13 research outputs found

    Assessing the State of Demersal Fish to Address Formal Ecosystem Based Management Needs: Making Fisheries Independent Trawl Survey Data ‘Fit for Purpose’

    Get PDF
    In Europe, introduction of the Marine Strategy Framework Directive (MSFD) represents formal, legally-binding, adoption of ecosystem-based management (EBM) across most European waters. Member States of the European Union have invariably nominated their groundfish surveys as part of the marine monitoring programs required under the MSFD. Groundfish surveys were originally intended to provide fisheries independent abundance indices for commercially valuable species to support fisheries stock assessments and fisheries management. However, early studies, primarily intended to make the case for the need for EBM, exposed these data to a broader range of uses and highlighted various data quality issues. Individual scientists, pursuing personal research agendas, addressed these as each thought best. This informal approach to assuring data quality is not sufficient to support formal assessments of fish species status and fish community status required under legally-mandated EBM, such as the MSFD, because quality audit, formal logging of issues identified, and remedial measures taken, is often lacking. Groundfish survey data, needed to implement legally-mandated EBM, should be subjected to a formal Quality Assurance–Quality Audit (QAQA) process to ensure that they are properly fit for purpose. This paper describes a QAQA process applied European groundfish survey data to ensure their adequacy to support MSFD needs and considers how this process might be taken forward in the future

    A feeding guild indicator to assess environmental change impacts on marine ecosystem structure and functioning.

    Get PDF
    Integrating food web indicators into ecological status assessments is central to developing effective management measures that can improve degraded ecosystems. This is because they can reveal how ecosystems respond to environmental change that cannot be inferred from studying habitat, species or assemblages alone. However, the substantial investment required to monitor food webs (e.g. via stomach contents analysis) and the lack of internationally agreed approaches to assessing them has hampered their development. Inventories of trophic interactions have been collated world-wide and across biomes, and can be applied to infer food web structure and energy flow. Here, we compile a new marine dataset containing 8,092 unique predator–prey interactions from 415,294 fish stomachs. We demonstrate how feeding guilds (i.e. groupings based on diet and life stage) could be defined systematically and in a way that is conducive to their application internationally across ecosystems; and apply them to the North Sea fish assemblage to demonstrate their responsiveness to anthropogenic pressures. We found evidence for seven distinct feeding guilds. Differences between guilds were related to predator size, which positively correlated with piscivory, phylogeny, with multiple size classes of a species often in the same guild, and habitat, as pelagic, benthic and shallow-coastal foraging was apparent. Guild biomasses were largely consistent through time at the North Sea-level and spatially aggregated at the regional level with change relating to changes in resource availability, temperature, fishing and the biomass of other guilds. This suggests that fish biomass was partitioned across broad feeding and environmental niches, and changes over time were governed partly by guild carrying capacities, but also by a combination of covariates with contrasting patterns of change. Management of the North Sea ecosystem could therefore be adaptive and focused towards specific guilds and pressures in a given area. Synthesis and applications. We propose a food web indicator which has been explicitly called for to inform policy via food web status assessment as part of the European Union's Marine Strategy Framework Directive and the indicator toolkit supporting The Convention for the Protection of the Marine Environment of the North-East Atlantic (the ‘OSPAR Convention’)

    Workshop on the production of swept-area estimates for all hauls in DATRAS for biodiver-sity assessments (WKSAE-DATRAS)

