177 research outputs found

    Distal migration of a floating carotid thrombus in a patient using oral contraceptives: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report the case of a patient with distal migration of a floating carotid thrombus caused by oral contraceptives.</p> <p>Case presentation</p> <p>A 48-year-old woman using oral contraceptives suffered from dysarthria and gait disturbance. Examinations, including ultrasound and cerebral arteriogram, revealed a floating thrombus at the left carotid bifurcation with no stenosis. Despite antithrombotic therapy, the floating carotid thrombus migrated to the ipsilateral middle cerebral artery, resulting in a severe stroke.</p> <p>Conclusion</p> <p>Some floating thrombi are resistant to conservative therapy and have a risk of distal migration, which may cause a major stroke in the acute stage.</p

    A formylpeptide receptor, FPRL1, acts as an efficient coreceptor for primary isolates of human immunodeficiency virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than 10 members of seven-transmembrane G protein-coupled receptors (GPCRs) have been shown to work as coreceptors for human immunodeficiency virus type 1 (HIV-1), HIV type 2 (HIV-2), and simian immunodeficiency viruses (SIVs). As a common feature of HIV/SIV coreceptors, tyrosine residues are present with asparagines, aspartic acids or glutamic acids in the amino-terminal extracellular regions (NTRs).</p> <p>We noticed that a receptor for N-formylpeptides, FPRL1, also contains two tyrosine residues accompanied by glutamic acids in its NTR. It was reported that monocytes expressing CCR5 and FPRL1 in addition to CD4 are activated by treatment with ligands or agonists of FPRL1. Activated monocytes down-modulate CCR5 and become resistant to infection by HIV-1 strains. Thus, FPRL1 plays important roles in protection of monocyptes against HIV-1 infection. However, its own coreceptor activity has not been elucidated yet. In this study, we examined coreceptor activities of FPRL1 for HIV/SIV strains including primary HIV-1 isolates.</p> <p>Results</p> <p>A CD4-transduced human glioma cell line, NP-2/CD4, is strictly resistant to HIV/SIV infection. We have reported that when NP-2/CD4 cells are transduced with a GPCR having coreceptor activity, the cells become susceptible to HIV/SIV strains. When NP-2/CD4 cells were transduced with FPRL1, the resultant NP-2/CD4/FPRL1 cells became markedly susceptible to some laboratory-adapted HIV/SIV strains. We found that FPRL1 is also efficiently used as a coreceptor by primary HIV-1 isolates as well as CCR5 or CXCR4.</p> <p>Amino acid sequences linked to the FPRL1 use could not be detected in the V3 loop of the HIV-1 Env protein. Coreceptor activities of FPRL1 were partially blocked by the forymyl-Met-Leu-Phe (fMLF) peptide.</p> <p>Conclusion</p> <p>We conclude that FPRL1 is a novel and efficient coreceptor for HIV/SIV strains. FPRL1 works as a bifunctional factor in HIV-1 infection. Namely, the role of FPRL1 in HIV-1 infection is protective and/or promotive in different conditions. FPRL1 has been reported to be abundantly expressed in the lung, spleen, testis, and neutrophils. We detected mRNA expression of FPRL1 in 293T (embryonal kidney cell line), C8166 (T cell line), HOS (osteosarcoma cell line), Molt4#8 (T cell line), U251MG (astrocytoma cell line), U87/CD4 (CD4-transduced glioma cell line), and peripheral blood lymphocytes. Roles of FPRL1 in HIV-1 infection <it>in vivo </it>should be further investigated.</p

    Low Surface Potential with Glycoconjugates Determines Insect Cell Adhesion at Room Temperature

    Get PDF
    Cell-coupled field-effect transistor (FET) biosensors have attracted considerable attention because of their high sensitivity to biomolecules. The use of insect cells (Sf21) as a core sensor element is advantageous due to their stable adhesion to sensors at room temperature. Although visualization of the insect cell-substrate interface leads to logical amplification of signals, the spatiotemporal processes at the interfaces have not yet been elucidated. We quantitatively monitored the adhesion dynamics of Sf21 using interference reflection microscopy (IRM). Specific adhesion signatures with ring-like patches along the cellular periphery were detected. A combination of zeta potential measurements and lectin staining identified specific glycoconjugates with low electrostatic potentials. The ring-like structures were disrupted after cholesterol depletion, suggesting a raft domain along the cell periphery. Our results indicate dynamic and asymmetric cell adhesion is due to low electrostatic repulsion with fluidic sugar rafts. We envision the logical design of cell-sensor interfaces with an electrical model that accounts for actual adhesion interfaces.Matsuzaki T., Terutsuki D., Sato S., et al. Low Surface Potential with Glycoconjugates Determines Insect Cell Adhesion at Room Temperature. Journal of Physical Chemistry Letters 2022 13(40), 9494-9500. DOI: 10.1021/acs.jpclett.2c01673. Copyright © 2022 American Chemical Society

    Hot electron and ion spectra on blow-off plasma free target in GXII-LFEX direct fast ignition experiment

    Get PDF
    Polystyrene deuteride shell targets with two holes were imploded by the Gekko XII laser and additionally heated by the LFEX laser in a direct fast ignition experiment. In general, when an ultra-intense laser is injected into a blow-off plasma created by the imploding laser, electrons are generated far from the target core and the energies of electrons increase because the electron acceleration distance has been extended. The blow-off plasma moves not only to the vertical direction but to the lateral direction against the target surface. In a shell target with holes, a lower effective electron temperature can be realized by reducing the inflow of the implosion plasma onto the LFEX path, and high coupling efficiency can be expected. The energies of hot electrons and ions absorbed into the target core were calculated from the energy spectra using three electron energy spectrometers and a neutron time-of-flight measurement system, Mandala. The ions have a large contribution of 74% (electron heating of 4.9 J and ion heating of 14.1 J) to target heating in direct fast ignition

    Progression Potential of Ductal Carcinoma in situ Assessed by Genomic Copy Number Profiling.

