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Abstract (228 words)  25 

Ecosystem-scale examination of fish communities typically involves creating 26 

spatiotemporally-explicit relative abundance distribution maps using data derived from 27 

multiple fishery-independent surveys.  However, survey sampling performance varies by 28 

vessel and sampling gear, which may influence estimated species distribution patterns.  Using 29 

generalised additive mixed models, the effect of different gear-vessel combinations on 30 

relative abundance estimates at length are investigated using European fisheries-independent 31 

groundfish survey data.  We constructed a modelling framework for evaluating relative 32 

efficiency of multiple survey gear-vessel combinations and examined 19 disparate surveys 33 

for 254 species-length combinations across the northeast Atlantic.  Space-time variables 34 

explained the majority of the variation in catches when combining data across different gears 35 

or vessels for 181 of 254 species-length cases, indicating that for many species, models could 36 

successfully characterize distribution patterns by combining data from disparate surveys.  37 

Variables controlling for catch efficiency differences across gear-vessel combinations 38 

explained substantial variation in catches for 127 of 254 species-length data sets.  In such 39 

cases, models that fail to control for gear efficiencies across surveys can mask changes in the 40 

spatial distribution of species.  Estimated relative differences in catch efficiencies grouped 41 

strongly by gear type, but did not exhibit a clear pattern across species’ functional forms, 42 

suggesting difficulty in predicting the potential impact of gear efficiency differences when 43 

combining data across surveys to assess species’ distributions and highlighting the 44 

importance of modelling approaches that can control for gear differences. 45 
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1. Introduction 50 

As ecosystem-based management in the marine environment advances, fisheries policies 51 

increasingly require consideration of both target and non-target species in assessing the state 52 

of fisheries and fishing impacts on marine ecosystems (e.g. the European Union (EU) Marine 53 

Strategy Framework Directive (MSFD; EC 2008; 2010; 2017), Common Fisheries Policy 54 

(CFP; EC, 2013), United States Magnuson–Stevens Fishery Conservation and Management 55 

Act (US, 1996; 2006), etc.). This transition to ecosystem-based management has led to a need 56 

for greater understanding and detailed information on the distribution of a broad spectrum of 57 

fish species across large spatial scales, such as large marine ecosystems or ecoregions (Kelley 58 

& Sherman 2018).  59 

 60 

Fisheries-independent groundfish surveys sample both commercial and non-target fish 61 

species, often providing the only data source available to estimate relative abundances for 62 

non-commercial species (Poos et al., 2013). These surveys tend to be discrete monitoring 63 

programmes, operating at local scales usually associated with the exclusive economic zones 64 

of countries managing the surveys. To obtain information on fish distributions at large marine 65 

ecosystems scales, therefore, requires integration across national jurisdictional boundaries 66 

and multiple disparate surveys that may differ in terms of spatial coverage, survey vessel, 67 

season, types of fishing gear, and survey protocols. Amalgamating such data into a single 68 

cohesive analysis is difficult because of potential differences in gear efficiency among 69 

different length-classes and species of fish (Fraser et al., 2007; Walker et al., 2017), types of 70 

survey gear, and vessels that vary in their fishing power (Dann et al., 2005).  71 

 72 

Estimates of species’ latent abundance, and hence species-at-length catchability coefficients, 73 

are rarely available in fisheries survey data. In isolation, each individual survey provides 74 



estimates of species’ relative abundance at sampled locations and can provide assessment of 75 

the spatial distribution of fish within the survey domain. Problems may arise, however, when 76 

two or more surveys need to be combined to assess species’ distributions. If gear efficiencies 77 

vary between different surveys, then estimates of species relative abundance provided by 78 

each survey may not be compatible. Failure to understand, or ignoring, how gear efficiency 79 

differs between surveys may lead to incoherent abundance estimates when merging surveys 80 

together to conduct assessments at large spatial scales. To perform such assessment, 81 

therefore, requires quantification of gear efficiency for different species, different size classes 82 

of fish, and different gears. 83 

 84 

The traditional approach to estimating gear efficiency is through paired field experiments, 85 

where two vessels fish side by side and compare catches (Somerton et al., 1999; Zhou et al., 86 

2014). Such experiments are costly to conduct and are generally implemented over limited 87 

spatial and temporal scales. However, where different survey domains overlap spatially, there 88 

may be opportunity to utilize species distribution modelling to complement, or even replace, 89 

field-based estimation of gear efficiencies (e.g. Ono et al., 2018); thereby providing a 90 

convenient framework for handling data from disparate surveys that can be regularly updated 91 

as new survey data become available. Statistical modelling of species distributions from large 92 

data sets is no longer limited by insufficient computing capacity. The use of such models 93 

offers an opportunity of overcoming challenges in combining data across surveys with 94 

varying gear efficiencies to enable extensive study of marine species distributions across 95 

large spatial scales. 96 

 97 

Here we build from previous gear efficiency modelling efforts (Walker et al., 2017, Zhou et 98 

al., 2014) with an aim to advance the tools available for combining information across 99 



disparate fisheries surveys towards informing the spatial ecology of marine species.  The 100 

spatial scale, the number of species assessed, the interaction between the gear-vessel 101 

combinations, and the spatial and temporal variation inherent within European fisheries 102 

surveys presents unique challenges requiring a new approach. Utilizing Generalised Additive 103 

Mixed Models (GAMMs); we analyse the proportion of variance explained by the differences 104 

in gear efficiency and the spatial–temporal variation in abundance of 135 species, in three 105 

length categories, collected in the 19 northeast Atlantic groundfish surveys with 24 different 106 

gear-vessel combinations. Here we focus on bottom trawl gears, namely otter trawls and 107 

beam trawls, as others have previously focused on combining acoustic measurements with 108 

habitat data to gain inference about the abundance of fish and infer on bottom trawl gear 109 

efficiencies (Kotwicki et al., 2018). Three length categories were chosen to (1) capture the 110 

main intra-specific length-related catchability differences described in previous studies 111 

