2,826 research outputs found

    Challenges of CPAS Flight Testing

    Get PDF
    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown via a series of Drogue, Pilot, and Main parachutes. Because Orion is considerably larger and heavier than Apollo, many of the flight test techniques developed during the Apollo program must be modified. The Apollo program had a dedicated C-133 aircraft, which was modified to allow a simple airdrop of "boilerplate" flight test vehicles. However, the CPAS program must use either commercial or military assets with minimal modifications to airframes or procedures. Conceptual envelopes from 2-Degree Of Freedom trajectories are presented for several existing and novel architectures. Ideally, the technique would deliver a representative capsule shape to the desired altitude and dynamic pressure at test initiation. However, compromises must be made on the characteristics of trajectories or the fidelity of test articles to production hardware. Most of the tests to date have used traditional pallet and weight tub or missile-shaped test vehicles. New test vehicles are being designed to better incorporate Orion structural components and deploy parachutes in a more representative fashion. The first attempt to test a capsule-shaped vehicle failed due to unexpected events while setting up the test condition through a series of complex procedures. In order to avoid the loss of another expensive test article which will delay the program, simpler deployment methods are being examined and more positive control of the vehicle will be maintained. Existing challenges include interfacing with parent aircraft, separating test vehicles, achieving test conditions, and landing within limited test ranges. All these challenges must be met within cost and schedule limits

    Load Asymmetry Observed During Orion Main Parachute Inflation

    Get PDF
    The Crew Exploration Vehicle Parachute Assembly System (CPAS) has flight tested the first two generations of the Orion parachute program. Three of the second generation tests instrumented the dispersion bridles of the Main parachute with a Tension Measuring System. The goal of this load measurement was to better understand load asymmetry during the inflation process of a cluster of Main parachutes. The CPAS Main parachutes exhibit inflations that are much less symmetric than current parachute literature and design guides would indicate. This paper will examine loads data gathered on three cluster tests, quantify the degree of asymmetry observed, and contrast the results with published design guides. Additionally, the measured loads data will be correlated with videos of the parachute inflation to make inferences about the shape of the parachute and the relative load asymmetry. The goal of this inquiry and test program is to open a dialogue regarding asymmetrical parachute inflation load factors

    Verification and Validation Plan for Flight Performance Requirements on the CEV Parachute Assembly System

    Get PDF
    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is engaged in a multi-year design and test campaign aimed at qualifying a parachute recovery system for human use on the Orion Spacecraft. Orion has parachute flight performance requirements that will ultimately be verified through the use of Monte Carlo multi-degree of freedom flight simulations. These simulations will be anchored by real world flight test data and iteratively improved to provide a closer approximation to the real physics observed in the inherently chaotic inflation and steady state flight of the CPAS parachutes. This paper will examine the processes necessary to verify the flight performance requirements of the human rated spacecraft. The focus will be on the requirements verification and model validation planned on CPAS

    White-tailed Deer (\u3ci\u3eOdocoileus virginianus\u3c/i\u3e) Fawn Risk from Gray Wolf (\u3ci\u3eCanis lupus\u3c/i\u3e) Predation During Summer

    Get PDF
    Little is known about how often various prey animals are at risk of predation by Gray Wolves (Canis lupus). We used a system to monitor the presence during the day of two radio-collared Gray Wolves within 2 km of a radio-collared White-tailed Deer (Odocoileus virginianus) with a fawn or fawns in August 2013 in the Superior National Forest of northeastern Minnesota. We concluded that the fawn or fawns were at risk of predation by at least one wolf at least daily

    White-tailed Deer (\u3ci\u3eOdocoileus virginianus\u3c/i\u3e) Fawn Risk from Gray Wolf (\u3ci\u3eCanis lupus\u3c/i\u3e) Predation During Summer

    Get PDF
    Little is known about how often various prey animals are at risk of predation by Gray Wolves (Canis lupus). We used a system to monitor the presence during the day of two radio-collared Gray Wolves within 2 km of a radio-collared White-tailed Deer (Odocoileus virginianus) with a fawn or fawns in August 2013 in the Superior National Forest of northeastern Minnesota. We concluded that the fawn or fawns were at risk of predation by at least one wolf at least daily

    White-tailed Deer (\u3ci\u3eOdocoileus virginianus\u3c/i\u3e) Fawn Risk from Gray Wolf (\u3ci\u3eCanis lupus\u3c/i\u3e) Predation During Summer