    Get PDF
    The workshop on the production of swept-area estimates for all hauls in DATRAS for biodiver-sity assessments (WKSAE-DATRAS) considered three groups of surveys for which data are sub-mitted to the Database of Trawl Surveys (DATRAS): various Beam Trawl Surveys, the Northeast Atlantic International Bottom Trawl Survey (Northeast Atlantic IBTS), and the North Sea Inter-national Bottom Trawl Survey (North Sea IBTS). All countries contributing to the above-mentioned surveys were represented by at least one par-ticipant during the workshop, apart from the Netherlands and Norway. The main objectives of the workshop were to establish tow-by-tow swept-area estimates for time-series as far back in time as possible, compare different approaches for the estimates of missing observations, and harmonize the resulting dataseries for biodiversity assessments. For all of the surveys considered, problems with data quality were detected. This included the Beam Trawl Surveys but was most pronounced for the North Sea IBTS. Outliers and potential erroneous data were listed for reporting back to the respective national institutes. In particular, missing observations or algorithms affected wing spread-based swept-area, which is needed in several applications. This workshop compared the Marine Scotland Science-MSS/OSPAR approach, which includes a data quality check for the information needed for the calculation of swept-area, and the DATRAS approach, which depends solely on correctly reported data from the national institutes. Larger data gaps were identified, in particular for several years of the North Sea IBTS. For those surveys, it is proposed that the best possible way forward at this moment is to use estimates based on the MSS/OSPAR approach. However, if dubious records (i.e. extreme outliers) were identified by the MSS/OSPAR and no other information was available, values (e.g. speed over ground or the depth at which a change from short to long sweeps should have happened) were taken from the manual. However, expe-rience has shown that the survey manuals are not followed in all instances, and so persistent country-specific and survey-specific deviations may occur. The national institutes are encouraged to check, correct, and fill in missing survey data through re-submissions to DATRAS. It is recommended that DATRAS data quality control on data sub-mission is extended for the information needed for the calculation of swept-area (e.g. distance, depth, door spread, and wing spread) and that this is done in close cooperation between the ICES Data Centre and the respective ICES survey working groups, WGBEAM (Working Group on Beam Trawl Surveys) and IBTSWG (International Bottom Trawl Survey Working Group).info:eu-repo/semantics/publishedVersio

    A gap analysis on modelling of sea lice infection pressure from salmonid farms. I. A structured knowledge review

    Get PDF
    Sustainability of aquaculture, an important component of the blue economy, relies in part on ensuring assessment of environmental impact and interactions relating to sea lice dispersing from open pen salmon and trout farms. We review research underpinning the key stages in the sea lice infection process to support modelling of lice on wild salmon in relation to those on farms. The review is split into 5 stages: larval production; larval transport and survival; exposure and infestation of new hosts; development and survival of the attached stages; and impact on host populations. This modular structure allows the existing published data to be reviewed and assessed to identify data gaps in modelling sea lice impacts in a systematic way. Model parameterisation and parameter variation is discussed for each stage, providing an overview of knowledge strength and gaps. We conclude that a combination of literature review, empirical data collection and modelling studies are required on an iterative basis to ensure best practice is applied for sustainable aquaculture. The knowledge gained can then be optimised and applied at regional scales, with the most suitable modelling frameworks applied for the system, given regional limitations

    A gap analysis on modelling of sea lice infection pressure from salmonid farms. II. Identifying and ranking knowledge gaps: output of an international workshop

    Get PDF
    Sea lice are a major health hazard for farmed Atlantic salmon in Europe, and their impact is felt globally. Given the breadth of ongoing research in sea lice dispersal and population modelling, and focus on research-led adaptive management, we brought experts together to discuss research knowledge gaps. Gaps for salmon lice infection pressure from fish farms were identified and scored by experts in sea lice-aquaculture-environment interactions, at an international workshop in 2021. The contributors included experts based in Scotland, Norway, Ireland, Iceland, Canada, the Faroe Islands, England and Australia, employed by governments, industry, universities and non-government organisations. The workshop focused on knowledge gaps underpinning 5 key stages in salmon lice infection pressure from fish farms: larval production; larval transport and survival; exposure and infestation of new hosts; development and survival of the attached stages; and impact on host populations. A total of 47 research gaps were identified; 5 broad themes emerged with 13 priority research gaps highlighted as important across multiple sectors. The highest-ranking gap called for higher quality and frequency of on-farm lice count data, along with better sharing of information across sectors. We highlight the need for synergistic international collaboration to maximise transferable knowledge. Round table discussions through collaborative workshops provide an important forum for experts to discuss and agree research priorities
    corecore