ţ.                       | .1011.                                 |                              | 23.10               | 0.455                |
| ACCFL              | 10001                        | 0.456                                 | . 818549               | 1444.                      | . 66601                | 12.                                       | 37.         | 2.0                           | 37.4                     | č                        | .1011.                                 | •0                           | 21.13               | 0.513                |
| Ct Imb             | 10000                        | 0.638                                 | 4823P4.                | 24444.                     | 35226.                 | 327.                                      | ;;          | 40.2                          | 77.6                     | :                        | .1011.                                 | •                            | 19.33               | 0.549                |
| C Pris SE          | 33000.                       | 0.4.0                                 | • 192 194              | 21 1240.                   | 25.2671.               | 4146.                                     | • 0× •      | 0.754                         | 614.P                    |                          | -1011 -                                | 5                            | 20.26               | 0.563                |
| DESCENT            | 35000.                       | 0.750                                 | 140040.                | .1716                      | 3177. 255654.          | .761                                      | 4 5.97.     | 1.65                          | 637.9                    | ċ                        | .10619                                 | ċ                            | 19.92               | -16.0%               |
| C MUT SE           | 38000.                       | 0.850                                 | 734662-                | . 5044                     | 4403. 260557.          | .611                                      | * 000 *     | 13.0                          | 4.124                    | •                        | -10118-                                | •                            | 20.05               | 186.0                |
| LOTTA              | 1400.                        | 0.294                                 | 731 460 .              | .1631                      | 1531. 2620AF.          | ċ                                         | • س u•      | 0-4                           | 657.6                    | ċ                        | -1011m-                                | •                            | 11.12               | 0.455                |
| RESET              |                              | 0.0                                   | 730424.                | o.                         | 0. 262088.             | с<br>С                                    | • 000 •     | 0°0                           | € * 7 • B                | ċ                        | ••                                     | <b>.</b>                     | 0.0                 | •••                  |
| CLIM               | •                            | 0.378                                 | 130424°                |                            | 3119. 765707.          | 14.                                       | • 016 •     | 3.6                           | +•1.1                    | •                        | .10119                                 | •                            | 22.07               |                      |
| ACCFL              | 1 0000                       | 0.454                                 |                        | 1071.                      | 1071. 246278.          | <b>9</b>                                  | · 13 4 .    | 1.3                           | 66/.7                    | •                        | .1011.                                 | ••                           | 1.1                 | 0.513                |
| 5117               | 1000                         | 0.438                                 | 726234.                | 14267.                     | 14267. ZA5544.         | .104                                      | 50.5        | 5.75                          | ÷*++4                    | ċ                        | .1011.                                 | *                            | 17.80               | - 344                |
| C MUT SE           | 39000.                       | 0.1.0                                 | 704471.                | 166276. 453821.            | 451821.                | 4425.                                     | • 70.       | ****                          | ••••                     | ċ                        | -10118-                                | •                            | н.13                |                      |
| 142220             | 35000.                       | 0.850                                 | 5+0015                 | 2757.                      | 2757. 454578.          | 116.                                      | • We .      | 4.01                          | ••••                     | •                        | .10618                                 | •                            | 17.03               | -15.707              |
| C NUT SE           | - 1001-1                     | 0.850                                 | 53743A.                | . 5011                     | .614151 .5049.         | . + ( ]                                   | 134. 10000. | 16.5                          | ••••                     | •                        | -10118-                                |                              | 10.54               | 9-343                |
| LOTTER             | 1500.                        | 0-240                                 |                        | 1164.                      | 1164. 460147.          | •                                         | 10000       | <b>6.0</b>                    |                          | •                        | -81101.                                | •                            | 21.43               |                      |
| a e se t           | •                            | 0.0                                   |                        | •                          | 0. 440147.             | •                                         | 0. 1000n.   | 0-0                           | ••••                     | ċ                        | ••                                     |                              | •••                 | •                    |
| R FSET             | e.                           | 0.0                                   | \$32369.               | •                          | 440147.                | -10000-                                   | ċ           | :                             | 0.0                      | •                        | 0.                                     | •                            | »·•                 | 3                    |
| C MIT SE           | 4400.                        | 0.850                                 | 5.2 W.C.               | . +( 176                   | 36134. 496263.         | 0.                                        | <b>°</b> .  | 140.0                         | 140 0                    | •                        | -01101.                                | •                            | 19.39               |                      |
| 1654.7             | °.                           | 0.0                                   | 496.255                | ċ                          | 0. 496261.             | °.                                        | ċ           | 0-0                           | 140.0                    | ċ                        | ċ                                      | •                            | 0.0                 | ۹.<br>•              |
| CLIM               | •                            | 0.376                                 | 4 1255.                |                            | 502926.                | 50.                                       | . e.        | 4.6                           | 149.6                    | •                        | F1101.                                 | •                            | 16.23               | (- <b>85-0</b>       |
| C MUTSE            | \$0000°                      | 0.400                                 | - 105047               | .010.                      | 4014. SOTA45.          | 142.                                      | 200.        | 24.2                          | 173.6                    | •                        | -10118-                                | ċ                            | 20.87               |                      |
| JESCENT            | 3000                         | 0.700                                 | 484671.                | 2271.                      | 2271. 410117.          |                                           | 703.        | 1 6. A                        | 100.6                    | ••                       | 01341.                                 | •                            | 16.70               | 5.7                  |
| CRUT SE            | 3000.                        | 0.545                                 | 4R7399.                | 3468.                      | 3468. 513785.          | 107.                                      | 00-         | 17.4                          | 219.0                    | č                        | -10118-                                | •                            | 20.89               |                      |
| I NTFE             | <b>، دو</b> نه .             | A. 277                                | -01444                 | 10471                      | 1.441, +2434A.         | ċ                                         |             | 40.04                         | 74.0                     |                          | . 10118-                               | ċ                            | 31.14               |                      |

