98 research outputs found

    Metastatic Patterns of Myxoid/Round Cell Liposarcoma: A Review of a 25-Year Experience

    Get PDF
    Myxoid/round cell liposarcoma (MRCL), unlike other soft tissue sarcomas, has been associated with unusual pattern of metastasis to extrapulmonary sites. In an attempt to elucidate the clinical features of MRCL with metastatic lesions, 58 cases, from the medical database of Keio University Hospital were used for the evaluation. 47 patients (81%) had no metastases, whereas 11 patients (11%) had metastases during their clinical course. Among the 11 patients with metastatic lesions, 8 patients (73%) had extrapulmonary metastases and 3 patients (27%) had pulmonary metastases. Patients were further divided into three groups; without metastasis, with extrapulmonary metastasis, and with pulmonary metastasis. When the metastatic patterns were stratified according to tumor size, there was statistical significance between the three groups (P = 0.028). The 8 cases with extrapulmonary metastases were all larger than 10 cm. Similarly, histological grading had a significant impact on metastatic patterns (P = 0.027). 3 cases with pulmonary metastatic lesions were all diagnosed as high grade. In conclusion, large size and low histological grade were significantly associated with extrapulmonary metastasis

    Phagocytosis of Advanced Glycation End Products (AGEs) in Macrophages Induces Cell Apoptosis

    Get PDF
    Advanced glycation end products (AGEs) are the products of a series of nonenzymatic modifications of proteins by reducing sugars. AGEs play a pivotal role in development of diabetic complications and atherosclerosis. Accumulation of AGEs in a vessel wall may contribute to the development of vascular lesions. Although AGEs have a diverse range of bioactivities, the clearance process of AGEs from the extracellular space, including the incorporation of AGEs into specific cells, subcellular localization, and the fate of AGEs, remains unclear. In the present study, we examined the kinetics of the uptake of AGEs by mouse macrophage J774.1 cells in vitro and characterized the process. We demonstrated that AGEs bound to the surface of the cells and were also incorporated into the cytoplasm. The temperature- and time-dependent uptake of AGEs was saturable with AGE concentration and was inhibited by cytochalasin D but not chlorpromazine. We also observed the granule-like appearance of AGE immunoreactivity in subcellular localizations in macrophages. Higher concentrations of AGEs induced intracellular ROS and 4-HNE, which were associated with activation of the NF-κB pathway and caspase-3. These results suggest that incorporation of AGEs occurred actively by endocytosis in macrophages, leading to apoptosis of these cells through NF-κB activation

    Natural evolution of desmoplastic fibroblastoma on magnetic resonance imaging: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Desmoplastic fibroblastoma (collagenous fibroma) is a recently described tumor thought to arise predominantly from subcutaneous tissue or skeletal muscle. The natural evolution of this tumor on magnetic resonance imaging has never been described, to the best of our knowledge. We herein report a case of desmoplastic fibroblastoma arising in the thigh and show the longitudinal magnetic resonance imaging findings.</p> <p>Case presentation</p> <p>A 60-year-old Japanese man presented with swelling of the medial side of his right thigh, and he complained of nighttime pain and slight tenderness. Magnetic resonance imaging demonstrated a 4 × 4 cm mass in the right thigh. Open biopsy was performed. The mass was diagnosed histologically as a benign fibrous tumor, and we maintained follow-up without surgical therapy. After one year, magnetic resonance imaging showed an increase in tumor size to 4 × 5 cm, but the histologic findings were the same as those obtained one year earlier. Resection was performed with narrow surgical margins. Pathologic diagnosis was desmoplastic fibroblastoma. Two years after surgery, the patient is free from pain and shows no signs or symptoms of recurrence.</p> <p>Conclusion</p> <p>The natural evolution of desmoplastic fibroblastoma is characterized by no changes in patterns on magnetic resonance imaging despite increasing size. This finding is clinically helpful for distinguishing desmoplastic fibroblastoma with increasing pain from the desmoid tumor.</p

    The optimal cut-off values for tumor size, number of lesions, and CEA levels in patients with surgically treated colorectal cancer liver metastases: An international, multi-institutional study

