166 research outputs found

    iPTF14hls as a variable hyper-wind from a very massive star

    Get PDF
    The origin of iPTF14hls, which had Type IIP supernova-like spectra but kept bright for almost two years with little spectral evolution, is still unclear. We here propose that iPTF14hls was not a sudden outburst like supernovae but rather a long-term outflow similar to stellar winds. The properties of iPTF14hls, which are at odds with a supernova scenario, become natural when interpreted as a stellar wind with variable mass-loss rate. Based on the wind hypothesis, we estimate the mass-loss rates of iPTF14hls in the bright phase. We find that the instantaneous mass-loss rate of iPTF14hls during the 2-yr bright phase was more than a few M⊙ yr−1 (‘hyper-wind’) and it reached as much as 10 M⊙ yr−1 . The total mass lost over two years was about 10 M⊙. Interestingly, we find that the light curve of iPTF14hls has a very similar shape to that of η Carinae during the Great Eruption, which also experienced a similar but less extreme brightening accompanied by extraordinary mass-loss, shedding more than 10 M⊙ in 10 yr. The progenitor of iPTF14hls is less than 150 M⊙ if it still exists, which is similar to η Carinae. The two phenomena may be related to a continuum-driven extreme wind from very massive stars

    Synthetic spectra of energetic core-collapse supernovae and the early spectra of SN 2007bi and SN 1999as

    Get PDF
    SN 2007bi and SN 1999as are among the first superluminous supernovae discovered. SN 2007bi was suggested to be powered by the radioactive decay of a large amount (5-10 M) of 56Ni. SN 1999as has a similar spectrum to SN 2007bi. One suggested way to synthesize such a large amount of 56Ni is through energetic core-collapse supernovae from very massive progenitors. Although the synthetic light curves of extremely energetic core-collapse supernovae have been shown to be consistent with SN 2007bi, no synthetic spectra have been reported. Here, we present synthetic spectra of extremely energetic core-collapse supernovae during the photospheric phases. We find that the ejecta density structure above 13 000-16 000 km s−1 needs to be cut in order to explain the coexisting broad- and narrow-line absorptions in SN 2007bi and SN 1999as. The density cut is likely caused by the interaction between the supernova ejecta and a dense circumstellar medium. Our results indicate that about 3 M of hydrogen-free dense circumstellar media might exist near the progenitors of SN 2007bi and SN 1999as. These massive circumstellar media would significantly affect the light curve and spectral properties of the supernovae. The precursors that are sometimes observed in superluminous supernovae might be related to the collision of the ejecta with such dense circumstellar media. We also confirm results of previous studies that synthetic spectra from pair-instability supernova models do not match the early spectra of SN 2007bi and SN 1999as. © 2019 The Author(s)

    The nature of PISN candidates: Clues from nebular spectra

    Get PDF
    A group of superluminous supernovae characterized by broad light curves have been suggested to be pair instability SNe (PISNe). Nebular spectra computed using PISN models have failed to reproduce the broad emission lines observed in these SNe, casting doubts on their true nature. Here, models of both PISNe and the explosion following the collapse of the core of a very massive star (100MΘ) are used to compute nebular spectra, which are compared to the spectrum of the prototypical PISN candidate, SN 2007bi. PISN models are confirmed to produce synthetic spectra showing narrow emission lines, resulting from the confinement of 56Ni to the lowest velocities (≤ 2000 km s-1) and in clear disagreement with the spectrum of SN 2007bi. Spectra more closely resembling SN2007bi are obtained if the PISN models are fully mixed in abundance. Massive core-collapse models produce enough 56Ni to power the light curve of PISN candidates, but their spectra are also not adequate. The nebular spectrum of SN 2007bi can be successfully reproduced if the inner region is artificially filled with oxygenrich, low-velocity ejecta. This most likely requires a grossly aspherical explosion. A major difference between PISN and massive collapse models is that the former emit much more strongly in the NIR. It is concluded that: (a) current PISN candidates, in particular SN 2007bi, are more likely the result of the collapse and explosion of massive stars below the PI limit; (b) significant asymmetry is required to reproduce the late-time spectrum of SN2007bi. © 2019 The Author(s)

    Early excess emission in Type Ia supernovae from the interaction between supernova ejecta and their circumstellar wind

    Get PDF
    The effects of the interaction between Type Ia supernova ejecta and their circumstellar wind on the photometric properties of Type Ia supernovae are investigated. We assume that a hydrogen-rich, dense, and extended circumstellar matter (CSM) is formed by the steady mass-loss of their progenitor systems. The CSM density is assumed to be proportional to r−2. When the mass-loss rate is above 10−4 M⊙ yr−1 with a wind velocity of 100 km s−1, CSM interaction results in an early flux excess in optical light curves within 4 d of explosion. In these cases, the optical colour quickly evolves to the blue. The ultraviolet flux below 3000 Å is found to have a persistent flux excess compared to Type Ia supernovae as long as CSM interaction continues. Type Ia supernovae with progenitor mass-loss rates between 10−4 and 10−3 M⊙ yr−1 may not have a CSM that is dense enough to affect spectra to make them Type Ia CSM, but they may still result in Type Ia supernovae with an early optical flux excess. Because they have a persistent ultraviolet flux excess, ultraviolet light curves around the luminosity peak would be significantly different from those with a low-density CSM

    Late-phase Spectropolarimetric Observations of Superluminous Supernova SN 2017egm to Probe the Geometry of the Inner Ejecta

