674 research outputs found

    Spray drag effect of fluidized sand for a supersonic vehicle

    Get PDF
    This paper deals with fluidized sand simulation in order to estimate the impact of sand particle motion on the BLOODHOUND SuperSonic Car (SSC) drag forces, such phenomenon is known as a spray drag effect. A gas-particle model is used to simulate the sand particles that rise from the ground because of the strong shockwave-desert surface interaction. A finite volume scheme is used to discretise the continuous model with a special treatment of the solid phase equations. An indefinitely differentiable and anisotropic limiter to reinforce the method stability and reduce any excessive smearing is applied. To estimate the area where sand particles are detached from the ground, a criterion based on pressure change is proposed. The model is first validated on a curved 90 bend test case with comparison to experimental results and then applied to the supersonic car

    Room temperature magnetic stabilization of buried cobalt nanoclusters within a ferromagnetic matrix studied by soft x-ray magnetic circular dichroism

    Get PDF
    Single dusting layers of size-selected Co nanoclusters (NCs) of sizes ranging from 1.5–5.5 nm have been deposited by a gas-phase aggregation method in ultrahigh vacuum, and embedded within a NiFe matrix. Magnetic hysteresis loops have been obtained using soft x-ray magnetic circular dichroism, which shows that these Co NCs embedded in NiFe exhibit room temperature ferromagnetism with identical coercivity to the surrounding NiFe film. The strong local exchange field at the interface between NiFe and Co NCs, combined with the magnetic anisotropy of the NiFe film, allows stabilization of NC ferromagnetism which persists to room temperature

    What’s sex got to do with it? A family-based investigation of growing up heterosexual during the twentieth century

    Get PDF
    This paper explores findings from a cross-generational study of the making of heterosexual relationships in East Yorkshire, which has interviewed women and men within extended families. Using a feminist perspective, it examines the relationship between heterosexuality and adulthood, focussing on sexual attraction, courtship, first kisses, first love and first sex, as mediated within family relationships, and at different historical moments. In this way, the contemporary experiences of young people growing up are compared and contrasted with those of mid-lifers and older adults who formed heterosexual relationships within the context of the changing social and sexual mores of the 1960s/1970s, and the upheavals of World War Two

    A review of the discovery reach of directional Dark Matter detection

    Get PDF
    Cosmological observations indicate that most of the matter in the Universe is Dark Matter. Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs) can be detected directly, via its elastic scattering off target nuclei. Most current direct detection experiments only measure the energy of the recoiling nuclei. However, directional detection experiments are sensitive to the direction of the nuclear recoil as well. Due to the Sun’s motion with respect to the Galactic rest frame, the directional recoil rate has a dipole feature, peaking around the direction of the Solar motion. This provides a powerful tool for demonstrating the Galactic origin of nuclear recoils and hence unambiguously detecting Dark Matter. Furthermore, the directional recoil distribution depends on the WIMP mass, scattering cross section and local velocity distribution. Therefore, with a large number of recoil events it will be possible to study the physics of Dark Matter in terms of particle and astrophysical properties. We review the potential of directional detectors for detecting and characterizing WIMPs

    Modal scattering at an impedance transition in a lined flow duct

    Get PDF
    An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1,-8 <x <8 with mean flow Mach number M > 0 and a hard wall along x <0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t ), no more singular than h = O(x1/2) for x ¿ 0. A mode, incident from x <0, scatters at x = 0 into a series of reflected modes and a series of transmitted modes. Of particular interest is the role of a possible instability along the lined wall in combination with the edge singularity. If one of the "upstream" running modes is to be interpreted as a downstream-running instability, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of some form of Kutta condition at x = 0, for example a more stringent edge condition where h = O(x3/2) at the downstream side. The question of the instability requires an investigation of the modes in the complex frequency plane and therefore depends on the chosen impedance model, since Z = Z(¿) is essentially frequency dependent. The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion, however, is applicable and confirms that the suspected mode is usually unstable. In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave at low frequencies and should therefore be easily measurable. For ¿ ¿ 0, the modulus tends to |R001| ¿ (1 + M)/(1 - M) without and to 1 with Kutta condition, while the end correction tends to8without and to a finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with flow, irrespective if this is uniform or jet flow

    A phase 2, randomized, double-blind, placebo- controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a Gynecologic Oncology Group partners study.

    Get PDF
    A phase 2, randomized, placebo-controlled trial was conducted in women with recurrent epithelial ovarian carcinoma to evaluate the efficacy and safety of motolimod-a Toll-like receptor 8 (TLR8) agonist that stimulates robust innate immune responses-combined with pegylated liposomal doxorubicin (PLD), a chemotherapeutic that induces immunogenic cell death. Women with ovarian, fallopian tube, or primary peritoneal carcinoma were randomized 1 : 1 to receive PLD in combination with blinded motolimod or placebo. Randomization was stratified by platinum-free interval (≤6 versus >6-12 months) and Gynecologic Oncology Group (GOG) performance status (0 versus 1). Treatment cycles were repeated every 28 days until disease progression. The addition of motolimod to PLD did not significantly improve overall survival (OS; log rank one-sided P = 0.923, HR = 1.22) or progression-free survival (PFS; log rank one-sided P = 0.943, HR = 1.21). The combination was well tolerated, with no synergistic or unexpected serious toxicity. Most patients experienced adverse events of fatigue, anemia, nausea, decreased white blood cells, and constipation. In pre-specified subgroup analyses, motolimod-treated patients who experienced injection site reactions (ISR) had a lower risk of death compared with those who did not experience ISR. Additionally, pre-treatment in vitro responses of immune biomarkers to TLR8 stimulation predicted OS outcomes in patients receiving motolimod on study. Immune score (tumor infiltrating lymphocytes; TIL), TLR8 single-nucleotide polymorphisms, mutational status in BRCA and other DNA repair genes, and autoantibody biomarkers did not correlate with OS or PFS. The addition of motolimod to PLD did not improve clinical outcomes compared with placebo. However, subset analyses identified statistically significant differences in the OS of motolimod-treated patients on the basis of ISR and in vitro immune responses. Collectively, these data may provide important clues for identifying patients for treatment with immunomodulatory agents in novel combinations and/or delivery approaches. Clinicaltrials.gov, NCT 01666444

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    In Silico and Structural Analyses Demonstrate That Intrinsic Protein Motions Guide T Cell Receptor Complementarity Determining Region Loop Flexibility.

    Get PDF
    T-cell immunity is controlled by T cell receptor (TCR) binding to peptide major histocompatibility complexes (pMHCs). The nature of the interaction between these two proteins has been the subject of many investigations because of its central role in immunity against pathogens, cancer, in autoimmunity, and during organ transplant rejection. Crystal structures comparing unbound and pMHC-bound TCRs have revealed flexibility at the interaction interface, particularly from the perspective of the TCR. However, crystal structures represent only a snapshot of protein conformation that could be influenced through biologically irrelevant crystal lattice contacts and other factors. Here, we solved the structures of three unbound TCRs from multiple crystals. Superposition of identical TCR structures from different crystals revealed some conformation differences of up to 5 Å in individual complementarity determining region (CDR) loops that are similar to those that have previously been attributed to antigen engagement. We then used a combination of rigidity analysis and simulations of protein motion to reveal the theoretical potential of TCR CDR loop flexibility in unbound state. These simulations of protein motion support the notion that crystal structures may only offer an artifactual indication of TCR flexibility, influenced by crystallization conditions and crystal packing that is inconsistent with the theoretical potential of intrinsic TCR motions
    corecore