(Fraser et al., 2007; Walker et al., 2017), (2) broadly reflect trophic guilds in marine fish 112 

communities (ICES, 2017), and (3) reflect the main size classes of fish either retained in 113 

commercial trawls or that escape through the mesh (Piet et al., 2009). The 24 gear-vessel 114 

combinations were chosen to best reflect the perceived differences in rigging and standard 115 

operating procedures carried out by different countries in their national surveys (Table 1).  By 116 

understanding which species in our length categories are affected by variations among gears 117 

and vessels, our primary goal is to develop a consistent approach for combining groundfish 118 

surveys to facilitate marine ecosystem monitoring at large spatial scales.  Using the GAMMs 119 

to control for differences in gear efficiency among surveys, we also generate estimates of 120 

spatial and temporal trends of relative abundance for species among different length 121 

categories throughout the northeast Atlantic to inform marine fish community ecological 122 

analyses (covering three ICES marine ecoregions/large marine ecosystems: Greater North 123 

Sea, Celtic Seas, and Bay of Biscay and the Iberian Coastal; Spalding et al., 2007).  Finally, 124 



we conclude with a discussion of high priority information needs to further improve 125 

understanding of gear efficiency within marine fisheries survey data. 126 

 127 

2. Methods 128 

2.1 Fisheries Surveys  129 

Data for most European groundfish surveys are uploaded and maintained on the ICES 130 

“Database of Trawl Surveys” (DATRAS). Data for surveys carried out in the Northeast 131 

Atlantic were recently subjected to a quality assurance and quality audit (QAQA) process 132 

(Moriarty et al., 2017; Greenstreet and Moriarty 2017a; 2017b; Moriarty et al., 2019), to 133 

ensure their adequacy to meet monitoring and assessment requirements under the EU MSFD 134 

(EC, 2008; 2010; 2017). These standard monitoring programme data products, along with 135 

data for four Spanish surveys, which underwent the same QAQA process but were not fully 136 

uploaded to DATRAS, were used in this study to obtain maximum spatial and temporal 137 

coverage and include the widest possible range of survey types for modelling (Table 1). Each 138 

survey data product includes the number of fish caught (𝐶𝐶𝑖𝑖,𝑠𝑠,𝑙𝑙) of a species (𝑠𝑠) at length (𝑙𝑙), 139 

for each trawl sample (𝑖𝑖), along with the vessel and fishing gear (𝑔𝑔), tow location, date, 140 

depth and swept area (𝐸𝐸). The fishing gear (𝑔𝑔), included information from vessels that were 141 

expected to fish differently based on their gear configuration information. For example, both 142 

French and Irish vessels surveying in the Celtic Seas region use a GOV gear. However, the 143 

French surveys use double sweeps, and the Irish surveys rotate between a standard GOV 144 

survey gear (ICES 2015) and a double sweep with 16-inch bobbins, depending on the 145 

substrate (Table 1). The fish abundance data were organized into three broad length 146 

categories (𝑙𝑙𝑙𝑙), small unfished (<23cm), intermediate transition (23 - 35cm), and large fished 147 

(>35cm). Groundfish surveys only record those species and lengths caught (i.e. presence only 148 

data). Data rows for zero catches were added to the full data set where species at length were 149 



not reported in any given sample. To ensure constant and equivalent distance units, survey 150 

sample latitude - longitude coordinates were converted to eastings and northings (𝑋𝑋,𝑌𝑌) using 151 

R package “Rgdal” (Bivand et al., 2018). Date (𝑡𝑡) was incremented in quarterly time bins 152 

starting from quarter 4 (Oct – Dec) 2003, which was assigned time step 𝑡𝑡 = 1, while the 153 

quarter 1 (Jan – Mar) 2004 was assigned time step 𝑡𝑡 = 2, and so on. 154 

 155 

2.2 Exploring Sources of Variation in Survey Abundance at Length Data 156 

Generalised Additive Mixed Models (GAMMs) were used to account for non-linear spatial 157 

and temporal trends in fish density while simultaneously estimating gear efficiency using a 158 

modelling framework adapted from Walker et al. (2017). Survey catches were modelled as 159 

counts, with separate regressions for each species-length bin combination.  Many species had 160 

a preponderance of zero catches.  Initial exploration casting GAMMs for all species within 161 

Poisson, negative binomial, and zero-inflated Poisson frameworks showed that Poisson 162 

models provided a poor fit and failed to accommodate over-dispersion in catch data. Negative 163 

binomial and zero-inflated Poisson models showed similar fits for non-schooling species, but 164 

schooling species violated the assumption of independence required by Poisson processes. 165 

Consequently, we analyzed catches as Negative Binomially (NB) distributed GAMMs fit  166 

using the “mgcv” package (Wood 2004; 2011) in the R statistical programming environment 167 

