6,215 research outputs found

    Évaluation de l'applicabilité d'une méthode statistique aux variations saisonnières des relations concentration-débit sur un petit cours d'eau

    Get PDF
    Les paramètres chimiques jouent un rôle important dans l'équilibre des écosystèmes aquatiques. De nombreuses études ont déjà démontré que les caractéristiques chimiques d'un cours d'eau peuvent changer avec les saisons. Cette étude a pour but de revoir les relations débit- concentration sur un petit cours d'eau, dans le contexte des variations entre deux périodes climatiques. Pour ce faire, une analyse de régression entre le débit et six paramètres de qualité de d'eau (sodium, magnésium, conductivité, pH, azote total et le carbone organique dissous) provenant d'un petit bassin versant forestier (ruisseau Catamaran, N.-B., Canada) a été réalisée afin de déterminer la différence entre la saison sans glace et la saison avec glace. Des échantillons mensuels d'eau ont été récoltés sur le ruisseau Catamaran depuis 1990. Les analyses chimiques faites sur ses échantillons ont permis de déterminer les concentrations des paramètre étudiés. La plupart des variables de qualité ont démontré une relation significative avec le débit, sauf l'azote total. Les coefficients de détermination variaient entre 0.752 et 0.898, exception faite du carbone organique dissous dont le r2 était de 0.294. La conductivité était le paramètre dont le débit expliquait le plus la variance. Une étude des rapports des sommes des carrés des résidus a permis de déterminer que seul le pH requiert un modèle différent pour la période sans glace et la saison avec glace. Les variations saisonnières de la relation débit-pH revêt une importance significative pour les ruisseaux comme celui de Catamaran, qui incluent de nombreux habitats pour le saumon de l'Atlantique. Les résultats des analyses de régressions indiquent que lorsque la géochimie est plus complexe, comme c'est le cas pour le pH, il faut diviser les séries temporelles en sous-composantes saisonnières avant de tenter d'établir une relation débit-concentration.The chemical composition of water is of great importance to ecosystem functioning and in habitat management. Many studies have already shown that the chemical characteristics of a stream change with seasons. These variations have a strong impact on the ecosystem, especially on fish populations. The objective of this study is to quantify the relationship between the logarithm of discharge and six water quality parameters (sodium, magnesium, conductivity, pH, dissolved organic carbon and total nitrogen) for a small forested catchment (Catamaran Brook, N.B., Canada) and to verify the importance of seasonality. Monthly water samples have been gathered at Catamaran Brook since 1990. Detailed water chemistry performed on these samples provided a data base for this project. Various linear regression models were tested to verify if regressions were required for the winter season. The criterion used was the ratio of the squared sum of residuals for each data set, which follows a Fisher distribution. Of the six water quality parameters, all except total nitrogen showed a significant relationship with discharge. On an annual basis, the coefficient of determination (r2) varied between 0.752 and 0.898, except for dissolved organic carbon which showed a r2 of 0.294. Of the studied parameters, conductivity was the parameter for which discharge explained the most variance. Ratios of the squared sum of residuals were analyzed to verify the need for different regression models for the ice-covered and ice-free seasons. Only streamwater pH required 2 different models. This is of specific importance and interest because of an important salmon population in Catamaran Brook. Other researchers have shown that salmonids can be negatively impacted by pH depressions during snowmelt events.These results show that most dissolved ions which follow simple geochemical reactions can be modelled year-round with only one linear regression. When the geochemistry is more complex, such as in the case of pH, linear regression models can sometimes be used, provided that the annual time-series is divided into seasons with relatively homogenous hydrological and geochemical functions

