1,130 research outputs found

    A Determination of Interface Free Energies

    Full text link
    We determine the interface free energy Fo.d.F_{o.d.} between disordered and ordered phases in the q=10 and q=20 2-d Potts models using the results of multicanonical Monte Carlo simulations on L2L^2 lattices, and suitable finite volume estimators. Our results, when extrapolated to the infinite volume limit, agree to high precision with recent analytical calculations. At the transition point βt\beta_t the probability distribution function of the energy exhibits two maxima. Their locations have 1/L21/L^2 corrections, in contradiction with claims of 1/L1/L behavior made in the literature. Our data show a flat region inbetween the two maxima which characterizes two domain configurations.Comment: Submited to Nuclear Physics B (FS) Latex file, 24 pages, 11 PostScript figures. Saclay preprint SPhT-93/6

    Leukocytes influence peripheral tissue oxygenation and perfusion in neonates

    Get PDF
    Background. Leukocyte counts may influence peripheral (micro) circulation due to changes in rheology. The aim of this study was to investigate a possible association between leukocyte counts and peripheral tissue oxygenation/perfusion measured with near infrared spectroscopy (NIRS) in term and preterm neonates. Methods. In this observational study we included term and preterm neonates within the first 2 months of life, in whom peripheral tissue NIRS measurements were performed and blood samples (leukocytes and C reactive protein (CRP)) taken to investigate clinical signs of infection. Tissue-oxygenation index (TOI), fractional oxygen extraction (FTEO), oxygen delivery (DO 2 ), oxygen consumption (VO TOI, FTOE, DO 2 , VO 2 2 ) and vascular resistance (VR) were measured by NIRS and venous occlusion method. and VR were correlated to leukocyte counts on the same day and maximal CRP levels within 24 hours (CRP max). Results. In 180 infants, with a mean gestational age of 35.5±3.3 weeks, leukocyte counts were 16546± 8830/l (median 14830; range 1790 to 67840) and CRP max was 8.0± 19.0 mg/l (median 0.0; range 0.0 to 110.0mg/l). TOI was 71.1±5.5%, FTOE 28.5±6.1%, DO 2 46.7±19.7, VO 2 12.5±4.4 and VR 11.7±6.4. Leukocyte counts correlated negatively (r= -0.21; p= 0.005) with TOI and positively (r=0.17; p=0.029) with VR. Correlations with CRP max did not reach significance. Conclusion. We demonstrated that peripheral tissue oxygen consumption decreases and vascular resistance increases with increasing leukocyte counts

    Anisotropy of the interface tension of the three-dimensional Ising model

    Get PDF
    We determine the interface tension for the 100, 110 and 111 interface of the simple cubic Ising model with nearest-neighbour interaction using novel simulation methods. To overcome the droplet/strip transition and the droplet nucleation barrier we use a newly developed combination of the multimagnetic algorithm with the parallel tempering method. We investigate a large range of inverse temperatures to study the anisotropy of the interface tension in detail.Comment: 19 pages, 9 figures, 6 table

    Overlap Distribution of the Three-Dimensional Ising Model

    Full text link
    We study the Parisi overlap probability density P_L(q) for the three-dimensional Ising ferromagnet by means of Monte Carlo (MC) simulations. At the critical point P_L(q) is peaked around q=0 in contrast with the double peaked magnetic probability density. We give particular attention to the tails of the overlap distribution at the critical point, which we control over up to 500 orders of magnitude by using the multi-overlap MC algorithm. Below the critical temperature interface tension estimates from the overlap probability density are given and their approach to the infinite volume limit appears to be smoother than for estimates from the magnetization.Comment: 7 pages, RevTex, 9 Postscript figure