(R Core Team 2017). The full model for a given species and length category catch data set 168 

had the form: 169 

𝐶𝐶𝑖𝑖~𝑁𝑁𝑁𝑁(𝜇𝜇𝑖𝑖,𝑘𝑘) 170 

with E[𝐶𝐶𝑖𝑖] = 𝜇𝜇𝑖𝑖 = 𝑒𝑒log(𝐸𝐸𝑖𝑖)+𝑠𝑠(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖,𝑡𝑡𝑖𝑖) + 𝑧𝑧𝑧𝑧(𝑖𝑖)       1, 171 

where 𝐶𝐶𝑖𝑖 is the number of fish of a given species in a given length category caught in the ith 172 

sample (fishing event), 𝑘𝑘 is the negative binomial shape parameter representing the degree of 173 



overdispersion, log(𝐸𝐸𝑖𝑖) is the log of swept area for fishing event i which was included as an 174 

offset to account for varying fishing effort among trips,  𝑠𝑠(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖, 𝑡𝑡𝑖𝑖) denotes a multivariate 175 

smoothing function to represent spatio-temporal trends in catch data, and 𝑧𝑧𝑔𝑔(𝑖𝑖) are i.i.d. 176 

normally distributed random effects for gear-vessel combinations associated with fishing 177 

events. The space-time smoothing model component, 𝑠𝑠(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖, 𝑡𝑡𝑖𝑖), was specified as a tensor 178 

product smoother for which the associated basis functions were cast as cubic splines with 179 

shrinkage (i.e., 𝑡𝑡𝑒𝑒(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖, 𝑡𝑡𝑖𝑖 , 𝑏𝑏𝑠𝑠 = "𝑙𝑙𝑠𝑠") in mgcv formulaic notation), a formulation which can 180 

accommodate data on different scales (Wood 2004; 2011).  Gear-vessel combination was 181 

treated as a random effect, as opposed to a fixed effect, because variation among catch 182 

efficiencies is the primary feature of interest, and because this approach also aids in model 183 

convergence by reducing the number of fitted parameters.  The spatiotemporal smoother 184 

describes the underlying estimated distribution of species across space and time; whereas the 185 

random effect controls for variation among gear efficiency when combining disparate survey 186 

data sets.  To facilitate model convergence, we excluded data on species-at-length for which 187 

any given length category was sampled by fewer than two gear-vessel combinations or was 188 

sampled fewer than 100 times. The full model was compared to a reduced model that 189 

included space-time covariates, but which did not account for the effect of gear-vessel 190 

combinations (i.e. the gear-vessel combination random effect was dropped) in order to assess 191 

the impact on species distribution modelling inference when gear is ignored. Comparisons of 192 

full and reduced model fits were assessed using Akaike’s information criterion (AIC). The 193 

full model was further assessed for reliability using visual tests and a chi squared goodness of 194 

fit test. To substantiate that our GAMM models can effectively differentiate between the 195 

random gear-vessel effects and the spatial and temporal variation in the abundance of 196 

demersal fish in the north east Atlantic region, we performed a simulation-estimation 197 

experiment (Supplemental Material S2). 198 



 199 

2.3 Interpretation of models  200 

To interpret the importance of gear efficiency versus spatiotemporal distribution patterns in 201 

explaining variation in survey data, we utilized variance components analysis.  This analysis 202 

partitions total variation in the fitted data among the three modelled components: gear 203 

efficiency, spatiotemporal distribution, or unexplained residual variation. Accordingly, when 204 

the gear component constitutes the preponderance of model variation for a given species and/ 205 

or length category, we conclude that gear efficiency varies widely across gears and surveys. 206 

In contrast, when location and time make up the majority of model variability for a given 207 

species, we conclude that catches are more strongly influenced by the ecology of the fish, 208 

rather than the differences in gear efficiency.  209 

 210 

A non-metric multidimensional scaling (nMDS) unconstrained ordination technique using 211 

Euclidean distances was employed to explore how each species within the assemblages 212 

varied with estimates of gear efficiencies among gear-vessel coefficients and length classes 213 

from our models. Species were grouped by taxonomic order as a proxy for functional forms 214 

to examine if there was a pattern in estimates of gear efficiencies in species groups with 215 

similar morphological or ecological attributes.  The gear-vessel coefficients were conditioned 216 

into a matrix, where the Scottish vessel with a GOV gear type was used as a reference gear, 217 

and the difference was calculated for each other gear-vessel combination.  Permutational 218 

multivariate analysis of variance (PERMANOVA) was used to test the differences between 219 

the gear-vessel coefficients derived for each species in each length class from our full models 220 

for similar gear types. A clustering criterion that minimizes the amount of variance within in 221 

the gear-vessel groups was implemented (Ward, 1963). Euclidean distance was used and the 222 



p-value was set to 0.05.  The nMDS and PERMANOVA routines were implemented in R (R 223 

Core Team 2017) using the “vegan” package (Oksanen et al., 2017). 224 

 225 

3. Results 226 

Data for 135 fish species were available from otter trawl surveys across the northeast 227 

Atlantic, whereas beam trawl surveys operate in a much more limited area within the North 228 

and Irish Seas (Figure 1). The surveys carried out in the Irish Sea have the highest degree of 229 

spatial and temporal overlap, whereas survey overlap is more limited in the Bay of Biscay 230 

and Iberian Coast region (Figure 1).  231 

 232 

Two hundred and fifty-four full GAMMs were fit to 132 species in up to three length 233 

categories (Figure 2). For fishes in the smallest size class (<23cm), the full model was fit to 234 

109 species, and 23 species had insufficient data based on the criteria described in Methods 235 

(Section 2.2). For fishes in the intermediate transition category (23-35cm), the full model was 236 

fit to 85 species, and 47 species had insufficient data. For the largest size class (>35cm), the 237 

full model was fit to 60 species, and 72 species had insufficient data.  238 

 239 

In 39/254 models, the unexplained variance was greater than the explained variance (Figure 240 

2). In 237/254 of the species-length combinations, the full model, which controlled for 241 

differences in gear-vessel combinations, improved the deviance explained over the reduced 242 

model (Table S1.1). 250/254 full models had a lower AIC score than the reduced model. In 243 

the cases where the full estimates did not improve inference, the differences in the amounts of 244 

deviance explained and the AIC scores between the full and reduced models were small 245 

