2,338 research outputs found

    Effect of Concurrent Partnerships and Sex-Act Rate on Gonorrhea Prevalence

    Full text link
    The disease gonorrhea (GC) is a major public health problem in the United States, and the dynamics of the spread of GC through popula tions are complicated and not well understood. Studies have drawn attention to the effect of concurrent sexual partnerships as an influen tial factor for determining disease prevalence. However, little has been done to date to quantify the combined effects of concurrency and within-partnership sex-act rates on the prevalence of GC. This simulation study examines this issue with a simplified model of GC transmission in closed human populations that include concurrent partnerships. Two models of within-partnership sex-act rate are compared; one is a fixed sex-act rate per partnership, and the other is perhaps more realistic in that the rate depends on the number of concurrent partners. After controlling for total number of sex acts, pseudo-equilibrium prevalence is higher with the fixed sex-act rate than under the concurrency-adjusted rate in all the modeled partnership formation conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68414/2/10.1177_003754979807100404.pd

    Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro

    Get PDF
    Contractile dysfunction of smooth muscle (SM) is a feature of chronic cardiovascular, respiratory and gastro-intestinal diseases. Owing to the low availability of human ex vivo tissue for the assessment of SM contractile function, the aim of this study was to develop a novel in vitro SM model that possesses the ability to contract, and a method to measure its contractility. A range of electrospun scaffolds were produced from crosslinked gelatin and methacrylated gelatin (GelMA), generating highly aligned scaffolds with average fibre diameters ranging from 200 nm to several micrometres. Young's moduli of the scaffolds ranged from 1x105 to 1x107 Pa. Primary aortic smooth muscle cells (AoSMCs; rat) cells readily adhered to and proliferated on the fibrous scaffolds for up to 10 days. They formed highly aligned populations following the topographical cues of the aligned scaffolds and stained positive for SM markers, indicating a contractile phenotype. Cell-seeded GelMA scaffolds were able, upon stimulation with uridine 5'-triphosphate (UTP), to contract and their attachment to a force transducer allowed the force of contraction to be measured. Hence, these electrospun GelMA fibres can be used as biomimetic scaffolds for SM cell culture and in vitro model development, and enables the contractile forces generated by the aligned three-dimensional sheet of cells to be directly measured. This will supplement in vitro drug screening tools and facilitate discovery of disease mechanisms

    Magmatic and geotectonic significance of Santa Elena Peninsula, Costa Rica

    Get PDF
    We present a new integrated interpretation of the geochemistry and geotectonic significance of the Santa Elena Peninsula, which is divided in three units: 1) an overthrust allocthonous unit of ultramafic and mafic rocks, the Santa Elena Nappe; 2) an autochthonous basaltic sedimentary suite, resting immediately below the overthrust, the Santa Rosa Accretionary Complex; and 3) Islas Murciélago pillow and massive basaltic flows. In the Santa Elena Nappe three petrological affinities have been recognized: 1) the ultramafic complex, that corresponds to depleted (MORB-like) mantle serpentinizated peridotites, with very low TiO2 and high Ni and Cr; 2) the pegmatitic gabbros, layered gabbros and plagiogranites and basaltic dikes with low TiO2 (0.89%). These mafic associations have geochemical signatures that suggest an island arc origin and petrographic evidences of low grade metamorphism and hydrothermal alteration. The Santa Rosa Accretionary Complex includes pelagic and volcanoclastic sediments, tuffs and alkaline magmatic rocks, originated by low degree melting of enrichment OIB mantle source, and probably related with seamount portions incorporated into the accretionary prism. Islas Murciélago pillow and massive basalts show no clear structural relationship with the rest of the units, but are geochemically similar to the dolerites of the Santa Elena Nappe. Sr, Nd, and Pb isotopic ratios of the Santa Elena Nappe and the Santa Elena Accretionary Complex samples do not correspond to the Galapagos Mantle array, and have different mantle reservoirs and geochemical characteristics than the Nicoya Complex

    Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides

    Get PDF
    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application

    The role of chemical structure on the magnetic and electronic properties of Co2FeAl0.5Si0.5/Si(111) interface

    Get PDF
    We show that Co2FeAl0.5Si0.5 film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitu- tional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the film leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co2FeAl0.5Si0.5 film into the Si substrate, besides the structural integrity of this junction

    Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    Get PDF
    The authors acknowledge the support of the Barts and the London Charity, the Multiple Sclerosis Society of Great Britain and Northern Ireland, the National Multiple Sclerosis Society, USA, notably the National Centre for the Replacement, Refinement & Reduction of Animals in Research, and the Wellcome Trust (grant no. 092539 to ZA). The siRNA was provided by Quark Pharmaceuticals. The funders and Quark Pharmaceuticals had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing

    Get PDF
    Electrospinning is a common technique used to fabricate fibrous scaffolds for tissue engineering applications. There is now growing interest in assessing the ability of collector plate design to influence the patterning of the fibres during the electrospinning process. In this study, we investigate a novel method to generate hybrid electrospun scaffolds consisting of both random fibres and a defined three-dimensional (3D) micro-topography at the surface, using patterned resin formers produced by rapid prototyping (RP). Poly(D,L-lactide-co-glycolide) was electrospun onto the engineered RP surfaces and the ability of these formers to influence microfibre patterning in the resulting scaffolds visualized by scanning electron microscopy. Electrospun scaffolds with patterns mirroring the microstructures of the formers were successfully fabricated. The effect of the resulting fibre patterns and 3D geometries on mammalian cell adhesion and proliferation was investigated by seeding enhanced green fluorescent protein labelled 3T3 fibroblasts onto the scaffolds. Following 24 h and four days of culture, the seeded scaffolds were visually assessed by confocal macro- and microscopy. The patterning of the fibres guided initial cell adhesion to the scaffold with subsequent proliferation over the geometry resulting in the cells being held in a 3D micro-topography. Such patterning could be designed to replicate a specific in vivo structure; we use the dermal papillae as an exemplar here. In conclusion, a novel, versatile and scalable method to produce hybrid electrospun scaffolds has been developed. The 3D directional cues of the patterned fibres have been shown to influence cell behaviour and could be used to culture cells within a similar 3D micro-topography as experienced in vivo

    Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales

    Get PDF
    Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilienc
    corecore