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Abstract

We determine the interface tension for the 100, 110 and 111 interface of the simple cubic Ising model with
nearest-neighbour interaction using novel simulation methods. To overcome the droplet/strip transition and
the droplet nucleation barrier we use a newly developed combination of the multimagnetic algorithm with
the parallel tempering method. We investigate a large range of inverse temperatures to study the anisotropy
of the interface tension in detail.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

In many physical systems with discrete symmetry the anisotropy of the interface tension can
play an important role for various phenomena, including equilibrium droplet shapes [1] and the
interfacial roughening transition [2]. For sufficiently strong anisotropy, facets, edges, or even
corners can be identified in the equilibrium droplet shape. Due to the anisotropy of the interface
tension in the three-dimensional (3D) Ising model, the shape of the equilibrium droplet at some
finite temperature is not spherical and has, in principle, to be determined by the Wulff construc-
tion [3]. Since the 3D Ising model with nearest-neighbour interaction is not exactly solvable, no
analytical results are available for the interfacial free energy and the Wulff construction can only
be done using an effective model of the angle-depending interface tension. Only for temperatures
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not too far below the critical temperature one can use the spherical approximation and, therefore,
it is important to know how large the anisotropy is for a given temperature.

Whereas a lot of numerical results are available for the planar 100 interface tension of the
simple cubic Ising model, see e.g. Refs. [4–10], there are only a few results in the literature for
the 110 interface [11] and, to our knowledge, there are no results at all for the 111 interface.

The layout of the remainder of this paper is organized as follows. In Section 2 we discuss
the results for the planar 100 interface and compare our results with previous estimates in the
literature. Next we describe in Section 3 first the special boundary conditions employed for the
simulation of the tilted interfaces with 110 and 111 orientation and then discuss the results of
our finite-size scaling analysis. Finally, in Section 4 we conclude with a summary of our main
findings.

2. Planar interface

We considered the Ising model on L × L × L simple cubic lattices with periodic boundary
conditions in all three directions to simulate systems with planar 100 interfaces, for various tem-
peratures below the Ising transition at βc ≡ 1/Tc = 0.22165459 [12]. For a typical configuration
see Fig. 1.

The interface tension can be measured using a multimagnetical (flat in the distribution of
the magnetization m) simulation combined with parallel tempering [13], the result of which is
after appropriate reweighting to the canonical ensemble a double-peaked magnetization density
P(m). We simulated n = 26 replica of the system at different inverse temperatures βi , with
βi = 0.195 + 0.005(i − 1) and i = 1, . . . , n. A planar interface of the 3D Ising model exhibits a
transition at the roughening temperature [2] TR = 1/βR , with βR = 0.40758(1), above which the
surface stiffness for the 100 interface is finite and below which it is infinite. Therefore, we restrict
ourselves to the temperature range above this transition, i.e. Ti = 1/βi > TR for all i. To construct
the weight function for the multimagnetic part of the algorithm, we employed an accumulative
recursion, described in detail in Refs. [14] and [15]. Statistical averages were taken over runs of

Fig. 1. Plot of a typical configuration with two 100 interfaces (β = 0.3).
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1 × 106 Monte Carlo (MC) steps, where one MC step consists of one full multimagnetical lattice
sweep for all 26 replica and one attempted parallel tempering exchange of all adjacent replica.

The interface tension σ100 can be estimated according to Refs. [4,16] by (d = 3)
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with c1 = (lnA)/2β .
The power of L in the prefactor of Eq. (1) is a delicate problem and the knowledge of the

pre-exponential behaviour fixes one free parameter of the fit. Using the capillary wave approx-
imation [17–19] the exponent x = (d − 3)/2, i.e. x = 0 for d = 3. Therefore, we performed
finite-size scaling fits according to

(3)σ100(L) = σ100 + c1

Ld−1
,

and, to allow for higher-order corrections, also to

(4)σ100(L) = σ100 + c1

Ld−1
+ c2

L2(d−1)
.

