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Modal Scattering at an Impedance Transition
in a Lined Flow Duct

Sjoerd W. Rienstra∗
Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Nigel Peake†

University of Cambridge, Cambridge CB3 0WA, UK.

An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall
impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r =
1,−∞ < x < ∞ with mean flow Mach number M > 0 and a hard wall along x < 0 and a wall of impedance
Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t), no
more singular than h = O(x1/2) for x ↓ 0.

A mode, incident from x < 0, scatters at x = 0 into a series of reflected modes and a series of transmitted
modes. Of particular interest is the role of a possible instability along the lined wall in combination with the
edge singularity. If one of the “upstream” running modes is to be interpreted as a downstream-running insta-
bility, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of
some form of Kutta condition at x = 0, for example a more stringent edge condition where h = O(x3/2) at
the downstream side. The question of the instability requires an investigation of the modes in the complex fre-
quency plane and therefore depends on the chosen impedance model, since Z = Z(ω) is essentially frequency
dependent.

The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a
temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion,
however, is applicable and confirms that the suspected mode is usually unstable.

In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave
at low frequencies and should therefore be easily measurable. For ω → 0, the modulus tends to |R001| →
(1 + M)/(1 − M) without and to 1 with Kutta condition, while the end correction tends to ∞ without and to a
finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with
flow, irrespective if this is uniform or jet flow.

Nomenclature

E = entire function, viz. a constant
Jm = ordinary Bessel function of the first kinds of order m
h = perturbed position wall streamline
m = circumferential modal wave number
M = Mach number
µ, ν = radial modal order
n = unit outer normal vectors at r = 1
v, p, ρ, c, φ = time-harmonic velocity, pressure, density, sound speed, potential perturbations
x , r , θ , t = axial, radial, azimuthal angle, time coordinate
ex , er , eθ = unit vectors in x , r , θ -direction
αmν = radial modal wave number
γ = reduced radial wave number
κ = axial wave number
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hoven, The Netherlands. AIAA Member.

†Professor, Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilber-
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σ = reduced axial wave number
σmν , = reduced axial modal wave number hard-wall duct
τmν , = axial modal wave number soft-wall duct
ψ = scattered potential
ω = angular frequency; Helmholtz number
� = reduced frequency

I. Introduction

SOUND transmission through a lined flow duct may be described by a sum of modes if geometry, lining and mean
flow are independent of the axial coordinate. Mathematically, modes (in some cases including a continuous spec-

trum) form a complete basis for the representation of the sound field, but physically, they are each also (self-similar)
solutions of the equations. Therefore, they provide much insight into the physical behaviour of the sound propagation.
Most of our knowledge of duct acoustics is based on understanding the modes.

The modes in lined circular ducts with uniform mean flow are nearly completely understood.1 With hard walls
we have a finite number of cut-on (axially propagating) and infinitely many cut-off (axially exponentially decaying)
modes. With soft walls this difference is slightly blurred; all modes decay exponentially but some are weakly cut-off
while the others are heavily cut-off. Apart from this difference in axial direction, there is also a marked difference in
the cross-wise (radial) direction. Most modes are present throughout the duct, but some exist only near the wall. They
decay exponentially in the radial direction away from the wall. These modes are called surface waves. Some exist both
with and without flow, but some only with mean flow (of either type at most 2 per circumferential order for a hollow
duct, 4 for an annular duct). The ones that exist only with mean flow are thus called hydrodynamic surface waves.1

By analogy with the Helmholtz instability along an interface between two media of different velocities, it was
recognised by Ffowcs Williams and Tester2 that one such hydrodynamic surface wave may have the character of an
instability. This means that the mode seems to propagate in the upstream direction while it decays exponentially, but in
reality its direction of propagation is downstream and it increases exponentially. Tester2 verified this conjecture by the
causality argument of Briggs and Bers3–5 (using physically reasonable frequency dependent impedance models) and
found that the suspected surface wave indeed may be an instability, at least according to the Briggs-Bers formalism.
This was confirmed analytically by Rienstra in [1] for an incompressible limit of waves along an impedance of mass-
spring-damper type, but now using the related causality criterion of Cright & Leppington.12, 26