    A universal optical all-fiber omnipolarizer

    Get PDF
    Wherever the polarization properties of a light beam are of concern, polarizers and polarizing beamsplitters (PBS) are indispensable devices in linear-, nonlinear-and quantum-optical schemes. By the very nature of their operation principle, transformation of incoming unpolarized or partially polarized beams through these devices introduces large intensity variations in the fully polarized outcoming beam(s). Such intensity fluctuations are often detrimental, particularly when light is post-processed by nonlinear crystals or other polarization-sensitive optic elements. Here we demonstrate the unexpected capability of light to self-organize its own state-of-polarization, upon propagation in optical fibers, into universal and environmentally robust states, namely right and left circular polarizations. We experimentally validate a novel polarizing device-the Omnipolarizer, which is understood as a nonlinear dual-mode polarizing optical element capable of operating in two modes-as a digital PBS and as an ideal polarizer. Switching between the two modes of operation requires changing beam's intensity

    Modelling of fatigue damage in aluminum cylinder heads

    No full text
    International audienceCar manufacturers are very much concerned with thermal fatigue ....

    On the monitoring of surface displacement in connection with volcano reactivation in Tenerife, Canary Islands, using space techniques

    Get PDF
    Geodetic volcano monitoring in Tenerife has mainly focused on the Las Cañadas Caldera, where a geodetic micronetwork and a levelling profile are located. A sensitivity test of this geodetic network showed that it should be extended to cover the whole island for volcano monitoring purposes. Furthermore, InSAR allowed detecting two unexpected movements that were beyond the scope of the traditional geodetic network. These two facts prompted us to design and observe a GPS network covering the whole of Tenerife that was monitored in August 2000. The results obtained were accurate to one centimetre, and confirm one of the deformations, although they were not definitive enough to confirm the second one. Furthermore, new cases of possible subsidence have been detected in areas where InSAR could not be used to measure deformation due to low coherence. A first modelling attempt has been made using a very simple model and its results seem to indicate that the deformation observed and the groundwater level variation in the island may be related. Future observations will be necessary for further validation and to study the time evolution of the displacements, carry out interpretation work using different types of data (gravity, gases, etc) and develop models that represent the island more closely. The results obtained are important because they might affect the geodetic volcano monitoring on the island, which will only be really useful if it is capable of distinguishing between displacements that might be linked to volcanic activity and those produced by other causes. One important result in this work is that a new geodetic monitoring system based on two complementary techniques, InSAR and GPS, has been set up on Tenerife island. This the first time that the whole surface of any of the volcanic Canary Islands has been covered with a single network for this purpose. This research has displayed the need for further similar studies in the Canary Islands, at least on the islands which pose a greater risk of volcanic reactivation, such as Lanzarote and La Palma, where InSAR techniques have been used already

    UVMag: stellar formation, evolution, structure and environment with space UV and visible spectropolarimetry

    Full text link
    Important insights into the formation, structure, evolution and environment of all types of stars can be obtained through the measurement of their winds and possible magnetospheres. However, this has hardly been done up to now mainly because of the lack of UV instrumentation available for long periods of time. To reach this aim, we have designed UVMag, an M-size space mission equipped with a high-resolution spectropolarimeter working in the UV and visible spectral range. The UV domain is crucial in stellar physics as it is very rich in atomic and molecular lines and contains most of the flux of hot stars. Moreover, covering the UV and visible spectral domains at the same time will allow us to study the star and its environment simultaneously. Adding polarimetric power to the spectrograph will multiply tenfold the capabilities of extracting information on stellar magnetospheres, winds, disks, and magnetic fields. Examples of science objectives that can be reached with UVMag are presented for pre-main sequence, main sequence and evolved stars. They will cast new light onto stellar physics by addressing many exciting and important questions. UVMag is currently undergoing a Research and Technology study and will be proposed at the forthcoming ESA call for M-size missions. This spectropolarimeter could also be installed on a large UV and visible observatory (e.g. NASA's LUVOIR project) within a suite of instruments.Comment: Accepted in ApSS's special volume on UV astronom