We performed simulations for various lattice sizes ranging from L = 4 to L = 26. In Fig. 2
we show the magnetization density P(m) for β = 0.3, where the strip configurations, corre-
sponding to the minimum between the two peaks, are suppressed by more than 175 orders of
magnitude for the largest system and this suppression becomes even more pronounced for lower
temperatures. Such unlikely configurations would not be a problem for a multimagnetical algo-
rithm, but between the strip configuration and the droplet configuration there is an exponentially
large barrier [20,21] that might not be overcome during the equilibration phase. Therefore, it is
necessary to use the combined algorithm to overcome this barrier. A similar reasoning applies
to the evaporation/condensation transition which is another hidden albeit weaker barrier in the
multimagnetical system [21–23].

For every system the maximum and minimum probability P
(L)
max and P

(L)
min were read off, and

by repeating the simulations 32 times the statistical error bars were obtained. For β = 0.3 and
L � 12 the resulting values for σ100(L) are plotted in Fig. 3. To check the stability of the fit
results we performed fits with different lower bounds Lmin of the fit range. The upper bound of
the fits was always the largest lattice L = 26. For the fits according to Eq. (4) we find due to
the systematic variation of the lower bound a trend to larger values of σ100 with increasing Lmin.
This can be seen in the left panel of Fig. 4 where we also include the goodness-of-fit parameter
Q into the figure to judge the quality of the fits. Above Lmin = 14 the goodness-of-fit parameter
was well above 0.05, which we chose as cutoff value. Nevertheless, not yet reaching a constant
value for σ100 led us to include one more parameter in our fits,

(5)σ100(L) = σ100 + c1

Ld−1
+ c2

L2(d−1)
+ c3

L3(d−1)
.
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Fig. 2. Distribution of the magnetization m for the 3D Ising model with periodic boundary conditions at β = 0.3 and
system sizes L = 4, . . . ,26.

Table 1
Results for the planar interface tension σ100 using fits according to Eqs. (3), (4), and (5), respectively. In the last column
we include for comparison the results of Hasenbusch and Pinn [6].

β fit ansatz (3) fit ansatz (4) fit ansatz (5) Ref. [6]

fit range Q σ100 fit range Q σ100 fit range Q σ100 σ100

0.265 19–26 0.32 0.60073(5) 17–26 0.10 0.60015(15) 14–26 0.34 0.60175(21) 0.601124(194)
0.27 17–26 0.47 0.66586(4) 17–26 0.38 0.66579(15) 14–26 0.13 0.66679(21) 0.666354(180)
0.275 17–26 0.36 0.72862(4) 17–26 0.55 0.72885(15) 12–26 0.15 0.72971(11) 0.729214(146)
0.28 18–26 0.52 0.78920(5) 17–26 0.87 0.78962(15) 13–26 0.13 0.79029(11) 0.789788(142)
0.285 18–26 0.34 0.84742(5) 17–26 0.84 0.84787(15) 10–26 0.14 0.84823(7) 0.848066(132)
0.29 14–26 0.36 0.90330(3) 14–26 0.46 0.90339(7) 12–26 0.22 0.90439(7) 0.903996(122)
0.295 15–26 0.17 0.95702(3) 14–26 0.78 0.95723(8) 10–26 0.11 0.95808(8) 0.957756(126)
0.3 16–26 0.09 1.00861(3) 14–26 0.41 1.00888(7) 12–26 0.18 1.00933(12) 1.009302(106)
0.305 16–26 0.14 1.05808(4) 13–26 0.09 1.05826(6) 10–26 0.10 1.05894(7) 1.058752(94)
0.31 16–26 0.25 1.10550(3) 13–26 0.27 1.10574(6) 8–26 0.14 1.10618(5) 1.106152(88)
0.315 16–26 0.24 1.15095(3) 13–26 0.08 1.15121(6) 8–26 0.05 1.15168(5) 1.151608(76)
0.32 16–26 0.05 1.19446(4) 13–26 0.08 1.19474(6) 10–26 0.12 1.19508(8) 1.195140(62)