Appendix A

| 0.3204 5.95 DAC<br>1.7283 32.26 (/.5M 1.3571 1.348B 1.3461 1.3438 1.3419 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68 6<br>96 9<br>1 - 1<br>1 | 394 R6 160.00<br>6 24 0. |                                                                    | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WING<br>TAIL<br>TAIL<br>TAIL<br>TAIL<br>TAIL<br>TAIL<br>TANCING CEAR<br>ANCING CONTRULS<br>MACELLES<br>MACENLES<br>MACENLES<br>MACENLES<br>MACENLES<br>MACENLES<br>MACENTOR<br>SYSTEM<br>TOTAL PROPULSTINN<br>TOTAL CONTINNE<br>MACONIC PACKS<br>MACONIC PACKS<br>MACONIC PACKS<br>MACONIC PACKS<br>MACONIC PACKS<br>TOTAL CONTRULSTINN<br>TOTAL ENPTY MEG. COST<br>MACONIC TOCLING MAINT. TTAGK OC<br>MACONIC TOC TOCLING MAINT. TTAGK OC<br>MACONI                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                    | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DJRECT DPERATING COST-DOLLARS/<br>EM<br>Retrame Labor and Burden Maint.<br>Gime Labor and Burden Maint.<br>Retrame Material Maint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| N. MILF 0/0<br>0.3460 7.21<br>0.3766 7.03<br>0.2379 4.44 RANGF<br>0.2319 4.51 N. MI 6.240. 6867. 7493. R120. R747.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                    | 1246844.00<br>3427558.00<br>260173.35<br>630430.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ISTAINING FACINEERI 1336214.00<br>CHMICAL DATA 0.0<br>CHMICAL DATA 0.0<br>CD. TOOLING MAINT. 174.946.00<br>SC. CHANGE DPDFR 456833.00<br>GLITY ASSUBANCE 183.9917.00<br>RFRAME COST 183.9917.00<br>RFRAME COST<br>RFRAME COST<br>RFRAME COST<br>RFRAME COST<br>RFRAME COST<br>RFRAME COST<br>SEARCH AND DEVELOPMENT<br>SEARCH AND DEVELOPMENT<br>SEARCH AND DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ERI 1336214.00<br>0.0<br>NT. 7756956.00<br>45633.00<br>1835917.00<br>1835917.00<br>1835917.00<br>1835917.00<br>1835917.00<br>1835917.00<br>1835917.00<br>1835917.00<br>1835917.00<br>185164 FICH DATA 277<br>0.0<br>0.0<br>165164 FICH DATA 270<br>0.0<br>0.0<br>165164 FICH DATA 270<br>0.0<br>0.0<br>165164 FICH DATA 270<br>0.0<br>0.0<br>165164 FICH DATA 270<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                        |                                                                    | (E°UE)444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 'S. INTEGRATION<br>Total Empty MFG. Cust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>ССТТ</li> <li>1951/4400.00</li> <li>NT. 17505.00</li> <li>NT. 1835.00</li> <li>NT. 1835.00</li> <li>NT. 18505.00</li> <li>NT. 19505.00</li> <li>NT. 19505.00<!--</th--><td></td><td></td><td>20000 1000</td><td>22200.00<br/>460357.25<br/>460357.25<br/>4604.70<br/>142506.70<br/>14260.05<br/>124.20<br/>124.20<br/>124.20<br/>11750.63<br/>11760.63<br/>11760.63<br/>1200.03<br/>1200.03<br/>1200.03<br/>1200.03<br/>1200.03<br/>1200.03<br/>1200.03<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.00<br/>1200.000<br/>1200.0000000000</td><td>STRUMENTS<br/>CORAULICS<br/>CORAULICS<br/>ECTRICAL<br/>ECTRICAL<br/>Frishing<br/>In Conditioning<br/>It Tclac</td></li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 20000 1000                                                         | 22200.00<br>460357.25<br>460357.25<br>4604.70<br>142506.70<br>14260.05<br>124.20<br>124.20<br>124.20<br>11750.63<br>11760.63<br>11760.63<br>1200.03<br>1200.03<br>1200.03<br>1200.03<br>1200.03<br>1200.03<br>1200.03<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.00<br>1200.000<br>1200.0000000000 | STRUMENTS<br>CORAULICS<br>CORAULICS<br>ECTRICAL<br>ECTRICAL<br>Frishing<br>In Conditioning<br>It Tclac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RIMENTS         222.00.0         222.00.0           TITCAL         400.77.27         400.77.27           TITCAL         476.54.00         476.54.00           TITCAL         476.54.00         470.54.60           TITCAL         517.54.60         61195.64.0           TITCAL         517.55.60         517.55.60           TITLE CARTION         44.60.60         50           State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| истольции коменти<br>и солта<br>и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                    | 7126194-60<br>+25 464 -04<br>4-46669 - 60<br>124769 - 61<br>724562 - 6<br>7231147-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T MG<br>J T L<br>J D V<br>J D V D V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.3438 1.3419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 39486160.00<br>39486160.00<br>6867.<br>1.3488<br>1.3488<br>13.7740 | 19~1/4/00.00<br>30111240.00<br>5884077.00<br>5884077.00<br>5884077.00<br>39946160.00<br>39946160.00<br>39946160.00<br>39946160.00<br>39946160.00<br>39946160.00<br>3996160.00<br>32.24 RANCE<br>6.44 RANCE<br>7.44 RANCE<br>7                                                                                                                                             | 7176,104,00<br>729662,00<br>729662,00<br>1531147,00<br>1531147,00<br>139900,00<br>222,090,00<br>222,090,00<br>222,090,00<br>222,090,00<br>222,090,00<br>2412566,7<br>601654,60<br>1444(30,31]<br>19416400,00<br>34204,00<br>34204,00<br>34204,00<br>34204,00<br>34204,00<br>34204,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,00<br>34008,000<br>34008,000<br>34008,000<br>34008,000<br>34008,000<br>34008,000<br>34 |

