3,188 research outputs found

    Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    Get PDF
    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing

    The Bosch Process-Performance of a Developmental Reactor and Experimental Evaluation of Alternative Catalysts

    Get PDF
    Bosch-based reactors have been in development at NASA since the 1960's. Traditional operation involves the reduction of carbon dioxide with hydrogen over a steel wool catalyst to produce water and solid carbon. While the system is capable of completely closing the loop on oxygen and hydrogen for Atmosphere Revitalization, steel wool requires a reaction temperature of 650C or higher for optimum performance. The single pass efficiency of the reaction over steel wool has been shown to be less than 10% resulting in a high recycle stream. Finally, the formation of solid carbon on steel wool ultimately fouls the catalyst necessitating catalyst resupply. These factors result in high mass, volume and power demands for a Bosch system. Interplanetary transportation and surface exploration missions of the moon, Mars, and near-earth objects will require higher levels of loop closure than current technology cannot provide. A Bosch system can provide the level of loop closure necessary for these long-term missions if mass, volume, and power can be kept low. The keys to improving the Bosch system lie in reactor and catalyst development. In 2009, the National Aeronautics and Space Administration refurbished a circa 1980's developmental Bosch reactor and built a sub-scale Bosch Catalyst Test Stand for the purpose of reactor and catalyst development. This paper describes the baseline performance of two commercially available steel wool catalysts as compared to performance reported in the 1960's and 80's. Additionally, the results of sub-scale testing of alternative Bosch catalysts, including nickel- and cobalt-based catalysts, are discussed

    Evaluation of Bosch-Based Systems Using Non-Traditional Catalysts at Reduced Temperatures

    Get PDF
    Oxygen and water resupply make open loop atmosphere revitalization (AR) systems unfavorable for long-term missions beyond low Earth orbit. Crucial to closing the AR loop are carbon dioxide reduction systems with low mass and volume, minimal power requirements, and minimal consumables. For this purpose, NASA is exploring using Bosch-based systems. The Bosch process is favorable over state-of-the-art Sabatier-based processes due to complete loop closure. However, traditional operation of the Bosch required high reaction temperatures, high recycle rates, and significant consumables in the form of catalyst resupply due to carbon fouling. A number of configurations have been proposed for next-generation Bosch systems. First, alternative catalysts (catalysts other than steel wool) can be used in a traditional single-stage Bosch reactor to improve reaction kinetics and increase carbon packing density. Second, the Bosch reactor may be split into separate stages wherein the first reactor stage is dedicated to carbon monoxide and water formation via the reverse water-gas shift reaction and the second reactor stage is dedicated to carbon formation. A series system will enable maximum efficiency of both steps of the Bosch reaction, resulting in optimized operation and maximum carbon formation rate. This paper details the results of testing of both single-stage and two-stage Bosch systems with alternative catalysts at reduced temperatures. These results are compared to a traditional Bosch system operated with a steel wool catalyst

    The Use of Mt. Mazama Volcanic Ash as Natural Pozzolans for Sustainable Soil and Unpaved Road Improvement

    Get PDF
    Natural pozzolans can be a replacement for portland cement in many applications. Some natural pozzolans are byproducts of industrial processes. Other natural pozzolans, such as volcanic ash, occur naturally. This study determined the suitability of Mt. Mazama volcanic ash as a natural pozzolan and explored innovative uses of the material for roadway improvement. Requirements of natural pozzolans are specified in ASTM C618 – coal fly ash and raw or calcined natural pozzolan for use in concrete. This study concluded that volcanic ash from Mt. Mazama meets chemical requirements of a natural pozzolan. In its unprocessed, natural form, Mt. Mazama volcanic ash does not meet fineness, moisture or strength requirements as a natural pozzolan. An innovative study of the strength of mortar cubes created with increasing replacement of portland cement with Mt. Mazama volcanic ash showed that decreases in strength occur with increased percentage replacements. When the Mt. Mazama volcanic ash is crushed and passed through a No. 200 sieve, this decrease in strength is less than unprocessed material. Slurry mixes of Mt. Mazama volcanic ash, lime and portland cement applied to gravel materials bound material to a greater percentage, and reduced potentially airborne particulates to a greater degree than using portland cement slurry alone. A sustainability analysis concluded that any replacement of portland cement with volcanic ash reduces embodied energy and carbon dioxide emissions

    The Use of Mt. Mazama Volcanic Ash as Natural Pozzolans for Sustainable Soil and Unpaved Road Improvement

    Get PDF
    Natural pozzolans can be a replacement for portland cement in many applications. Some natural pozzolans are byproducts of industrial processes. Other natural pozzolans, such as volcanic ash, occur naturally. This study determined the suitability of Mt. Mazama volcanic ash as a natural pozzolan and explored innovative uses of the material for roadway improvement. Requirements of natural pozzolans are specified in ASTM C618 – coal fly ash and raw or calcined natural pozzolan for use in concrete. This study concluded that volcanic ash from Mt. Mazama meets chemical requirements of a natural pozzolan. In its unprocessed, natural form, Mt. Mazama volcanic ash does not meet fineness, moisture or strength requirements as a natural pozzolan. An innovative study of the strength of mortar cubes created with increasing replacement of portland cement with Mt. Mazama volcanic ash showed that decreases in strength occur with increased percentage replacements. When the Mt. Mazama volcanic ash is crushed and passed through a No. 200 sieve, this decrease in strength is less than unprocessed material. Slurry mixes of Mt. Mazama volcanic ash, lime and portland cement applied to gravel materials bound material to a greater percentage, and reduced potentially airborne particulates to a greater degree than using portland cement slurry alone. A sustainability analysis concluded that any replacement of portland cement with volcanic ash reduces embodied energy and carbon dioxide emissions

    Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    Get PDF
    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these "oxygenated" compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testin

    Ongoing Development of a Series Bosch Reactor System

    Get PDF
    Future manned missions to deep space or planetary surfaces will undoubtedly incorporate highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian regolith simulant for the carbon formation step

    Advanced Oxygen Recovery via Series-Bosch Technology

    Get PDF
    Oxygen recovery from metabolically-produced carbon dioxide (CO2) is of critical importance for long-duration manned space missions beyond low Earth orbit. On the International Space Station (ISS), oxygen is provided to the crew through electrolysis of water in the Oxygen Generation Assembly (OGA). Prior to 2011, this water was entirely resupplied from Earth. A CO2 Reduction Assembly based on the Sabatier reaction (1) was developed by Hamilton Sundstrand and delivered to ISS in 2010. The unit recovers oxygen by reducing metabolic CO2 with diatomic hydrogen (H2) to produce methane and product water. The water is cleaned by the Water Purification Assembly and recycled to the OGA for continued oxygen production. The methane product is vented overboard
    corecore