    Superconductivity on the threshold of magnetism in CePd2Si2 and CeIn3

    Full text link
    The magnetic ordering temperature of some rare earth based heavy fermion compounds is strongly pressure-dependent and can be completely suppressed at a critical pressure, pc_c, making way for novel correlated electron states close to this quantum critical point. We have studied the clean heavy fermion antiferromagnets CePd2_2Si2_2 and CeIn3_3 in a series of resistivity measurements at high pressures up to 3.2 GPa and down to temperatures in the mK region. In both materials, superconductivity appears in a small window of a few tenths of a GPa on either side of pc_c. We present detailed measurements of the superconducting and magnetic temperature-pressure phase diagram, which indicate that superconductivity in these materials is enhanced, rather than suppressed, by the closeness to magnetic order.Comment: 11 pages, including 9 figure

    Nonperturbative Matching for Field Theories with Heavy Fermions

    Full text link
    We examine a paradox, suggested by Banks and Dabholkar, concerning nonperturbative effects in an effective field theory which is obtained by integrating out a generation of heavy fermions, where the heavy fermion masses arise from Yukawa couplings. They argue that light fermions in the effective theory appear to decay via instanton processes, whereas their decay is forbidden in the full theory. We resolve this paradox by showing that such processes in fact do not occur in the effective theory, due to matching corrections which cause the relevant light field configurations to have infinite action.Comment: 10 pages, no figures, uses harvmac, Harvard University Preprint HUTP-93/A03

    Magnetic cycles of the planet-hosting star Tau Bootis: II. a second magnetic polarity reversal

    Full text link
    In this paper, we present new spectropolarimetric observations of the planet-hosting star Tau Bootis, using ESPaDOnS and Narval spectropolarimeters at Canada-France-Hawaii Telescope (CFHT) and Telescope Bernard Lyot (TBL), respectively. We detected the magnetic field of the star at three epochs in 2008. It is a weak magnetic field of only a few Gauss, oscillating between a predominant toroidal component in January and a dominant poloidal component in June and July. A magnetic polarity reversal was observed relative to the magnetic topology in June 2007. This is the second such reversal observed in two years on this star, suggesting that Tau Boo has a magnetic cycle of about 2 years. This is the first detection of a magnetic cycle for a star other than the Sun. The role of the close-in massive planet in the short activity cycle of the star is questioned. Tau Boo has strong differential rotation, a common trend for stars with shallow convective envelope. At latitude 40 deg., the surface layer of the star rotates in 3.31 d, equal to the orbital period. Synchronization suggests that the tidal effects induced by the planet may be strong enough to force at least the thin convective envelope into corotation. Tau Boo shows variability in the Ca H & K and Halpha throughout the night and on a night to night time scale. We do not detect enhancement in the activity of the star that may be related to the conjunction of the planet. Further data is needed to conclude about the activity enhancement due to the planet.Comment: 9 pages, 5 figures, 3 tables Accepted to MNRA

    Magnetic field and wind of Kappa Ceti: towards the planetary habitability of the young Sun when life arose on Earth

    Full text link
    We report magnetic field measurements for Kappa1~Cet, a proxy of the young Sun when life arose on Earth. We carry out an analysis of the magnetic properties determined from spectropolarimetric observations and reconstruct its large-scale surface magnetic field to derive the magnetic environment, stellar winds and particle flux permeating the interplanetary medium around Kappa1~Cet. Our results show a closer magnetosphere and mass-loss rate of Mdot = 9.7 x 10^{-13} Msol/yr, i.e., a factor 50 times larger than the current solar wind mass-loss rate, resulting in a larger interaction via space weather disturbances between the stellar wind and a hypothetical young-Earth analogue, potentially affecting the planet's habitability. Interaction of the wind from the young Sun with the planetary ancient magnetic field may have affected the young Earth and its life conditionsComment: 6 pages, 5 figures, Published at the Astrophysical Journal Letters (ApJL): Manuscript #LET3358
    corecore