ì

Ţ

:

1

į

. . . . . .

1

÷

. ....

;

;

ł

a transmit in the second second

. Majan Appendix A

ŧ

1

z PALLMITIC **F** J - 5 V

>

i

;

\*\*

4£ 3

1 ~\***\*** 

) 47 Yz

**-** r • 2

. .

饢

1

STRIMARY IN MILL PAN SERTARE E 13 1474

|          |                                                 |                |                              |           |              | <b>U</b> *                | 1011405                              |             | 7.                       |            |           |                 |                      |                     |                      |                   |          |
|----------|-------------------------------------------------|----------------|------------------------------|-----------|--------------|---------------------------|--------------------------------------|-------------|--------------------------|------------|-----------|-----------------|----------------------|---------------------|----------------------|-------------------|----------|
| < + Z    | AT REAFT MELFLC<br>T.O.C. DATE<br>DESTGN SPEFFS |                |                              |           |              | 1 N L<br>1 N L<br>1 N L L | FNCT3F 1."<br>SLC SCALF<br>MUMEFE NE |             | -1.60<br>75060<br>5 = 4. |            | 33        | WING CHAR       | 2115 (H(<br>78 83115 | ORESWHE<br>7 = 0.⊒C | тР = 30,<br>16 = 30, | 30 <b>.00 DEG</b> |          |
|          | 1 W/S                                           | 139.3          | 0*0                          | ر، •ر     | 0.0          | ر •ر                      | 0.0                                  |             |                          | 0.0        | j• u      | ()• (j          | с•<br>с              | 0.0                 | ن• ن                 | 0-0               | 0.0      |
|          | 2 T/W                                           | c.20           | 0° J                         | ت• ت<br>ب | ں۔ں          | ن• ن                      | 0.0                                  |             |                          | ت• ت       | 0.0       | <b>د .</b><br>ت | 0°0                  | 0.0                 | 0.0                  | 0.0               | 0.0      |
| 77<br>   | 3 AR                                            | 11.00          | ڻ <b>•</b> ڻ                 | 0.0       | 0°0          | 0.0                       | 0.0                                  | 0.0         | <b>u.</b> t              | 0.0        | 0.0       | ر.<br>د         | 0.0                  | 0.0                 | 0.0                  | 0,0               | 0.0      |
| `•<br>,  | 7/5                                             | 10.00          | ر• ر                         | 0.0       | J-0          | 0.0                       | <b>ں۔</b> ں                          |             |                          | ت • ت<br>ت | 0.0       | 0.0             | 0.0                  | 0°0                 | <b>6.0</b>           | 0.0               | 0.0      |
|          | E PAPTUS N. MI                                  | 10000          | c                            | ĩ         | 5            | æ                         | ث                                    |             |                          | 5          | с,        | ç               | c                    | ت                   | c                    | 0                 | •        |
|          | 6 GROSS WEICHT                                  | 992416         | :                            | c         |              |                           |                                      |             |                          |            |           |                 |                      |                     | c                    | ¢                 | ¢        |
| ' .<br>  | 7 FUEL NETCHT                                   | 309653         | c                            |           | : <b>c</b>   | . c                       | . c                                  | . c         | : c                      | نن         | ت ن       |                 | 5 C                  | - c                 | > c                  |                   | <b>,</b> |
|          | 8 CP. WT. FMPTY                                 | 380520         |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | . 0                 | . 0                  | 0                 | 0        |
| •        |                                                 | 468520         |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | 0                   | • •                  | 0                 | 0        |
| ,        |                                                 | 49625          | Ţ                            |           |              |                           |                                      |             |                          |            |           |                 |                      | 0                   | 0                    | 0                 | •        |
| Ľ        |                                                 | 1.418          |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | 0.0                 | 0.0                  | 0.0               | 0.0      |
| rë<br>Li | 12 WING AREA                                    | 7125.          |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | ċ                   | • • •                | •                 | •        |