(Table S1.1).  246 

 247 



In 215/254 full models, over 50% of the variation in the data can be explained, suggesting 248 

that this framework is an effective way of calculating variance in latent species abundance 249 

over a large spatial scale. In 181/254 full models, location (𝑋𝑋,𝑌𝑌) and time (𝑡𝑡) components of 250 

the model explained over 50% of the variation in the data, suggesting that catch rates are 251 

strongly driven by the ecology of the fish, while the random effect of fishing gear on a given 252 

vessel(𝑔𝑔) at a given length category (𝑙𝑙) generally plays a smaller role in explaining variance. 253 

Indeed, in 51 of these 181 models, the overall variance explained is >50%, but the variance 254 

explained by gear is <1%. As an example, for common dab (Limanda limanda) in the <23cm 255 

length class, the random effect of fishing gear on a given vessel (𝑔𝑔) explains 0.007% of the 256 

variance, while location (𝑋𝑋,𝑌𝑌) and time (𝑡𝑡) components explained 62.2% of the variance 257 

(Figure 3a/b). In this case, the reduced model, where location (𝑋𝑋,𝑌𝑌) and time (𝑡𝑡) components 258 

explained 61.1% of the variance, performed similarly to the full model (Supplemental 259 

Material 1 Table S1.1).  260 

 261 

In 37/254 full models, the overall variance explained is >50%, and the gear component 262 

explains between 1% and 5% of the variation, suggesting that gear efficiency varies across 263 

gears and vessel combinations but has relatively little influence on catch performance. For 264 

example, for the thorny skate (Amblyraja radiata) in the 23-35cm length class, the random 265 

effect of fishing gear (𝑔𝑔) explained 3.7% of the variance, while location (𝑋𝑋,𝑌𝑌) and time 266 

(𝑡𝑡) components of the full model explained 68.7% of the variance. While the estimated 267 

variance component for gear effects was smaller than the space-time components, the effect 268 

of fishing gear can be seen in the difference in spatial pattern between the full and reduced 269 

models (Figure 3d).  270 

 271 



In 127/254 full models the overall variance explained is >50%, and the gear component 272 

explains more that 5% of the variation, suggesting that gear efficiency for these species-at-273 

length varies substantially across gear and vessel combinations. For example, for sole (Solea 274 

solea) in the 23-35cm length class, the random effect of fishing gear (𝑔𝑔) explained 8.6% of 275 

the variance, while location (𝑋𝑋,𝑌𝑌) and time (𝑡𝑡) components of the full model explained 276 

46.5% of the variance in the data (Figure 3e/f). In this case, the output of the full model 277 

highlights the importance of understanding the effect of fishing gear in assessing the 278 

distribution of this species.  279 

 280 

To assess the difference in inference gleaned from the full and reduced models, we further 281 

explored the spatial-temporal pattern of sole (Solea solea) in the 23-35cm category. While the 282 

general pattern is similar in the full and reduced models (Figure 4), the reduced model 283 

suggests the presence of intermediate-sized sole off of the coasts of Spain and Portugal; 284 

whereas the full model suggests that there are no intermediate-sized sole in these areas. When 285 

examined more specifically, we see that for the entire area, the sole data is 88% zero values, 286 

but for the southern part of the study area, where Spain and Portugal survey, the sole data is 287 

96.5% zero values. Consequently, we can conclude that the reduced model is likely to 288 

overestimate the abundance in this area, and that this overestimation is likely an artefact of 289 

not accounting for gear.  290 

 291 

Aggregating over the entire distribution of sole, there is a steadier rate of movement in the 292 

centre of mass in the population estimated from the full model, while the movement in the 293 

centre of mass in the population estimated from the reduced model is more variable (Figure 294 

5a). The centre of mass metric highlights the eastward movement in the population in the full 295 

model, which is not the case in the reduced model (Figure 5b). The inference from the 296 



simulations suggests that the full model should be more capable of capturing the direction of 297 

movement than the reduced model ((Supplemental 2, Figure S2.4).  298 

 299 

Unsurprisingly, nMDS highlights that the estimated gear coefficients vary considerably by 300 

gear types (Figure 6a; PERMANOVA test for differences in gears: 𝐹𝐹 = 2.36,𝑅𝑅2  = 0.18,𝑝𝑝 −301 

𝑣𝑣𝑣𝑣𝑙𝑙𝑣𝑣𝑒𝑒 = 0.001).  However, gear coefficients are largely consistent within gear type, 302 

indicating stable catch efficiencies within gear types regardless of the survey country of 303 

origin or vessel.  The GOV, beam trawls, and baca trawls gear-vessels tended to group most 304 

closely in their estimated gear coefficients, whereas other gears tended to differ more widely. 305 

The GOV has the highest level of variance and is the most widely used gear within the 306 

region. The beam trawl surveys have a high level of spatial overlap with the surveys that use 307 

the GOV gear in the North Sea and the rockhopper trawl in the Irish Seas. The baca trawl has 308 

very limited spatial overlap with other gears as it is used exclusively by the Spanish in the 309 

Bay of Biscay and Iberian Coast region. There is no clear pattern emerging in the estimated 310 

relative difference in catch efficiencies across species functional form (Figure 6b).  311 

