6,424 research outputs found

    Application of electron multiplying CCD technology in space instrumentation

    Get PDF
    Electron multiplying CCD (EMCCD) technology has found important initial applications in low light surveillance and photon starved scientific instrumentation. This paper discusses the attributes of the EMCCD which make it useful for certain space instruments, particularly those which are photon starved, and explores likely risks from the radiation expected in such instruments

    Bridging the gap between models and measurements of peat hydraulic conductivity

    Get PDF
    Peat saturated hydraulic conductivity, Ksat, declines strongly with increasing degree of decomposition, providing a potentially important negative ecohydrological feedback that may buffer peatlands from climate-induced drying. However, the quantitative nature of this relationship is poorly understood. We measured downcore changes in Ksat and carbon-to-nitrogen concentration quotients (C/N) in fourteen shallow (~0.5 m deep, 0.1 m diameter) peat cores from a Swedish raised bog. We used the C/N measurements to approximate the fraction of original peat mass remaining. A linear mixed effects (LME) model predicts log10(Ksat) from i) our C/N-derived estimate of fractional remaining mass; ii) depth; iii) microhabitat (hummock, hollow); and iv) location (treeless bog center, treed bog margin). The LME model indicated no significant random effects or interactions between predictors, so we derived a non-linear multiple regression (NLMR) model to predict Ksat on its original scale. Both LME and NLMR models predict that Ksat decreases exponentially with depth and that Ksat is lower beneath hollows than beneath hummocks for equivalent depths below the surface. Fractional remaining mass was an important predictor in the LME model, but not in the NLMR model. The distinction between central and marginal areas of the bog was not an important predictor. We demonstrate for the first time that the relationship between fractional remaining mass and Ksat is log-linear, and suggest revisions that should be made to peatland development models. In particular, depth – usually ignored in modeling studies – exerted a strong control over Ksat ndependently of decomposition and should be included explicitly in model algorithms

    Power amplifier memory-less pre-distortion for 3GPP LTE application

    Get PDF

    Microform-scale variations in peatland permeability and their ecohydrological implications

    Get PDF
    1. The acrotelm-catotelm model of peatland hydrological and biogeochemical processes posits that the permeability of raised bogs is largely homogenous laterally but varies strongly with depth through the soil profile; uppermost peat layers are highly permeable while deeper layers are, effectively, impermeable. 2. We measured down-core changes in peat permeability, plant macrofossil assemblages, dry bulk density and degree of humification beneath two types of characteristic peatland microform – ridges and hollows – at a raised bog in Wales. Six 1424 C dates were also collected for one hollow and an adjacent ridge. 3. Contrary to the acrotelm-catotelm model, we found that deeper peat can be as highly permeable as near-surface peat and that its permeability can vary by more than an order of magnitude between microforms over horizontal distances of 1-5 metres. 4. Our palaeo-ecological data paint a complicated picture of microform persistence. Some microforms can remain in the same position on a bog for millennia, growing vertically upwards as the bog grows. However, adjacent areas on the bog (< 10 m distant) show switches between microform type over time, indicating a lack of persistence. 5. Synthesis. We suggest that the acrotelm-catotelm model should be used cautiously; spatial variations in peatland permeability do not fit the simple patterns suggested by the model. To understand how peatlands as a whole function both hydrologically and ecologically it is necessary to understand how patterns of peat physical properties and peatland vegetation develop and persist

    Evidence for ecosystem state shifts in Alaskan continuous permafrost peatlands in response to recent warming

    Get PDF
    Peatlands in continuous permafrost regions represent a globally-important store of organic carbon, the stability of which is thought to be at risk under future climatic warming. To better understand how these ecosystems may change in a warmer future, we use a palaeoenvironmental approach to reconstruct changes in two peatlands near Toolik Lake on Alaska's North Slope (TFS1 and TFS2). We present the first testate amoeba-based reconstructions from peatlands in continuous permafrost, which we use to infer changes in water-table depth and porewater electrical conductivity during the past two millennia. TFS1 likely initiated during a warm period between 0 and 300 CE. Throughout the late-Holocene, both peatlands were minerotrophic fens with low carbon accumulation rates (means of 18.4 and 14.2 g C m−2 yr−1 for cores TFS1 and TFS2 respectively). However, since the end of the Little Ice Age, both fens have undergone a rapid transition towards oligotrophic peatlands, with deeper water tables and increased carbon accumulation rates (means of 59.5 and 48.2 g C m−2 yr−1 for TFS1 and TFS2 respectively). We identify that recent warming has led to these two Alaskan rich fens to transition into poor fens, with greatly enhanced carbon accumulation rates. Our work demonstrates that some Arctic peatlands may become more productive with future regional warming, subsequently increasing their ability to sequester carbon