|          |                                                 | 280.0          |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | 0.0                 | 0.0                  | 0.0               | 0.0      |
| ir<br>¥  | 14 H. TAIL AREA                                 | 151.           |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | ÷.                  | •                    | •                 | •        |
|          | 15 V. TAIL AREA                                 |                |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | ••                  | 5                    | •                 | •        |
|          | 16 BODY LENGTH                                  |                | Ċ.                           |           |              |                           |                                      |             |                          |            |           |                 |                      | 0°0                 | 0.0                  | 0.0               | 0.0      |
|          | IT WING FIFL LINI                               | 17 0.897       | <b>c</b> •0                  |           |              |                           |                                      |             |                          |            |           |                 |                      | 0.0                 | 0.0                  | 0.0               | 0.0      |
| σ.       | COST BATAMILLION                                | DOLLARS        | A IPCPA                      |           |              |                           |                                      |             |                          |            |           |                 |                      |                     |                      |                   |          |
|          | I FLYAWAY COST                                  |                |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | 0.0                 | 0.0                  | 0.0               | 0-0      |
|          | 1 9 AIRFRAME COST                               |                |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | 0.0                 | 0-0                  | ••                | 0.0      |
| 1        | 20 ENGINE COST                                  |                |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | 0.0                 |                      | 0.0               | 0.0      |
| - 1      | ZI AVIONICS COST                                | 0.400          |                              |           |              |                           |                                      |             |                          |            |           |                 |                      | ن• ن                |                      | 0.0               | 0-0      |
| 3        | CUST DATA-DIRECT                                | OPERATING COST |                              |           |              |                           |                                      |             |                          |            |           |                 |                      |                     |                      |                   |          |
|          | 22 5 PEK FILE                                   |                |                              | 0.0       |              | •••                       | <b>د •</b> •                         | د<br>د      |                          | c.         | <b>د.</b> | c.0             | 0°0                  | 0.0                 | 0.0                  | •••               | 0.0      |
|          | 73 CEWTS/A 5 AJLE<br>B TGHT PATH MISSION        |                | 1.339 ().()<br>[wabartebisti |           |              | с <b>.</b><br>с           | с•°                                  | -<br>-<br>- | -<br>-<br>-              | 0.0        |           | 0°0             | 0.0                  | 0.0                 | <b>0</b> •0          | <b>9</b>          | 0.0      |
|          | 24 MISSIN SYNCE                                 |                | 6                            | -<br>     | c            | c                         | c                                    |             |                          | c          |           |                 | ć                    |                     | ¢                    | ¢                 | C        |
|          |                                                 | 4              | . c                          |           | <b>,</b>     | : <                       | •                                    |             |                          | 20         |           |                 | ، د                  |                     | 2                    |                   | 9 (      |
| đ        | CONSTRAINT OUTPUT                               |                | •                            | 2         |              | 5                         | 2                                    | -           | 5                        | 2          | <u>.</u>  | 5               | 5                    | 5                   | 0                    | 9                 |          |