    Get PDF
    Little is known about how often various prey animals are at risk of predation by Gray Wolves (Canis lupus). We used a system to monitor the presence during the day of two radio-collared Gray Wolves within 2 km of a radio-collared White-tailed Deer (Odocoileus virginianus) with a fawn or fawns in August 2013 in the Superior National Forest of northeastern Minnesota. We concluded that the fawn or fawns were at risk of predation by at least one wolf at least daily

    Clinical consequences of a miscalibrated digoxin immunoassay

    Get PDF
    A routine audit revealed that the analytical method used to measure digoxin concentrations by our statewide pathology provider in 2009 was underestimating digoxin concentrations by 10%. The assay was recalibrated by the manufacturer in 2010, but clinical outcomes of the underestimation were never measured. This is a pilot study to describe the prescribing behavior around out-of-range digoxin concentrations and to assess whether miscalibrated digoxin immunoassays contribute to clinically relevant effects, as measured by inappropriate alterations in digoxin doses.About 30,000 digoxin concentrations across the State Hospital system were obtained in 2 periods before and after recalibration of the digoxin assay. Digoxin concentration means were calculated and compared and were statistically significantly different. Subsequently, a single-centered retrospective review of 50 randomly chosen charts was undertaken to study the clinical implications of the underestimated concentrations.Mean digoxin concentrations for 2009 and 2011 were significantly different by 8.8% (confidence interval, 7.0%-10.6%). After recalculating the 2009 concentrations to their "corrected" values, there was a 16% increase in the number of concentrations within the range when compared with the 2011 concentrations (41.48% versus 48.04%). However, overall, this did not cause unnecessary dose changes in patients who were "borderline" or outside the therapeutic range when compared with controls (P = 0.10). The majority of decisions were based on the clinical impression rather than concentration alone (85.1% versus 14.9%), even when the concentration was outside the "therapeutic range."Although recalculating digoxin concentrations measured during 2009 to their corrected values produced a significant change in concentration and values inside and outside the range, this does not seem to have had an influence on patient treatment. Rather, clinicians tended to use the clinical impression to dose digoxin

    Deforestation-driven food-web collapse linked to emerging tropical infectious disease, Mycobacterium ulcerans.

    Get PDF
    Generalist microorganisms are the agents of many emerging infectious diseases (EIDs), but their natural life cycles are difficult to predict due to the multiplicity of potential hosts and environmental reservoirs. Among 250 known human EIDs, many have been traced to tropical rain forests and specifically freshwater aquatic systems, which act as an interface between microbe-rich sediments or substrates and terrestrial habitats. Along with the rapid urbanization of developing countries, population encroachment, deforestation, and land-use modifications are expected to increase the risk of EID outbreaks. We show that the freshwater food-web collapse driven by land-use change has a nonlinear effect on the abundance of preferential hosts of a generalist bacterial pathogen, Mycobacterium ulcerans. This leads to an increase of the pathogen within systems at certain levels of environmental disturbance. The complex link between aquatic, terrestrial, and EID processes highlights the potential importance of species community composition and structure and species life history traits in disease risk estimation and mapping. Mechanisms such as the one shown here are also central in predicting how human-induced environmental change, for example, deforestation and changes in land use, may drive emergence

    Summary of CPAS Gen II Parachute Analysis

    Get PDF
    The Orion spacecraft is currently under development by NASA and Lockheed Martin. Like Apollo, Orion will use a series of parachutes to slow its descent and splashdown safely. The Orion parachute system, known as the CEV Parachute Assembly System (CPAS), is being designed by NASA, the Engineering and Science Contract Group (ESCG), and Airborne Systems. The first generation (Gen I) of CPAS testing consisted of thirteen tests and was executed in the 2007-2008 timeframe. The Gen I tests provided an initial understanding of the CPAS parachutes. Knowledge gained from Gen I testing was used to plan the second generation of testing (Gen II). Gen II consisted of six tests: three singleparachute tests, designated as Main Development Tests, and three Cluster Development Tests. Gen II required a more thorough investigation into parachute performance than Gen I. Higher fidelity instrumentation, enhanced analysis methods and tools, and advanced test techniques were developed. The results of the Gen II test series are being incorporated into the CPAS design. Further testing and refinement of the design and model of parachute performance will occur during the upcoming third generation of testing (Gen III). This paper will provide an overview of the developments in CPAS analysis following the end of Gen I, including descriptions of new tools and techniques as well as overviews of the Gen II tests
    corecore