    Pushing the limits of the reaction-coordinate mapping

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this recordThe reaction-coordinate mapping is a useful technique to study complex quantum dissipative dynamics into structured environments. In essence, it aims to mimic the original problem by means of an 'augmented system', which includes a suitably chosen collective environmental coordinate---the 'reaction coordinate'. This composite then couples to a simpler 'residual reservoir' with short-lived correlations. If, in addition, the residual coupling is weak, a simple quantum master equation can be rigorously applied to the augmented system, and the solution of the original problem just follows from tracing out the reaction coordinate. But, what if the residual dissipation is strong? Here we consider an exactly solvable model for heat transport---a two-node linear "quantum wire" connecting two baths at different temperatures. We allow for a structured spectral density at the interface with one of the reservoirs and perform the reaction-coordinate mapping, writing a perturbative master equation for the augmented system. We find that: (a) strikingly, the stationary state of the original problem can be reproduced accurately by a weak-coupling treatment even when the residual dissipation on the augmented system is very strong; (b) the agreement holds throughout the entire dynamics under large residual dissipation in the overdamped regime; (c) and that such master equation can grossly overestimate the stationary heat current across the wire, even when its non-equilibrium steady state is captured faithfully. These observations can be crucial when using the reaction-coordinate mapping to study the largely unexplored strong-coupling regime in quantum thermodynamics.European Research Council (ERC)London Mathematical SocietyUS National Science Foundatio

    On the phase structure of five-dimensional SU(2) gauge theories with anisotropic couplings

    Full text link
    The phase diagram of five-dimensional SU(2) gauge theories is explored using Monte Carlo simulations of the theory discretized on a Euclidean lattice using the Wilson plaquette action and periodic boundary conditions. We simulate anisotropic gauge couplings which correspond to different lattice spacings a_4 in the four dimensions and a_5 along the extra dimension. In particular we study the case where a_5>a_4. We identify a line of first order phase transitions which separate the confined from the deconfined phase. We perform simulations in large volume at the bulk phase transition staying in the confined vacuum. The static potential measured in the hyperplanes orthogonal to the extra dimension hint at dimensional reduction. We also locate and analyze second order phase transitions related to breaking of the center along one direction.Comment: 28 pages, 22 figures, 4 tables; few explanations and references added; version accepted for publication in Nucl. Phys.

    Domain Growth and Finite-Size-Scaling in the Kinetic Ising Model

    Full text link
    This paper describes the application of finite-size scaling concepts to domain growth in systems with a non-conserved order parameter. A finite-size scaling ansatz for the time-dependent order parameter distribution function is proposed, and tested with extensive Monte-Carlo simulations of domain growth in the 2-D spin-flip kinetic Ising model. The scaling properties of the distribution functions serve to elucidate the configurational self-similarity that underlies the dynamic scaling picture. Moreover, it is demonstrated that the application of finite-size-scaling techniques facilitates the accurate determination of the bulk growth exponent even in the presence of strong finite-size effects, the scale and character of which are graphically exposed by the order parameter distribution function. In addition it is found that one commonly used measure of domain size--the scaled second moment of the magnetisation distribution--belies the full extent of these finite-size effects.Comment: 13 pages, Latex. Figures available on request. Rep #9401

    Computational Nuclear Physics and Post Hartree-Fock Methods

    Full text link
    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Spin Glass Ordering in Diluted Magnetic Semiconductors: a Monte Carlo Study

    Get PDF
    We study the temperature-dilution phase diagram of a site-diluted Heisenberg antiferromagnet on a fcc lattice, with and without the Dzyaloshinskii-Moriya anisotropic term, fixed to realistic microscopic parameters for IIB1xMnxTeIIB_{1-x} Mn_x Te (IIB=Cd, Hg, Zn). We show that the dipolar Dzyaloshinskii-Moriya anisotropy induces a finite-temperature phase transition to a spin glass phase, at dilutions larger than 80%. The resulting probability distribution of the order parameter P(q) is similar to the one found in the cubic lattice Edwards-Anderson Ising model. The critical exponents undergo large finite size corrections, but tend to values similar to the ones of the Edwards-Anderson-Ising model.Comment: 4 pages plus 3 postscript figure
    corecore