|          | 26 CEILING PUR(1)                               | 31424          | 0                            | c         | G            | c                         | c                                    | с           | c                        | 0          |           |                 | c                    | ç                   |                      | c                 | ¢        |
|          |                                                 | 11973          | c                            | c         | c            | c                         | c                                    | c           | 0                        | 0          |           |                 | c                    | 0                   |                      | • •               | 0        |
|          | 28 CLIME GRAPIII0.0759 0.0                      | 0.0759 0.4     | 0.0                          | 0.0       | 0.0          | 0.0                       | 0.0                                  | 0.0         | 0"0                      | 0-0        |           | ~               | 0-0                  | ר<br>כ              |                      |                   | ,        |
| •        | 24 TAKENFF DST(2) 11686                         | 11686          | c                            | c         | c            | c                         | 0                                    | c           | o                        | c          |           |                 | c                    | 0                   |                      | 6                 | 6        |
| .,       |                                                 | 1.0342 0.1     | 0.0.0                        | 0.0 0     | 0.0          | c•0                       | 0.0                                  | 0.0         | 0.0                      | 0.0        |           | -               | 0.0                  | 0                   |                      | 0                 | ,        |
|          | 31 AP SPEED-KT(1)                               | -              | 0.0                          | 0.0       | ••<br>≎      | 0.0                       | 0-0                                  | 0.0         | 0.0                      | 0.0        |           |                 | 0-0                  | 0-0                 |                      | 0-0               | 9-9      |
| ••       | 32 CTOL LNDG D(1)                               |                | c                            | 0         | ¢            | c                         | c                                    | c           | c                        | c          |           |                 | c                    | 0                   |                      | 0                 | 9        |
|          |                                                 | _              | 0-0                          | 0.0       | 0°0          | 0.0                       | 0.0                                  | 0.0         | 0.0                      | 0.0        |           |                 | 0.0                  | 0.0                 |                      | 0-0               | 9        |
| •••      | _                                               |                | ç                            | 3         | c            | 0                         | c                                    | 0           | c                        | 0          |           |                 | 0                    | c                   |                      | 0                 | 0        |
|          | -                                               | •              | 0-0                          | 0-0       | <b>د -</b> 0 | 0°0                       | 0-0                                  | 0.0         | 0.0                      | 0.0        |           |                 | 0.0                  | 0.0                 |                      | 0.0               | 9        |
|          | 36 CTOL LNING D(3)                              | 1056           | c                            |           | ٥            | 0                         | c                                    | c           | ¢                        | 0          |           |                 | c                    | 0                   |                      | 0                 | 0        |
|          |                                                 |                |                              |           |              |                           |                                      |             |                          |            |           |                 |                      |                     |                      |                   |          |

Appendix A

,

:

.

ţ

1

1

## REFERENCES

- 1. Brewer, G. D., Morris, R. E., Lange, R. H., and Moore, J. W. Final Report: Study of the Application of Hydrogen Fuel to Long Range Subsonic Transport Aircraft, Lockheed Aircraft Corporation, NASA CR-132559, January 1975.
- 2. Anon., Standard Method of Estimating Comparative Direct Operating Costs of Turbine Powered Transport Airplanes, Air Transport Association of America, December 1967.
- Anon., Subsonic Transport Category Large Airplanes and Subsonic Turbojet Powered Airplanes - Proposed Noise Reduction Stages and Acoustical Change Requirements, Notice No. 75-37, Federal Register, Vol. 40, No. 214, Nov. 5, 1975.

## PRECEDING PAGE BLANK NOT FILMED

ļ

÷.

÷.,

• • • • •

1

• • • • •