    EnRoot: a narrow, inexpensive and partially 3D-printable minirhizotron for imaging fine root production

    Get PDF
    Background Fine root production is one of the least well understood components of the carbon cycle in terrestrial ecosystems. Minirhizotrons allow accurate and non-destructive sampling of fine root production. Small and large scale studies across a range of ecosystems are needed to have baseline data on fine root production and further assess the impact of global change upon it; however, the expense and the low adaptability of minirhizotrons prevent such data collection, in worldwide distributed sampling schemes, in low-income countries and in some ecosystems (e.g. tropical forested wetlands). Results We present EnRoot, a narrow minirhizotron of 25 mm diameter, that is partially 3D printable. EnRoot is inexpensive (€150), easy to construct (no prior knowledge required) and adapted to a range of ecosystems including tropical forested wetlands (e.g. mangroves, peatlands). We tested EnRoot’s accuracy and precision for measuring fine root length and diameter, and it yielded Lin’s concordance correlation coefficient values of 0.95 for root diameter and 0.92 for length. As a proof of concept, we tested EnRoot in a mesocosm study, and in the field in a tropical mangrove. EnRoot proved its capacity to capture the development of roots of a legume (Medicago sativa) and a mangrove species (seedlings of Rhizophora mangle) in laboratory mesocosms. EnRoot’s field installation was possible in the root-dense tropical mangrove because its narrow diameter allowed it to be installed between larger roots and because it is fully waterproof. EnRoot compares favourably with commercial minirhizotrons, and can image roots as small as 56 ”m. Conclusion EnRoot removes barriers to the extensive use of minirhizotrons by being low-cost, easy to construct and adapted to a wide range of ecosystem. It opens the doors to worldwide distributed minirhizotron studies across an extended range of ecosystems with the potential to fill knowledge gaps surrounding fine root production

    Understanding the impact of socioeconomic differences in colorectal cancer survival: potential gain in life-years

    Get PDF
    Background Colorectal cancer prognosis varies substantially with socioeconomic status. We investigated differences in life expectancy between socioeconomic groups and estimated the potential gain in life-years if cancer-related survival differences could be eliminated. Methods This population-based study included 470,000 individuals diagnosed with colon and rectal cancers between 1998 and 2013 in England. Using flexible parametric survival models, we obtained a range of life expectancy measures by deprivation status. The number of life-years that could be gained if differences in cancer-related survival between the least and most deprived groups were removed was also estimated. Results We observed up to 10% points differences in 5-year relative survival between the least and most deprived. If these differences had been eliminated for colon and rectal cancers diagnosed in 2013 then almost 8231 and 7295 life-years would have been gained respectively. This results for instance in more than 1-year gain for each colon cancer male patient in the most deprived group on average. Cancer-related differences are more profound earlier on, as conditioning on 1-year survival the main reason for socioeconomic differences were factors other than cancer. Conclusion This study highlights the importance of policies to eliminate socioeconomic differences in cancer survival as in this way many life-years could be gained

    Increased Dissolved Organic Carbon Concentrations in Peat‐Fed UK Water Supplies Under Future Climate and Sulfate Deposition Scenarios

    Get PDF
    Peatlands are globally‐important terrestrial carbon stores as well as regional sources of potable water supply. Water draining from peatlands is rich in dissolved organic carbon (DOC), which can be problematic for water treatment. However, it is unclear how future climate and sulfate deposition changes may impact DOC in peatland‐derived potable water. The United Kingdom (UK) is a global hotspot that consumes 79% of all potable water derived directly from peatlands. Here, a physically‐based hydrological model and a biogeochemical organic carbon model were used to predict discharge and DOC concentration in nine hotspots of peatland‐derived potable water use in the UK under a range of 21st century climate and sulfate deposition scenarios. These nine catchments supply 72% of all peatland‐derived water consumed in the UK and 57% of the global total, equivalent to the total domestic consumption of over 14 million people. Our simulations indicate that annual discharges will decrease and that mean annual DOC concentrations will increase under all future scenarios (by as much as 53.4% annually for the highest emissions scenario) in all catchments. Large increases (by as much as a factor of 1.6) in DOC concentration in the 2090s over the baseline period are projected for autumn and winter, seasons when DOC concentrations are already high in the baseline datasets such that water treatment works often reach their capacity to cope. The total DOC flux is largely insensitive to future climate change because the projected increase in DOC concentration is mostly counterbalanced by the projected decrease in discharge
    • 

    corecore