    Get PDF
    BACKGROUND:Ductal carcinoma in situ (DCIS) of the breast is heterogeneous in terms of the risk of progression to invasive ductal carcinoma (IDC). To treat DCIS appropriately for its progression risk, we classified individual DCIS by its profile of genomic changes into 2 groups and correlated them with clinicopathological progression factors.METHODS:We used surgically resected, formalin-fixed, paraffin-embedded tissues of 22 DCIS and 30 IDC lesions. We performed immunohistochemical intrinsic subtyping, array-based comparative genomic hybridization, and unsupervised clustering.RESULTS:The samples were divided into 2 major clusters, A and B. Cluster A showed a greater number of gene and chromosome copy number alterations, a larger IDC/DCIS ratio, a higher frequency of nonluminal subtype, a lower frequency of luminal subtype, and a higher nuclear grade, when compared with cluster B. However, there was no difference in the frequencies of lymph node metastasis between clusters A and B. We identified 9 breast-cancer-related genes, including TP53 and GATA3, that highly contributed to the discrimination of A and B clusters.CONCLUSION:Classification of breast tumors into rapidly progressive cluster A and the other (cluster B) may contributeto select the treatment appropriate for their progression risk

    Genome Sequence of a Mesophilic Hydrogenotrophic Methanogen Methanocella paludicola, the First Cultivated Representative of the Order Methanocellales

    Get PDF
    We report complete genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultured representative of the order Methanocellales once recognized as an uncultured key archaeal group for methane emission in rice fields. The genome sequence of M. paludicola consists of a single circular chromosome of 2,957,635 bp containing 3004 protein-coding sequences (CDS). Genes for most of the functions known in the methanogenic archaea were identified, e.g. a full complement of hydrogenases and methanogenesis enzymes. The mixotrophic growth of M. paludicola was clarified by the genomic characterization and re-examined by the subsequent growth experiments. Comparative genome analysis with the previously reported genome sequence of RC-IMRE50, which was metagenomically reconstructed, demonstrated that about 70% of M. paludicola CDSs were genetically related with RC-IMRE50 CDSs. These CDSs included the genes involved in hydrogenotrophic methane production, incomplete TCA cycle, assimilatory sulfate reduction and so on. However, the genetic components for the carbon and nitrogen fixation and antioxidant system were different between the two Methanocellales genomes. The difference is likely associated with the physiological variability between M. paludicola and RC-IMRE50, further suggesting the genomic and physiological diversity of the Methanocellales methanogens. Comparative genome analysis among the previously determined methanogen genomes points to the genome-wide relatedness of the Methanocellales methanogens to the orders Methanosarcinales and Methanomicrobiales methanogens in terms of the genetic repertoire. Meanwhile, the unique evolutionary history of the Methanocellales methanogens is also traced in an aspect by the comparative genome analysis among the methanogens

    Pyloric, pseudopyloric, and spasmolytic polypeptide-expressing metaplasias in autoimmune gastritis: a case series of 22 Japanese patients.

    Get PDF
    There are two types of pyloric gland-like metaplasia in the corpus of stomach: pyloric and pseudopyloric metaplasias. They show the same morphology as the original pyloric glands in H&E staining. Pseudopyloric metaplasia is positive for pepsinogen (PG) I immunohistochemically, whereas pyloric metaplasia is negative. Recently, spasmolytic polypeptide-expressing metaplasia (SPEM) is proposed for pyloric gland-like metaplasia mainly in animal experiments. SPEM expresses trefoil factor family 2 (TFF2) and is often considered synonymous with pseudopyloric metaplasia. We reviewed consecutive 22 Japanese patients with autoimmune gastritis (AIG) to investigate TFF2 expression in pyloric and pseudopyloric metaplasias by counting all pyloric gland-like glands in biopsy specimens taken from greater curvature of the middle corpus according to the Updated Sydney System. Pyloric metaplasia was seen in all the 22 cases, and pseudopyloric metaplasia was found in 15 cases. Of 1567 pyloric gland-like glands in all the cases, 1381 (88.1%) glands were pyloric metaplasia glands, and the remaining 186 (11.9%) glands were pseudopyloric metaplasia glands. TFF2 expression was observed in pyloric or pseudopyloric metaplasia glands in 20 cases. TFF2 expression was recognized in 409 of 1381 (26.9%) pyloric metaplasia glands and 27 of 186 (14.5%) pseudopyloric metaplasia glands (P<0.01, chi-square test). In conclusion, SPEM was not always the same as pseudopyloric metaplasia in human AIG, and the majority of metaplasia in AIG was not pseudopyloric but pyloric metaplasia

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe
    corecore