Performing fits with this ansatz and again varying the lower fit bound systematically, the resulting
values for the planar interface tension σ100 stay almost constant for reasonable fits (Q � 0.05), as
one can see in the right panel of Fig. 4. The infinite system size extrapolation in 1/L2 according
to Eq. (5) with Lmin = 12 yields for the particular inverse temperature β = 0.3 a value of σ100 =
1.00933(12) for the planar interface tension with goodness-of-fit parameter Q = 0.18, which
is in good agreement with the result from Hasenbusch and Pinn [6] σ100 = 1.009302(106). All
results with Q � 0.05 for the three different infinite system size extrapolations of the planar
interface tension are collected in Tables 1 and 2.
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Q c1 c2 c3

0.34 −2.3(2) 812(69) −132216(6968)

0.13 −2.0(2) 615(72) −89832(7232)

0.15 −1.97(10) 549(26) −71112(2067)

0.13 −1.72(15) 420(43) −49729(3858)

0.14 −1.55(5) 345(10) −37817(554)

0.22 −1.46(10) 291(26) −28835(2042)

0.11 −1.58(5) 308(11) −27491(621)

0.18 −1.24(10) 202(26) −16903(2078)

0.10 −1.36(5) 224(10) −17335(595)

0.14 −1.19(3) 175(4) −12841(155)

0.05 −1.22(3) 174(4) −11695(158)

0.12 −1.10(5) 141(11) −8826(620)
Table 2
Results for the parameters ci for the planar interface tension σ100 from fits according to Eqs. (3), (4), and (5), respecti

β fit ansatz (3) fit ansatz (4) fit ansatz (5

fit range Q c1 fit range Q c1 c2 fit range

0.265 19–26 0.32 −0.70(3) 17–26 0.10 −0.13(13) −139(26) 14–26
0.27 17–26 0.47 −0.67(2) 17–26 0.38 −0.61(13) −13(26) 14–26
0.275 17–26 0.36 −0.60(2) 17–26 0.55 −0.81(13) 41(25) 12–26
0.28 18–26 0.52 −0.61(2) 17–26 0.87 −1.00(13) 87(25) 13–26
0.285 18–26 0.34 −0.60(2) 17–26 0.84 −1.02(13) 94(25) 10–26
0.29 14–26 0.36 −0.55(1) 14–26 0.46 −0.61(5) 10(7) 12–26
0.295 15–26 0.17 −0.53(1) 14–26 0.78 −0.69(5) 27(7) 10–26
0.3 16–26 0.09 −0.54(1) 14–26 0.41 −0.75(5) 38(8) 12–26
0.305 16–26 0.14 −0.54(1) 13–26 0.09 −0.69(4) 29(5) 10–26
0.31 16–26 0.25 −0.54(1) 13–26 0.27 −0.73(4) 37(5) 8–26
0.315 16–26 0.24 −0.55(1) 13–26 0.08 −0.76(4) 41(5) 8–26
0.32 16–26 0.05 −0.54(1) 13–26 0.08 −0.77(4) 43(5) 10–26
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Fig. 3. Scaling of the interface-tension estimates from the histogram method for the inverse temperature β = 0.3 and
system sizes from L = 12 up to 26. The lines show the fits according to Eqs. (3), (4), and (5). The long black arrow on
the y axis points to the result of Hasenbusch and Pinn [6] and the three short arrows indicate our fit results of σ100. The
thick lines indicate the fit range.

3. Tilted interfaces

To generate a tilted interface we used a 2L × L × L simple cubic lattice under two sets of
boundary conditions. We chose a rather unusual combination of boundary conditions for this
study. For the lattice with an interface along the 110 direction we imposed periodic boundary
conditions in the x and y direction and shifted boundary condition in the z direction. To be more
precise, the neighbour in negative z direction of a spin in the first xy layer of the system s(x, y,1)

is s(x + L,y,L) for 1 � x � L and s(x, y,L) for L < x � 2L. A typical configuration for such
a system below the Ising transition is depicted in Fig. 5.

For the lattice with an interface along the 111 direction we imposed periodic boundary con-
ditions in the x direction and shifted boundary condition in the y and z direction. Therefore,
the neighbour in negative y direction of a spin in the first xz layer of the system s(x,1, z) is
s(x + L,L, z) for 1 � x � L and s(x,L, z) for L < x � 2L. A typical configuration for such a
system below the Ising transition is depicted in Fig. 6.