 312 

4. Discussion 313 

Understanding how gear efficiency impacts fishery independent survey sampling is required 314 

for robust multi-survey species distribution modelling of both commercial and non-315 

commercial species and is a key factor in determining absolute abundance estimates for 316 

commercial stocks (Kasatkina & Ivanova, 2009; Maunder & Piner, 2014). The aim of the 317 

analyses presented here is to provide an overall understanding how species are affected by the 318 

rigging of individual vessels to guide future ecosystem-scale species distribution modelling 319 

and examinations of fish communities.  Our models support the derivation of relative species 320 

abundance estimates, and they provide information on gear efficiency of 24 gear-vessel 321 



combinations seasonally for three length groups chosen to reflect the main intra-specific 322 

length-related differences described in previous catchability studies (Fraser et al., 2007) in 323 

this region. This provides a modelling workflow to combine data across surveys that controls 324 

for potential gear-vessel-specific differences in catchability.  The flexible framework 325 

provided here may be adapted to the end users’ needs; for example, different length 326 

categories may be applied to answer specific ecological questions. We caution; however, that 327 

the gear efficiency coefficients used in this analysis were estimated using a 10-year historical 328 

time span and are only valid under the conditions for which they are calculated. As such, any 329 

efforts to employ them for correcting individual survey-species catches need take this into 330 

account (Arreguín-Sánchez, 1996). 331 

In 15% (39/254) of models, the unexplained variance is higher than the explained variance 332 

(Figure 2). Given that it is unlikely for a species to be randomly distributed in space and time, 333 

this high unexplained variance is likely due to the rareness of the species within a given 334 

length category (i.e. there are not enough samples to describe the latent species distribution). 335 

Species that are rarely caught may not be rare in the environment, but instead may be 336 

particularly poorly sampled (i.e. low gear efficiency) in the survey trawl gear. Sampling of 337 

fish in the marine environment by fishing gear is known to be imperfect (Fraser et al., 2007, 338 

Zhou et al., 2014, Walker et al., 2017). This means additional considerations may need to be 339 

addressed during sampling and data analysis, such as joint dynamic species distribution 340 

modelling (Thorson et al., 2016).  Reliable inference depends on sampling methods that 341 

produce reasonable odds of detection given presence, where no estimator will be particularly 342 

helpful when applied to data on populations or species that are ‘‘invisible’’ to collection gear 343 

(MacKenzie et al., 2006).  344 

 345 



The estimated variance components from our models show that in 35% of cases (88/254), the 346 

location and time components explained most of the variation in the data, while the gear 347 

component explained relatively little variation (≤ 5%; Figure 2). This suggests that in such 348 

circumstances, the spatial-temporal distribution of these species can be estimated using 349 

combined survey data. Where the modelled gear component is especially small, particularly 350 

in relation to the location and time component, use of raw survey catch data from multiple 351 

surveys provides a reasonably accurate representation of temporal and spatial variation in 352 

species’ abundances (by length category) at large spatial scales. The common dab (Figure 353 

3a/b.), highlights a circumstance in which little variance can be attributed to gear effects, and 354 

we see a consequent small difference in inference in the temporal and spatial trends between 355 

the full and reduced models. The variance explained by the gear is <1% while the spatial and 356 

temporal components explain 62.2% of the variance. Thus, this species (by length category) 357 

abundance appears to be less impacted by the effects of gear as the catch rates are likely 358 

driven by the ecology of the fish. The variation that is attributable to gear effects is smaller 359 

than that attributed to space and time in most of our GAMM models, but the nature of the 360 

gear effects are not randomly distributed throughout the study area or throughout the year. 361 

They are instead systematically distributed by seasonal surveys. This regularity in the 362 

differences may impact species distribution inference at large scales. Simulations (S2a) for 363 

species demonstrating substantial movements in distribution attributed 5.7 % of model 364 

variance to gear, even when no gear effect was included. This suggests that some of the 365 

variance associated with location and time may be attributed to gear, but inferences from full 366 

and reduced models were similar. Conversely, when there is a strong gear effect (S2b) then 367 

the full model improves inference of abundance estimates and direction of population centre 368 

of mass movements over the reduced model (Supplemental Material 2). 369 

 370 



Not accounting for gear may lead to incorrect estimates of relative abundance or species’ 371 

distributions. Data analysed here suggest that gear effects on catches across disparate surveys 372 

are not uncommon, whereby in half of our full models (127/254), the gear component 373 

explained more that 5% of the total variation in survey catches, while overall variance 374 

explained is >50%. Our examination of the distribution of sole provides demonstration of the 375 

potential importance of controlling for gear effects when attempting to combine data across 376 

surveys for some species. The variance explained by gear in this case was 8.6%, while the 377 

spatial and temporal components of the model accounted for 46.5% of the variance. 378 

Consequently, we found substantial differences in relative abundance trends between models 379 

which control for gear effects compared to reduced models which ignore gear effects in 380 

combining data across surveys (Figures 3d/e, 4, 5).  Importantly, failure to control for gear 381 

differences across surveys for this species would mask differences in the spatial distribution 382 

of the stock across commercial fishing areas, as well as mask ecosystem-scale population 383 

shifts to the east (Figure 5).  It may be valid to pool across surveys in assessing species 384 

distributions for many species-size combinations; however, there are differences evident 385 

across gear types and it is not clear a priori for which species gear differences matter (Figure 386 

6b).  Thus, a sensible workflow when combining data across surveys may be to implement 387 

models that control for gear type as demonstrated here and then subsequently evaluate 388 

whether gear differences account for a substantial portion of the variation in catches. 389 

 390 

Northeast Atlantic waters are currently surveyed by 12 countries carrying out 19 different 391 

surveys designed with individual goals and objectives and using different vessels and a 392 

variety of gears (Table 1). ICES facilitates survey coordination and collaboration through 393 

working groups to make the surveys as comparable as possible. The North Sea bottom trawl 394 

surveys have led the way in terms of minimising gear efficiency issues caused by differences 395 



in vessels and by ensuring survey overlap and similarity among gears (ICES, 2015). There is 396 

a large body of work ongoing in ICES survey groups (e.g. WGBEAM, International Bottom 397 

Trawl Survey Working Group; IBTSWG) to minimise survey variability; however, assessing 398 

relative gear efficiency at the scale examined here highlights the need for comparative 399 

experiments to help achieve a more coherent understanding of gear efficiency within fisheries 400 

independent survey data. This is particularly relevant in the Bay of Biscay, where 401 

overlapping or paired tows between the Spanish Baca Trawl and Portuguese Norwegian 402 

