2,867 research outputs found

    Adsorbate-enhanced transport of metals on metal surfaces: Oxygen and sulfur on coinage metals

    Get PDF
    Coarsening (i.e., ripening) of single-atom-high, metal homoepitaxial islands provides a useful window on the mechanism and kinetics of mass transport at metal surfaces. This article focuses on this type of coarsening on the surfaces of coinage metals (Cu, Ag, Au), both clean and with an adsorbed chalcogen (O, S) present. For the clean surfaces, three aspects are summarized: (1) the balance between the two major mechanisms—Ostwald ripening (the most commonly anticipated mechanism) and Smoluchowski ripening—and how that balance depends on island size; (2) the nature of the mass transport agents, which are metal adatoms in almost all known cases; and (3) the dependence of the ripening kinetics on surface crystallography. Ripening rates are in the order (110)\u3e(111)\u3e(100), a feature that can be rationalized in terms of the energetics of key processes. This discussion of behavior on the clean surfaces establishes a background for understanding why coarsening can be accelerated by adsorbates. Evidence that O and S accelerate mass transport on Ag, Cu, and Au surfaces is then reviewed. The most detailed information is available for two specific systems, S/Ag (111) and S/Cu(111). Here, metal-chalcogen clusters are clearly responsible for accelerated coarsening. This conclusion rests partly on deductive reasoning, partly on calculations of key energetic quantities for the clusters (compared with quantities for the clean surfaces), and partly on direct experimental observations. In these two systems, it appears that the adsorbate, S, must first decorate—and, in fact, saturate—the edges of metal islands and steps, and then build up at least slightly in coverage on the terraces before acceleration begins. Acceleration can occur at coverages as low as a few thousandths to a few hundredths of a monolayer. Despite the significant recent advances in our understanding of these systems, many open questions remain. Among them is the identification of the agents of mass transport on crystallographically different surfaces e.g., 111, 110, and 100

    Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene

    Full text link
    The quantum-Hall-effect (QHE) occurs in topologically-ordered states of two-dimensional (2d) electron-systems in which an insulating bulk-state coexists with protected 1d conducting edge-states. Owing to a unique topologically imposed edge-bulk correspondence these edge-states are endowed with universal properties such as fractionally-charged quasiparticles and interference-patterns, which make them indispensable components for QH-based quantum-computation and other applications. The precise edge-bulk correspondence, conjectured theoretically in the limit of sharp edges, is difficult to realize in conventional semiconductor-based electron systems where soft boundaries lead to edge-state reconstruction. Using scanning-tunneling microscopy and spectroscopy to follow the spatial evolution of bulk Landau-levels towards a zigzag edge of graphene supported above a graphite substrate we demonstrate that in this system it is possible to realize atomically sharp edges with no edge-state reconstruction. Our results single out graphene as a system where the edge-state structure can be controlled and the universal properties directly probed.Comment: 16 pages, 4 figure

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    Headache prevalence in the population of L’Aquila (Italy) after the 2009 earthquake

    Get PDF
    Stress induced by the events of daily life is considered a major factor in pathogenesis of primary tension-type headache. Little is known about the impact that could have a more stressful event, like a natural disaster, both in patients with chronic headache, both in people that do not had headache previously. The aim of the present study was to observe the prevalence of headache in the population following the devastating earthquake that affected the province of L’Aquila on April 6, 2009. The study population was conducted in four tent cities (Onna, Bazzano, Tempera-St. Biagio, Paganica). Sanitary access is recorded in the registers of medical triage, in the first 5 weeks, after the April 6, 2009. The prevalence of primary headache presentation was 5.53% (95% CI 4.2–7.1), secondary headache was 2.82% (95% CI 1.9–4.9). Pain intensity, assessed by Numerical Rating Scale score showed a mean value of 7 ± 1.1 (range 4–10). The drugs most used were the NSAIDs (46%) and paracetamol (36%), for impossibility of finding causal drugs. This study shows how more stressful events not only have an important role in determining acute exacerbation of chronic headache, but probably also play a pathogenic role in the emergence of primary headache. Also underlines the lack of diagnostic guidelines or operating protocols to early identify and treat headache in the emergency settings

    Correlations and forecast of death tolls in the Syrian conflict

    Get PDF
    The Syrian armed conflict has been ongoing since 2011 and has already caused thousands of deaths. The analysis of death tolls helps to understand the dynamics of the conflict and to better allocate resources and aid to the affected areas. In this article, we use information on the daily number of deaths to study temporal and spatial correlations in the data, and exploit this information to forecast events of deaths. We found that the number of violent deaths per day in Syria varies more widely than that in England in which non-violent deaths dominate. We have identified strong positive auto-correlations in Syrian cities and non-trivial cross-correlations across some of them. The results indicate synchronization in the number of deaths at different times and locations, suggesting respectively that local attacks are followed by more attacks at subsequent days and that coordinated attacks may also take place across different locations. Thus the analysis of high temporal resolution data across multiple cities makes it possible to infer attack strategies, warn potential occurrence of future events, and hopefully avoid further deaths

    Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    Get PDF
    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling

    Geography of non-melanoma skin cancer and ecological associations with environmental risk factors in England.

    Get PDF
    This is the author's peer reviewed version of the article. Please cite the published, final version which is available via the DOI link in this record.This study investigates the geography of non-melanoma skin cancer (NMSC) in England, and ecological associations with three widespread environmental hazards: radon, arsenic and ultraviolet radiation from the sun.European Regional Development FundEuropean Social Fund Convergence Programme for Cornwall and the Isles of Scill
    • 

    corecore