Using the same setup as described above we measured the probability density of the mag-
netization for various lattice sizes ranging from L = 4 to L = 20. From these distributions, we
determined the interface tension in the 110 and 111 direction by means of infinite-system size
extrapolations via Eqs. (3), (4), and (5). In Figs. 7 and 8 we show the different fits for β = 0.3. To
check the stability of the fit results we again performed fits with different lower bounds Lmin of
the fit range. The upper bound of the fits was always the largest lattice L = 20. Similarly to σ100,
the fits according to Eq. (4) show a slight trend to larger values of σ110 and σ111 with increasing
Lmin whereas for the ansatz of Eq. (5) the interface tensions stay almost constant within error
bars for reasonable fits (Q > 0.05). All results with Q � 0.05 are collected in Tables 3, 4, 5,
and 6, respectively.

For σ111 the difference between the final estimates for the interface tension using the different
infinite-volume extrapolations is larger than for the other two interface directions. This is an
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Fig. 4. The interface tension σ100 at β = 0.3, as a function of the lower bounds Lmin of the fit range, determined using
fit ansatz Eq. (4) (top) and Eq. (5) (bottom), respectively. To judge the quality of the individual data points we also plot
the goodness-of-fit parameter Q.

indication that the finite-size effects are more pronounced in this setup. One reason for this is
that the distance between the two interfaces is too small and therefore the fluctuations of the
interfaces are correlated and the effect becomes more pronounced as the critical temperature
is approached. In spite of the computational effort, the system sizes are still too small to give
equally accurate values for σ111 as for σ100 and σ110, respectively. Nevertheless, the statistical
error of the interface tension of the 111 interface is only roughly 0.01–0.04%, which is more than
one order of magnitude smaller than the effect which we are interested in, namely the anisotropy
of the interface tension.
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Fig. 5. Plot of a typical configuration with two 110 interfaces (β = 0.3).

Fig. 6. Plot of a typical configuration with two 111 interfaces (β = 0.3).
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Table 3
Results for the 110 interface tension using of fits according to Eqs. (3), (4), and (5), respectively.

β fit ansatz (3) fit ansatz (4) fit ansatz (5)

fit range Q σ110 fit range Q σ110 fit range Q σ110

0.265 12–20 0.19 0.60441(5) 12–20 0.15 0.60430(14) 9–20 0.32 0.60496(13)
0.27 11–20 0.08 0.67068(4) 12–20 0.71 0.67093(14) 9–20 0.96 0.67161(15)
0.275 13–20 0.22 0.73490(6) 12–20 0.94 0.73532(14) 9–20 0.88 0.73589(15)
0.28 13–20 0.23 0.79696(6) 11–20 0.33 0.79722(11) 8–20 0.41 0.79769(11)
0.285 13–20 0.16 0.85692(6) 11–20 0.37 0.85724(11) 8–20 0.93 0.85766(11)
0.29 13–20 0.06 0.91478(6) 10–20 0.08 0.91500(8) 7–20 0.43 0.91539(8)
0.295 13–20 0.28 0.97055(6) 10–20 0.25 0.97077(8) 7–20 0.83 0.97113(7)
0.3 13–20 0.26 1.02434(6) 10–20 0.11 1.02459(8) 7–20 0.84 1.02494(8)
0.305 13–20 0.35 1.07621(6) 10–20 0.14 1.07645(8) 7–20 0.60 1.07679(7)
0.310 13–20 0.05 1.12625(6) 10–20 0.09 1.12645(8) 7–20 0.46 1.12668(8)
0.315 13–20 0.33 1.17433(6) 9–20 0.13 1.17449(7) 6–20 0.46 1.17474(6)
0.32 13–20 0.21 1.22079(6) 10–20 0.31 1.22112(9) 6–20 0.39 1.22120(6)

Table 4
Results for the parameters ci for the 110 interface tension from fits according to Eqs. (3), (4), and (5), respectively.

