2,564 research outputs found
Student perceptions of their autonomy at University
© 2017, The Author(s). Learner autonomy is a primary learning outcome of Higher Education in many countries. However, empirical evaluation of how student autonomy progresses during undergraduate degrees is limited. We surveyed a total of 636 students’ self-perceived autonomy during a period of two academic years using the Autonomous Learning Scale. Our analysis suggests that students do not perceive themselves as being any more autonomous as they progress through University. Given the relativity of self-perception metrics, we suggest that our results evince a “red queen” effect. In essence, as course expectations increase with each year, each student’s self-perceived autonomy relative to their ideal remains constant; we term this the “moving goalpost” hypothesis. This article corroborates pedagogical literature suggesting that providing students with opportunities to act autonomously and develop confidence is key to developing graduates who have the independence that they need in order to be successful in the workplace
Conflict between background matching and social signalling in a colour-changing freshwater fish
The ability to change coloration allows animals to modify their patterning to suit a specific function. Many freshwater fishes, for example, can appear cryptic by altering the dispersion of melanin pigment in the skin to match the visual background. However, melanin-based pigments are also used to signal dominance among competing males; thus colour change for background matching may conflict with colour change for social status signalling. We used a colour-changing freshwater fish to investigate whether colour change for background matching influenced aggressive interactions between rival males. Subordinate males that had recently darkened their skin for background matching received heightened aggression from dominant males, relative to males whose coloration had not changed. We then determined whether the social status of a rival male, the focal male's previous social status, and his previous skin coloration, affected a male's ability to change colour for background matching. Social status influenced skin darkening in the first social encounter, with dominant males darkening more than subordinate males, but there was no effect of social status on colour change in the second social encounter. We also found that the extent of skin colour change (by both dominant and subordinate males) was dependent on previous skin coloration, with dark males displaying a smaller change in coloration than pale males. Our findings suggest that skin darkening for background matching imposes a significant social cost on subordinate males in terms of increased aggression. We also suggest that the use of melanin-based signals during social encounters can impede subsequent changes in skin coloration for other functions, such as skin darkening for background matching
Colour change and assortment in the western rainbowfish
Grouping behaviour is widespread across the animal kingdom, and is known to reduce an individual's risk of predation, for example through predator confusion. Theory predicts that individuals that are different in appearance to the rest of the group are at a greater risk of predation because they are more conspicuous to predators (the ‘oddity’ effect). Thus, animals should choose group mates that are the most similar in appearance to themselves. Another common antipredator tactic is crypsis (camouflage). Fishes are capable of changing colour to match their visual background, but few studies have examined how this might influence shoaling decisions, particularly in the context of the oddity effect. We induced colour pattern changes in a colourful species of freshwater fish, the western rainbowfish, Melanotaenia australis, by maintaining fish in dark and pale aquaria for 2 weeks. Analysis of the proportion of black body pigmentation confirmed that rainbowfish in dark environments developed darker colour patterns than those held in pale environments. We then conducted behavioural observations to determine whether fish subsequently based their shoaling decisions on body coloration. We found that rainbowfish preferred to shoal with similar individuals; fish that had been held in dark aquaria preferred to shoal with other dark fish and fish from pale aquaria preferred other pale fish. Our findings are consistent with the predictions of the oddity effect and demonstrate how morphological colour pattern changes and behavioural decisions interact to mediate antipredator tactics in fish
Handedness in fiddler crab fights
Asymmetric weapons are common in bilateral animals and, in some species, they can occur on either the left- or the right-hand side of the body (lateralization). Fiddler crabs (Uca spp, Decapoda: Ocypodidae) have an enlarged claw that is used in male–male combat over territories and in courtship displays. Males can be either right- or left-handed, and most species have a 1:1 ratio. Past studies have found little effect of handedness on fighting success, fight duration or other measures of combat. Here we show that, while handedness per se, does not affect fighting, handedness matching has a significant effect. In Uca mjoebergi, fights between different-handed males were more likely to escalate to grappling, suggesting that it is harder for the combatants to determine the winner. We suggest that the positioning of the claws during fighting creates distinct forces that result in different outcomes for same- versus different-handed fights. This can represent a strong selective pressure in populations with an uneven handedness distribution where the handedness minority will often engage in different-handed fights. We discuss these results in light of the selective forces that may act on handedness distribution in fiddler crabs
Building confidence using online healthcare simulations: a critical analysis through User Experience (UX) design
Healthcare learning simulations have grown and matured over the past 40 years on substantive and methodological grounds and looks to be increasing in the future. This small pilot study suggests a well-organised project can assess the usability of a simulation with a limited sample size, conducted over five weeks and with zero budget. This investigation asks, ‘What is the impact on the confidence level of healthcare workers (Nursing students) using learning simulations? Can computing science user experience testing techniques be used to generate evidence to validate the conclusions? A computing science user experience (UX) 5-part Sprint methodology was used to collect evidence from 30 undergraduate Nursing students who used an online 2D medical learning simulation. This cross-discipline project synthesised a variety of technologies and tools to collect data to inform the design of possible improvements to the UX design of the simulation. UX tests were performed to provide evidence on the Nursing students’ experience. Although there was not enough time to validate improvement on the Nurses’ knowledge and skills related to the simulation scenarios, the conclusion is that using the UX modified online medical learning simulation did have a positive impact on the Nurses’ confidence level. Further research is recommended to explore the use of Augmented Reality and 3D Virtual Reality rooms to promote the development of next generation simulation solutions