Campelen Trawl and the Spanish Baca Trawl and French Grande Overture Vertical Trawl 403 

would help to improve inferences of species relative abundance obtained from these different 404 

gears (Figure 6a). Analyses herein provide further understanding of the differences in gear 405 

efficiency between trawl gears used by different surveys for species sampled across the 406 

northeast Atlantic.  407 

 408 

Information on the abundance and distribution of organisms is a fundamental knowledge 409 

need for fisheries management. Data on predator and prey abundances by different age and 410 

size classes can inform species status assessments as well as provide information on the 411 

interactions among species and size classes, providing understanding about the impact of 412 

fishing on fish communities (Fraser et al., 2007; e.g. Large Fish Indicator). This study 413 

provides an approach to facilitate comparability between catches from different surveys and 414 

gears, providing a framework to assist in integrating data across countries, regions, and 415 

sampling programs towards maximizing the use of available information to inform species’ 416 

abundance and spatial distribution assessments.  417 
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 535 
Figure 1: Fisheries independent survey coverage across the northeast Atlantic. Thick black 536 
line shows Oslo/Paris convention (OSPAR) boundaries. Number of surveys operating in each 537 
ICES statistical rectangle is depicted by a different colour. See Table 1 for list of surveys. 538 



 539 
Figure 2: Summary of the proportion of variance explained from full model components for 540 
each length category (<23cm; 23 - 35cm and >35cm) and species, grouped in taxonomic 541 
order. X, Y and time (t) variance components are represented by blue bars, gear-vessel 542 



components by orange bars, and unexplained variance by red bars. Black bars indicate 543 
insufficient data to fit a model for a given species-size combination, and white bars indicate 544 
model convergence failed.  Finally, grey bars indicate a given length size bin is larger than 545 
the maximum observed length of a species.  546 

 547 
Figure 3: Top row (a,b): Common dab  (Limanda limanda)  < 23cm, highlighting an example 548 
of a species where the reduced and full model perform similarly as the variance explained by 549 
gear is very small (0.007%). Middle row (c,d) Thorny skate (Amblyraja radiata ) 23 – 35cm, 550 
highlighting an example of a species with between 1-5% variance explained by gear. Bottom 551 
row (e,f) Sole (Solea solea) 23-35cm, highlighting an example of a species with >5% 552 
variance explained by gear.  Left column (a,c,e): Estimated domain-wide species’ abundance 553 
trends for the full model which controls for gear differences across surveys, versus the 554 
reduced model which does not control for gears.  A large discrepancy between the curves 555 
indicates gear differences across surveys may impact inference about species’ abundance 556 
and distributions.  Right column (b,d,f): Differences in predicted species’ relative mean 557 



abundance between the full and reduced models.  Dark colours represent large discrepancies 558 
between the models, indicating differences in gears across surveys may influence estimated 559 
species’ distributions if not accounted for.   560 
 561 

 562 
 563 
  Figure 4. Spatial-temporal pattern in quarter 4 (Oct.-Dec.) for each year of sole (Solea 564 
solea) 23-35cm from the reduced model on the left and the full model on the right. 565 
Abundance is depicted as “low” in the 1st-2nd quantile, “medium” in the 2nd – 3rd quantile, 566 
and high in the 3rd-4th quantile. 567 



  568 
 Figure 5. Summary of difference in inference from the spatial-temporal pattern of sole 569 
(Solea solea) 23-35cm from the full and reduced models. (a.) Cumulative movement from the 570 
centre of mass from the start of the time series for the full model (blue circles) and the 571 
reduced model (red triangles). (b.) Centre of mass of the abundance of the fish from the full 572 
model (blue circles) and the reduced model (red triangles).  573 
 574 

 575 
Figure 6. Non-metric multidimensional scaling (nMDS) plots describing how the gear-vessel 576 
coefficients varied by survey or by taxonomic grouping (Stress = 0.102). (a) Gear coefficients 577 
grouped by trawl type (colours) and survey research vessel name (labels). Points more 578 
closely situated are more similar in terms of their gear-vessel coefficients. Ellipses indicate 579 
the 95% confidence intervals for clusters of each gear type. (b) Gear coefficients grouped by 580 
taxonomic order as a proxy for species’ functional form. 581 

 582 

 583 



Survey 
Acronym 

DATRAS 
Acronym 

Subregion Country Start 
Year 

End 
Year 

Quarter Vessels Gear Type Mesh 
size 
(mm) 

Haul 
Duration 
(min) 
𝑥𝑥 � ± s 

Distance 
Towed 
(km) 
𝑥𝑥 � ± s 

Wing 
Swept 
Area 
(km2) 
𝑥𝑥 � ± s 

Data 
Source 

DOI 

GNSIntOT1 IBTS Greater 
North Sea 

International 1983 2017 1 Multiple Ships Otter (GOV)     DATRAS 10.7489/1922-
1 

       G.O.Sars  20 29±4 3.4±0.6 0.06±0.01   
       Argos  20 30±4 3.6±0.5 0.07±0.01   
       Dana  20 30±2 3.6±0.3 0.07±0.01   
       Dana (Sweden)  20 30±2 3.4±03 0.07±0.01   
       CEFAS 

Endeavour 
(Netherlands) 

 20 

29±3 3.6±0.4 0.0±0.017 

  

       Haakon Mosby  20 29±3 2.9±0.3 0.06±0.1   
       Mimer  20 29±3 3.3±0.3 0.06±0.01   
       Scotia III  20 31±6 3.6±0.7 0.07±0.01   
       Thalassa II  20 30±1 3.6±0.4 0.06±0.01   
       Tridens II  20 30±4 3.8±0.5 0.07±0.01   
       Walther Herwig 