β fit ansatz (3) fit ansatz (4) fit ansatz (5)

fit range Q c1 fit range Q c1 c2 fit range Q c1 c2 c3

0.265 12–20 0.19 −0.23(1) 12–20 0.15 −0.18(7) −5(7) 9–20 0.32 −0.67(7) 110(1) −8429(451)

0.27 11–20 0.08 −0.19(1) 12–20 0.71 −0.32(7) 14(6) 9–20 0.96 −0.81(8) 125(11) −7868(475)

0.275 13–20 0.22 −0.19(2) 12–20 0.94 −0.41(6) 26(7) 9–20 0.88 −0.81(8) 118(11) −6551(479)

0.28 13–20 0.23 −0.18(2) 11–20 0.33 −0.32(5) 17(4) 8–20 0.41 −0.64(5) 85(6) −4333(207)

0.285 13–20 0.16 −0.18(2) 11–20 0.37 −0.35(5) 21(4) 8–20 0.93 −0.63(5) 78(6) −3620(209)

0.29 13–20 0.06 −0.18(2) 10–20 0.08 −0.30(3) 18(3) 7–20 0.43 −0.55(3) 64(3) −2673(78)

0.295 13–20 0.28 −0.17(2) 10–20 0.25 −0.30(3) 18(3) 7–20 0.83 −0.52(3) 59(3) −2294(75)

0.3 13–20 0.26 −0.16(2) 10–20 0.11 −0.31(3) 19(3) 7–20 0.84 −0.52(3) 57(3) −2036(77)

0.305 13–20 0.35 −0.16(2) 10–20 0.14 −0.31(3) 21(3) 7–20 0.60 −0.50(3) 53(3) −1765(73)

0.310 13–20 0.05 −0.15(2) 10–20 0.09 −0.31(3) 22(3) 7–20 0.46 −0.46(3) 48(3) −1514(77)

0.315 13–20 0.33 −0.14(2) 9–20 0.13 −0.24(2) 16(2) 6–20 0.46 −0.39(2) 40(2) −1179(29)

0.32 13–20 0.21 −0.14(2) 10–20 0.31 −0.31(3) 23(3) 6–20 0.39 −0.39(2) 39(2) −1070(30)

Using the results from the fits according to Eq. (3) we determined the anisotropy of the inter-
face tension for different directions, namely the 110 and 111 direction. Due to the large finite-size
effects near the critical point, the accessible temperature range is limited to a window at low tem-
peratures. Therefore, we cannot give reliable results for the region near the transition. In Fig. 9 we
show the anisotropy as a function of the reduced temperature and include for comparison results
for the two-dimensional Ising model. In the two-dimensional case we calculated the anisotropy
using the exact expressions for the interface tension of the 10 “surface” [24],

(6)σ10 = 2 + 1

β
ln

[
tanh(β)

]
,

and for the 11 “surface” [25],

(7)σ11 =
√

2

β
ln

[
sinh(2β)

]
.
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Table 5
Results for the 111 interface tension using of fits according to Eqs. (3), (4), and (5), respectively.

β fit ansatz (3) fit ansatz (4) fit ansatz (5)

fit range Q σ111 fit range Q σ111 fit range Q σ111

0.275 15–20 0.61 0.73746(8) 14–20 0.05 0.73610(27) 13–20 0.23 0.74114(79)
0.28 14–20 0.20 0.80000(6) 14–20 0.51 0.79990(8) 13–20 0.53 0.80230(79)
0.285 14–20 0.93 0.86027(6) 14–20 0.82 0.86030(27) 12–20 0.09 0.86188(79)
0.29 13–20 0.82 0.91865(5) 13–20 0.70 0.91859(17) 12–20 0.19 0.91951(81)
0.295 13–20 0.65 0.97491(5) 13–20 0.67 0.97506(17) 12–20 0.79 0.97660(45)
0.3 13–20 0.31 1.02927(5) 13–20 0.75 1.02955(16) 11–20 0.25 1.03140(27)
0.305 12–20 0.07 1.08180(4) 12–20 0.05 1.08190(12) 11–20 0.45 1.08362(27)
0.31 12–20 0.07 1.13242(4) 12–20 0.39 1.13267(11) 10–20 0.39 1.13429(17)
0.315 12–20 0.06 1.18133(4) 12–20 0.86 1.18168(12) 10–20 0.77 1.18275(18)
0.32 14–20 0.27 1.22872(6) 12–20 0.46 1.22900(12) 10–20 0.69 1.22971(18)

Table 6
Results for the parameters ci for the 111 interface tension from fits according to Eqs. (3), (4), and (5), respectively.