Comparative genomics approaches accurately predict deleterious variants in plants
Recent advances in genome resequencing have led to increased interest in prediction of the functional consequences of genetic variants. Variants at phylogenetically conserved sites are of particular interest, because they are more likely than variants at phylogenetically variable sites to have deleterious effects on fitness and contribute to phenotypic variation. Numerous comparative genomic approaches have been developed to predict deleterious variants, but the approaches are nearly always assessed based on their ability to identify known disease-causing mutations in humans. Determining the accuracy of deleterious variant predictions in nonhuman species is important to understanding evolution, domestication, and potentially to improving crop quality and yield. To examine our ability to predict deleterious variants in plants we generated a curated database of 2,910 Arabidopsis thaliana mutants with known phenotypes. We evaluated seven approaches and found that while all performed well, their relative ranking differed from prior benchmarks in humans. We conclude that deleterious mutations can be reliably predicted in A. thaliana and likely other plant species, but that the relative performance of various approaches does not necessarily translate from one species to another
Effect of Process Variables on Supercritical Fluid Impregnation of Composites with Tebuconazole
This study examines the effects of pressure, temperature, and treatment time on supercritical fluid impregnation of such composites as plywood, particleboard, flakeboard, and medium-density fiber-board. Carbon dioxide with methanol as a cosolvent was used as the supercritical fluid, with tebuconazole as the biocide. Biocide distribution, as measured by extraction and analysis, generally increased with pressure, temperature, and treatment time, although the retentions sometimes decreased at the highest pressure tested (4500 psig). In general, biocide retentions were far above those required for fungal protection, and the distribution was more uniform than that found with conventional pressure treatments. The results suggest that supercritical fluid impregnation represents a simple method for impregnating composites with biocides without the permanent damage typical of other treatment systems
Identification of red supergiants in nearby galaxies with mid-IR photometry
The role of episodic mass loss in massive star evolution is one of the most
important open questions of current stellar evolution theory. Episodic mass
loss produces dust and therefore causes evolved massive stars to be very
luminous in the mid-infrared and dim at optical wavelengths. We aim to increase
the number of investigated luminous mid-IR sources to shed light on the late
stages of these objects. To achieve this we employed mid-IR selection criteria
to identity dusty evolved massive stars in two nearby galaxies. The method is
based on mid-IR colors, using 3.6 {\mu}m and 4.5 {\mu}m photometry from
archival Spitzer Space Telescope images of nearby galaxies and J-band
photometry from 2MASS. We applied our criteria to two nearby star-forming dwarf
irregular galaxies, Sextans A and IC 1613, selecting eight targets, which we
followed up with spectroscopy. Our spectral classification and analysis yielded
the discovery of two M-type supergiants in IC 1613, three K-type supergiants
and one candidate F-type giant in Sextans A, and two foreground M giants. We
show that the proposed criteria provide an independent way for identifying
dusty evolved massive stars, that can be extended to all nearby galaxies with
available Spitzer/IRAC images at 3.6 {\mu}m and 4.5 {\mu}m.Comment: 8 pages, 4 figures, A&A in pres
An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation
Anillin is a conserved protein required for cell division (Field, C.M., and B.M. Alberts. 1995. J. Cell Biol. 131:165–178; Oegema, K., M.S. Savoian, T.J. Mitchison, and C.M. Field. 2000. J. Cell Biol. 150:539–552). One fission yeast homologue of anillin, Mid1p, is necessary for the proper placement of the division site within the cell (Chang, F., A. Woollard, and P. Nurse. 1996. J. Cell Sci. 109(Pt 1):131–142; Sohrmann, M., C. Fankhauser, C. Brodbeck, and V. Simanis. 1996. Genes Dev. 10:2707–2719). Here, we identify and characterize a second fission yeast anillin homologue, Mid2p, which is not orthologous with Mid1p. Mid2p localizes as a single ring in the middle of the cell after anaphase in a septin- and actin-dependent manner and splits into two rings during septation. Mid2p colocalizes with septins, and mid2Δ cells display disorganized, diffuse septin rings and a cell separation defect similar to septin deletion strains. mid2 gene expression and protein levels fluctuate during the cell cycle in a sep1- and Skp1/Cdc53/F-box (SCF)–dependent manner, respectively, implying that Mid2p activity must be carefully regulated. Overproduction of Mid2p depolarizes cell growth and affects the organization of both the septin and actin cytoskeletons. In the presence of a nondegradable Mid2p fragment, the septin ring is stabilized and cell cycle progression is delayed. These results suggest that Mid2p influences septin ring organization at the site of cell division and its turnover might normally be required to permit septin ring disassembly
Internal Pressure Measurement Techniques and Pressure Response in Wood During Treating Processes
The development of pressure inside wood during preservative impregnation was studied using Douglas-fir heartwood and ponderosa pine sapwood. Pressure sensors mounted on sample holders provided the most reliable measurements. As expected, pressure equilibrated most rapidly with air as the treatment medium and ponderosa pine as the test species. Pressure changes were relatively slow in Douglas-fir heartwood, suggesting that process conditions involving relatively rapid changes in pressure conditions will have little effect on fluid penetration away from the wood surface
- …