III 
 20 

30±2 3.8±0.4 0.07±0.01 
  

GNSIntOT3 IBTS Greater 
North Sea 

International 1998 2016 3 Multiple Ships Otter (GOV)     DATRAS 10.7489/1923-
1 

       Argos  20 30±1 3.5±0.2 0.07±0.01   
       Dana  20 29±4 3.6±0.5 0.07±0.01   
       Dana (Sweden)  20 30±1 3.4±0.2 0.07±0.01   
       CEFAS 

Endeavour 
 20 

29±3 3.5±0.4 0.07±0.01 
  

       Haakon Mosby  20 27±5 3.2±0.6 0.07±0.01   
       Johan Hjort  20 27±6 3±0.8 0.06±0.02   
       Scotia III  20 29±4 3.3±0.5 0.06±0.01   
       Walther Herwig 

III 
 20 

29±4 3.6±0.7 0.07±0.01 
  

GNSFraOT4 FR CGFS Greater 
North Sea 

France 1988 2016 4 Thalassa II, 
Gwen Drez  

Otter (GOV)     DATRAS 10.7489/1959-
1 

       Gwen Drez  20 29±3 2.9±0.5 0.03±0.01   
       Thalassa II  20 29±2 3.4±0.3 0.05±0.01   
CSScoOT1 SWC-

IBTS 
Celtic Sea Scotland 1985 2016 1 Scotia II Otter (GOV) 20 

56±10 7.4±1.7 0.15±0.03 
DATRAS 10.7489/1957-

1 
       Scotia III  20 30±6 3.4±0.7 0.07±0.01   
CSScoOT4 SWC-

IBTS 
Celtic Sea Scotland 1997 2016 4 Scotia II Otter (GOV) 20 

56±10 6.6±1.7 0.13±0.03 
DATRAS 10.7489/1924-

1 
       Scotia III  20 29±3 3.4±0.4 0.06±0.01   
CSIreOT4 IE-IGFS Celtic Sea Ireland 2003 2016 4 Celtic Explorer Otter (GOV) 20 30 ± 2 3.6±0.3 0.07±0.01 DATRAS 10.7489/1925-

1 
CSNIrOT1 NIGFS Celtic Sea Northern 1992 2016 1 Corystes, Lough Otter (ROT)     DATRAS 10.7489/1961-



Ireland Foyle 1 
       Corystes  20 58±9 5.3±0.9 0.08±0.01   
       Lough Foyle  20 59±6 5.±0.6 0.08±0.01   
CSNIrOT4 NIGFS Celtic Sea Northern 

Ireland 
1992 2016 4 Corystes, Lough 

Foyle 
Otter (ROT)     NDB 

(92-07) 
DATRAS 
(08-15) 

10.7489/1962-
1 

       Corystes  20 19±1 1.9±0.01 0.03±0.02   
       Lough Foyle  20 50±18 4.7±1.6 0.07±0.02   
CS/BBFraOT4 EVHOE Celtic 

Sea/Bay 
of Biscay 

France 1997 2016 4 Thalassa II Otter (GOV) 20 30 ± 1 3.6±0.2 0.07±0.01 NDB 
(92-07) 
DATRAS 
(08-15) 

10.7489/1958-
1 

BBIC(n)SpaOT4 SP-North Bay of 
Biscay 
and 
Iberian 
Coast 

Spain 1993 2014 4 F deP Navarro  Otter (BACA) 20 30 

2.7±0.1 

0.05 NDB Not released, 
no DOI 

       Cornide de 
Saavedra 

 20 30 
2.8±0.2 

0.05   

BBIC(s)SpaOT1 SP-
ARSA 

Bay of 
Biscay 
and 
Iberian 
Coast 

Spain 1990 2015 1 F deP Navarro  Otter (BACA) 20 60 5.6±0.2 0.1 ± 0.02 NDB Not released, 
no DOI 

       Cornide de 
Saavedra 

 20 60 5.6±0.4 0.1±0.01   

BBIC(s)SpaOT4 SP-
ARSA 

Bay of 
Biscay 
and 
Iberian 
Coast 

Spain 1997 2014 4 F deP Navarro  Otter (BACA) 20 60 5.5±0.3 0.09±0.02 NDB Not released, 
no DOI 

       Cornide de 
Saavedra 

 20 60 5.5±0.3 0.1±0.01   

BBICPorOT4 PT-IBTS Bay of 
Biscay 
and 
Iberian 
Coast 

Portugal 2001 2014 4 Capricornio, 
Noruega 

Otter (NCT) 20 29±3 3.1±0.4 0.05±0.01 DATRAS 10.7489/1963-
1 

WAScoOT3 Rockall Wider 
Atlantic 

Scotland 1999 2016 3 Scotia III Otter (GOV) 20 
30±3 3.4±0.4 0.07±0.01 

DATRAS 10.7489/1960-
1 

WASpaOT3 SP-
PORC 

Wider 
Atlantic 

Spain 2001 2015 3 Vizconda de Eza Otter (PBACA) 20 24 ± 4 2.7±0.5 0.07±0.02 NDB Not released, 
no DOI 

GNSNetBT3 BTS Greater 
North Sea 

The 
Netherlands 

1999 2016 3 Isis, Tridens II Beam (8m)     DATRAS 10.7489/1967-
1 

       Isis  40 30±2 3.8±0.3 0.03   
       Tridens II  40 34±11 4.5±1.4 0.04±0.01   



GNSEngBT3 BTS Greater 
North Sea 

England 1990 2016 3 Corystes Beam (4m) 40 
29±3 3.7±0.6 0.01 

DATRAS 10.7489/1966-
1 

       Endevour  40 28±4 3.5±0.6 0.01   
GNSGerBT3 BTS Greater 

North Sea 
Germany 1998 2016 3 Solea I Beam (7m) 40 30±3 3.5±0.5 0.03 DATRAS 10.7489/1965-