β fit ansatz (3) fit ansatz (4) fit ansatz (5)

fit range Q c1 fit range Q c1 c2 fit range Q c1 c2 c3

0.275 15–20 0.61 −0.44(3) 14–20 0.05 0.38(15) −120(19) 13–20 0.23 −3.8(6) 1024(147) −99709(11487)

0.28 14–20 0.20 −0.42(2) 14–20 0.51 −0.15(15) −34(19) 13–20 0.53 −2.5(6) 604(146) −56031(11363)

0.285 14–20 0.93 −0.34(1) 14–20 0.82 −0.36(14) 2(19) 12–20 0.09 −2.9(3) 678(71) −57114(4935)

0.29 13–20 0.82 −0.32(2) 13–20 0.70 −0.36(6) −29(6) 12–20 0.19 −2.2(4) 465(71) −37386(4952)

0.295 13–20 0.65 −0.27(2) 13–20 0.67 −0.37(8) 17(9) 12–20 0.79 −1.5(4) 307(70) −23693(4885)

0.3 13–20 0.31 −0.23(1) 13–20 0.75 −0.37(8) 17(10) 11–20 0.25 −1.8(2) 360(35) −26311(2109)

0.305 12–20 0.07 −0.21(1) 12–20 0.05 −0.25(5) 5(5) 11–20 0.45 −1.5(2) 289(34) −20160(2070)

0.31 12–20 0.07 −0.17(1) 12–20 0.39 −0.29(5) 12(5) 10–20 0.39 −1.4(1) 270(17) −17989(868)

0.315 12–20 0.06 −0.15(1) 12–20 0.86 −0.31(5) 17(6) 10–20 0.77 −1.1(1) 191(17) −12349(892)

0.32 14–20 0.27 −0.13(1) 12–20 0.46 −0.34(5) 22(6) 10–20 0.69 −0.9(1) 143(18) −8827(930)

Our results show that the anisotropy of the interface tension as a function of the reduced temper-
ature grows faster in three dimensions than in two. Nevertheless, the absolute value is still very
small (< 3%) for the temperature range investigated in this work.

4. Summary

We have presented a careful analysis of the interface tension in 100, 110 and 111 direction
of the simple cubic Ising model with nearest-neighbour interaction. Using a newly developed
combination of the multimagnetic algorithm with the parallel tempering method, we were able to
measure the highly suppressed configurations of the strip phase for systems up to 263 at β = 0.32,
i.e. T ∼ 0.7Tc. We show that at given T/Tc the anisotropy of the interface in three dimensions is
larger than in two dimensions. However, down to 0.7Tc it never exceeds 3%, so that in most cases
the isotropic approximation for droplet condensation phenomena should be sufficiently accurate.
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Fig. 7. Scaling of estimates for the interface tension σ110 from the histogram method for the inverse temperature β = 0.3
and system sizes from L = 7 up to 20. The lines show the fits according to Eqs. (3), (4), and (5). The small arrows on the
y-axes indicate the fit results of σ110 and the thick lines indicate the fit range.

Fig. 8. Same as Fig. 7 for the interface tension σ111 at β = 0.3 and system sizes from L = 10 up to 20.
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Fig. 9. The anisotropy of the interface tension for the 110 and 111 direction as a function of the temperature T = 1/β

(upper scale), respectively. When approaching the 3D Ising transition temperature indicated by the arrow, the interface
tension becomes isotropic and finally vanishes. To allow a comparison with the 2D Ising model, the lower scale shows
the reduced temperature T/Tc = βc/β . The inset shows another comparison, where the abscissa is proportional to the
asymptotic correlation length ξ ∝ |1 − T/Tc|−ν (with ν = 1 in 2D and ν = 0.63 in 3D).
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