    Get PDF
    Background and Objectives Despite the long-standing consensus on the importance of tumor size, tumor number and carcinoembryonic antigen (CEA) levels as predictors of long-term outcomes among patients with colorectal liver metastases (CRLM), optimal prognostic cut-offs for these variables have not been established. Methods Patients who underwent curative-intent resection of CRLM and had available data on at least one of the three variables of interest above were selected from a multi-institutional dataset of patients with known KRAS mutational status. The resulting cohort was randomly split into training and testing datasets and recursive partitioning analysis was employed to determine optimal cut-offs. The concordance probability estimates (CPEs) for these optimal cut offs were calculated and compared to CPEs for the most widely used cut-offs in the surgical literature. Results A total of 1643 patients who met eligibility criteria were identified. Following recursive partitioning analysis in the training dataset, the following cut-offs were identified: 2.95 cm for tumor size, 1.5 for tumor number and 6.15 ng/ml for CEA levels. In the entire dataset, the calculated CPEs for the new tumor size (0.52), tumor number (0.56) and CEA (0.53) cut offs exceeded CPEs for other commonly employed cut-offs. Conclusion The current study was able to identify optimal cut-offs for the three most commonly employed prognostic factors in CRLM. While the per variable gains in discriminatory power are modest, these novel cut-offs may help produce appreciable increases in prognostic performance when combined in the context of future risk scores.publishedVersio

    The optimal cut‐off values for tumor size, number of lesions, and CEA levels in patients with surgically treated colorectal cancer liver metastases: An international, multi‐institutional study

    Get PDF
    Background and Objectives: Despite the long-standing consensus on the importance of tumor size, tumor number and carcinoembryonic antigen (CEA) levels as predictors of long-term outcomes among patients with colorectal liver metastases (CRLM), optimal prognostic cut-offs for these variables have not been established. Methods: Patients who underwent curative-intent resection of CRLM and had available data on at least one of the three variables of interest above were selected from a multi-institutional dataset of patients with known KRAS mutational status. The resulting cohort was randomly split into training and testing datasets and recursive partitioning analysis was employed to determine optimal cut-offs. The concordance probability estimates (CPEs) for these optimal cut offs were calculated and compared to CPEs for the most widely used cut-offs in the surgical literature. Results: A total of 1643 patients who met eligibility criteria were identified. Following recursive partitioning analysis in the training dataset, the following cut-offs were identified: 2.95 cm for tumor size, 1.5 for tumor number and 6.15 ng/ml for CEA levels. In the entire dataset, the calculated CPEs for the new tumor size (0.52), tumor number (0.56) and CEA (0.53) cut offs exceeded CPEs for other commonly employed cut-offs. Conclusion: The current study was able to identify optimal cut-offs for the three most commonly employed prognostic factors in CRLM. While the per variable gains in discriminatory power are modest, these novel cut-offs may help produce appreciable increases in prognostic performance when combined in the context of future risk scores

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The Blimp1–Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis

    Get PDF
    Controlling osteoclastogenesis is critical to maintain physiological bone homeostasis and prevent skeletal disorders. Although signaling activating nuclear factor of activated T cells 1 (NFATc1), a transcription factor essential for osteoclastogenesis, has been intensively investigated, factors antagonistic to NFATc1 in osteoclasts have not been characterized. Here, we describe a novel pathway that maintains bone homeostasis via two transcriptional repressors, B cell lymphoma 6 (Bcl6) and B lymphocyte–induced maturation protein-1 (Blimp1). We show that Bcl6 directly targets ‘osteoclastic’ molecules such as NFATc1, cathepsin K, and dendritic cell-specific transmembrane protein (DC-STAMP), all of which are targets of NFATc1. Bcl6-overexpression inhibited osteoclastogenesis in vitro, whereas Bcl6-deficient mice showed accelerated osteoclast differentiation and severe osteoporosis. We report that Bcl6 is a direct target of Blimp1 and that mice lacking Blimp1 in osteoclasts exhibit osteopetrosis caused by impaired osteoclastogenesis resulting from Bcl6 up-regulation. Indeed, mice doubly mutant in Blimp1 and Bcl6 in osteoclasts exhibited decreased bone mass with increased osteoclastogenesis relative to osteoclast-specific Blimp1-deficient mice. These results reveal a Blimp1–Bcl6–osteoclastic molecule axis, which critically regulates bone homeostasis by controlling osteoclastogenesis and may provide a molecular basis for novel therapeutic strategies
    corecore