1 
       Solea II  40 30 ± 2 3.3±0.3 0.02   
CSEngBT3 BTS VIIa Celtic Sea England 1993 2015 3 Corystes, 

Endevour 
Beam (4m)     DATRAS 10.7489/1964-

1 
       Corystes  40 28 ± 5 3.8±0.5 0.02   
       Endevour  40 28 ± 4 3.5±0.6 0.01   
Table 1. List of individual surveys considered in the derivation of the Oslo/Paris convention (OSPAR) Groundfish Survey Monitoring and Assessment data 584 
products. Survey acronyms reflect sub-region/country/gear/quarter, except CS/BB in the French EVHOE survey acronym to denote a survey that extends 585 
across two sub-regions, the Celtic Seas and Bay of Biscay. Data product start and end years reflect the period when surveys were deemed sufficiently 586 
established with consistent standardised methodology (Moriarty et al., 2017). NDB refers to national database. For this study we subset the data from 2004 – 587 
2015 for continuous spatial coverage across the northeast Atlantic, the information on mesh size, haul duration, distance towed, and wing swept area reflect 588 
the data included in this study from 2004-2015 where 𝑥𝑥 �  is the sample mean and 𝑠𝑠 is the sample standard deviation.  589 

 590 

Notes on fishing gear exceptions 591 
S = Standard Gear B = Bobbins used  D = Double Sweeps I2 = Ground gear D with 16-inch bobbins R = Rockhopper 592 
Grande Overture Vertical Trawl 593 

1. Scotland uses R.V. Scotia III on five surveys WAScoOT3; CSScoOT4; CSScoOT1; GNSIntOT3; GNSIntOT1. For the west coast surveys (CSScoOT4 / 594 
CSScoOT1/ WAScoOT3) they use a “S” and “I2” gear for to deal with rocky habitat. In North Sea surveys (GNSIntOT3; GNSIntOT1), Scotland uses 595 
an “S” and a “B” exception.  596 

2. Sweden uses a standard GOV (“S”) on R.V Argos and R.V. Mimer in both North Sea surveys (GNSIntOT3 and GNSIntOT1).  597 
3. Denmark uses an “S” gear and an “R” exception in both surveys on R.V. Dana II in both North Sea surveys (GNSIntOT3 and GNSIntOT1). 598 
4. England uses a standard GOV (“S”) gear in the North Sea (GNSIntOT3) on R.V. CEFAS Endeavour. 599 
5. The Netherlands uses a standard GOV (“S”) gear in the North Sea (GNSIntOT1) on R.V. Tridens II. R.V. CEFAS Endeavour was used in quarter 1 by 600 

Netherlands when Tridens broke down. 601 
6. Norway uses an “S” gear and “D” exception on R.V. G.O. Sars and R.V. Johan Hjort in the North Sea (GNSIntOT3/ GNSIntOT1). When the R.V 602 

Haakon Mosby has been used only a standard gear is noted. 603 
7. France uses a GOV gear in the North Sea (GNSFraOT4) on R.V. Gwen Drez, no exception is noted, however, the gear is smaller than the standard 604 

gear in the North Sea. France uses Thalassa II on two surveys CS/BBFraOT4 and GNSIntOT1. For the west coast surveys (CS/BBFraOT4) they use 605 
ground gear “D” while in the North Sea surveys (GNSIntOT1), a standard gear is used.  606 

8. Germany uses a standard gear on R.V Walther Herwig III in the North Sea (GNSIntOT3/ GNSIntOT1). 607 
9. Ireland uses an “S” and “I2” gear for west coast survey (CSIreOT4) to deal with rocky habitat in line with Scotland on R.V. Celtic Explorer. 608 

Beam Trawl 609 



10. The Netherlands uses R.V. Tridens II and R.V Isis in the GNSNetBT3 survey. Both ships use an 8m beam with a tickler but Tridens II has a different set 610 
up to Isis. 611 

11. Germany uses a 7m Beam trawl with a 5m tickler chain on R.V. Solea II during GNSGerBT3. 612 
12. England uses a 4m Beam trawl during both her CSEngBT3 and GNSEngBT3 surveys on R.V. Corystes and CEFAS Endeavour in 2014 and 2015 with 613 

the same rigging on both ships. 614 
Rockhopper Trawl 615 

13. The Rockhopper Otter Trawl in used by Northern Ireland in the CSNIrOT4 / CSNIrOT1 on R.V. Corystes. 616 
 Baka Trawl 617 

14. Spain uses a Baka trawl on 3 surveys (BBIC(s)SpaOT4 / BBIC(s)SpaOT1 / BBIC(n)SpaOT4) on R.V. Cornide de Saavedra. 618 
15. Spain uses a Porcupine Baka trawl on 1 survey (WASpaOT3) on R.V. Vizconde de Eza. 619 

Norwegian Campelen Trawl  620 
16. Portugal reports B and R gear exceptions on R.V Noruega. 621 



Supplemental Material 1:  622 

Table S1.1 Variance explained (%) and AIC scores for all models in all length classes. This 623 
includes a folder containing the same information in Figure3 for every species/length 624 
combination.  625 

Supplemental Material 2: Can GAMMs differentiate effects of gear efficiency from spatial 626 
and temporal variation in abundance in demersal fish? 627 

Supplemental Material 3:  628 

File S3.1: Example of R Scripts for fitting model 629 

File S3.2: Example of R Scripts for generating data and fitting simulated models (S1 630 
conditions only) 631 