    Get PDF
    We present our spectropolarimetric observations of SN 2017egm, a Type I superluminous supernova (SLSN-I) in a nearby galaxy NGC 3191, with the Subaru telescope at +185.0 days after the g-band maximum light. This is the first spectropolarimetric observation for SLSNe at late phases. We find that the degree of the polarization in the late phase significantly changes from that measured at the earlier phase. The spectrum at the late phase shows a strong Ca emission line and therefore we reliably estimate the interstellar polarization (ISP) component assuming that the emission line is intrinsically unpolarized. By subtracting the estimated ISP, we find that the intrinsic polarization at the early phase is only ~0.2%, which indicates an almost spherical photosphere, with an axial ratio ~1.05. The intrinsic polarization at the late phase increases to ~0.8%, which corresponds to the photosphere with an axial ratio ~1.2. A nearly constant position angle of the polarization suggests the inner ejecta are almost axisymmetric. By these observations, we conclude that the inner ejecta are more aspherical than the outer ejecta. This may suggest the presence of a central energy source producing aspherical inner ejecta

    Supernova Remnants as Clues to Their Progenitors

    Full text link
    Supernovae shape the interstellar medium, chemically enrich their host galaxies, and generate powerful interstellar shocks that drive future generations of star formation. The shock produced by a supernova event acts as a type of time machine, probing the mass loss history of the progenitor system back to ages of \sim 10 000 years before the explosion, whereas supernova remnants probe a much earlier stage of stellar evolution, interacting with material expelled during the progenitor's much earlier evolution. In this chapter we will review how observations of supernova remnants allow us to infer fundamental properties of the progenitor system. We will provide detailed examples of how bulk characteristics of a remnant, such as its chemical composition and dynamics, allow us to infer properties of the progenitor evolution. In the latter half of this chapter, we will show how this exercise may be extended from individual objects to SNR as classes of objects, and how there are clear bifurcations in the dynamics and spectral characteristics of core collapse and thermonuclear supernova remnants. We will finish the chapter by touching on recent advances in the modeling of massive stars, and the implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin (18 pages, 6 figures

    PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses

    Get PDF
    The hydrogen-poor supernova PTF11rka (z = 0.0744), reported by the Palomar Transient Factory, was observed with various telescopes starting a few days after the estimated explosion time of 2011 Dec. 5 UT and up to 432 rest-frame days thereafter. The rising part of the light curve was monitored only in the R_PTF filter band, and maximum in this band was reached ~30 rest-frame days after the estimated explosion time. The light curve and spectra of PTF11rka are consistent with the core-collapse explosion of a ~10 Msun carbon-oxygen core evolved from a progenitor of main-sequence mass 25--40 Msun, that liberated a kinetic energy (KE) ~ 4 x 10^{51} erg, expelled ~8 Msun of ejecta (Mej), and synthesised ~0.5 Msun of 56Nichel. The photospheric spectra of PTF11rka are characterised by narrow absorption lines that point to suppression of the highest ejecta velocities ~>15,000 km/s. This would be expected if the ejecta impacted a dense, clumpy circumstellar medium. This in turn caused them to lose a fraction of their energy (~5 x 10^50 erg), less than 2% of which was converted into radiation that sustained the light curve before maximum brightness. This is reminiscent of the superluminous SN 2007bi, the light-curve shape and spectra of which are very similar to those of PTF11rka, although the latter is a factor of 10 less luminous and evolves faster in time. PTF11rka is in fact more similar to gamma-ray burst supernovae (GRB-SNe) in luminosity, although it has a lower energy and a lower KE/Mej ratio

    A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary.

    Get PDF
    Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050 ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems

    The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system

    Get PDF
    We present and analyse an extensive dataset of the superluminous supernova (SLSN) LSQ14mo (z = 0.256), consisting of a multi-colour light curve from-30 d to +70 d in the rest-frame (relative to maximum light) and a series of six spectra from PESSTO covering-7 d to +50 d. This is among the densest spectroscopic coverage, and best-constrained rising light curve, for a fast-declining hydrogen-poor SLSN. The bolometric light curve can be reproduced with a millisecond magnetar model with 4 M⊙ ejecta mass, and the temperature and velocity evolution is also suggestive of a magnetar as the power source. Spectral modelling indicates that the SN ejected 6 M⊙ of CO-rich material with a kinetic energy of 7 × 1051 erg, and suggests a partially thermalised additional source of luminosity between-2 d and +22 d. This may be due to interaction with a shell of material originating from pre-explosion mass loss. We further present a detailed analysis of the host galaxy system of LSQ14mo. PESSTO and GROND imaging show three spatially resolved bright regions, and we used the VLT and FORS2 to obtain a deep (five-hour exposure) spectra of the SN position and the three star-forming regions, which are at a similar redshift. The FORS2 spectrum at + 300 days shows no trace of SN emission lines and we place limits on the strength of [O i] from comparisons with other Ic supernovae. The deep spectra provides a unique chance to investigate spatial variations in the host star-formation activity and metallicity. The specific star-formation rate is similar in all three components,as is the presence of a young stellar population. However, the position of LSQ14mo exhibits a lower metallicity, with 12 + log (O/H) = 8.2 in both the R23 and N2 scales (corresponding to 0.3 Z⊙). We propose that the three bright regions in the host system are interacting, which could induce gas flows triggering star formation in low-metallicity regions. © ESO, 2017

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio
    corecore