Extending these ideas, Koch and Möhring6 analysed by a generalised Wiener-Hopf solution the scattered sound
field in a 2D duct with mean flow and a finite lined section. Their (Briggs-Bers) causality analysis was slightly
incomplete because they considered only frequency independent impedances, but otherwise they found results similar
to Tester. If there is no instability wave available, the liner’s leading edge singularity could be no less than rather
strong. If there is an instability this singularity can be weak, similar to the Kutta condition for a trailing edgea. The
singularity at the liner’s trailing edge is more difficult to model9, 10 (the proper modelling may well be a nonlinear one
and involve essentially a finite thickness mean flow boundary layer) and the scattering by this edge may add a certain
amount of uncertainty to the results. This, however, is greatly overshadowed by the fact that the field obtained in the
lined section becomes exponentially large when the instability is included. This is in the greatest contrast with any
experimental evidence, apart from some weak indication reported by Ffowcs Williams.11

It is therefore still an open question if these modes are really unstable, or maybe essentially nonlinear for any
reasonable acoustic amplitude because of the very high amplification rate.

On the other hand, this is not very unlike the situation for the jet. In agreement with theory, an instability indeed
emerges from the exit edge, but further downstream the predicted Helmholtz instability is much less than is observed,
because it quickly reaches the nonlinear regime. Still the major predicted acoustic consequences due to the excitation
of the instability are very well described by linear theory12–25 and it makes sense to investigate a common situation.

In the jet exit problem we know that the instability may be excited by vortex shedding from a sharp edge. In the
inviscid models we are dealing with, the vortex shedding is enforced by application of the Kutta condition.7, 23 By
analogy we propose here the canonical problem of a duct, consisting of a semi-infinite hard-walled section and a semi-
infinite lined section, with a mean flow that runs from the hard-walled to the soft-walled parts. The liner instability,
if available, will be excited by application of some form of Kutta condition. Rather than the Briggs-Bers criterion

aThis Kutta condition essentially results from a delicate balance between viscous effects, nonlinear inertia and acceleration, described by a form
of triple deck theory.7,8 It would be of interest to investigate if any consistent high-Reynolds triple deck or otherwise structure is possible that is
compatible with an absent instability and no Kutta condition.
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(BB) we will use the Crighton-Leppington12, 26 causality test (CL), because, as we will show, BB is not applicable
here, while it gives sometimes different answers than CL. In the cases considered, the suspected mode is more often
detected as an instability by CL than by BB.

Similar problems were proposed for the semi-infinite 2D problems27, 28 and for the 2D duct with a finite lined
section.6 Unfortunately, in all these cases the acoustically detectable difference between the situation with and without
an instability is relatively small and experimental verification seems difficult. We will show that in the low Helmholtz
number limit of a circular duct there results a very large acoustical difference between presence and absence of the
instability. In similar problems for the exhaust jet it has been shown experimentally that the excitation of an instability
is really physical and the effect on the acoustics is just as big as the theory predicts.16, 18–21

Although the present problem might be solved for most practical engineering purposes in a satisfactory way by
mode matching, this method is not useful here as it provides no control of the edge singularity other than a posteriori
by checking the convergence rate of the modal amplitudes. A much better approach in this respect is the Wiener-Hopf
technique.29 The problem of sound scattered in a semi-infinite duct is very apt to be treated by this method, while the
edge singularity plays a most prominent role via the order of a polynomial function.

The pioneering Wiener-Hopf solution by Heins & Feshbach30 without flow is almost as classical as the related
problem for the unflanged pipe exit by Levine & Schwinger,31 but we will not follow their approach. To include flow
and Kutta condition in a convenient way, we will use a 3D version of the 2D analysis outlined in [28].

II. The problem

We assume a eiωt -sign convention, while the exponent is dropped throughout. Consider the problem of the scat-
tering of duct modes at a hard-soft wall impedance transition in a circular duct of radius a with uniform mean flow
velocity U0, density ρ0 and soundspeed c0 (see figure 1). Following1 we make dimensionless: lengths on a, time on
a/c0, velocities on c0, densities on ρ0, and pressures on ρ0c2

0. Noting that in uniform flow pressure, vorticity and
entropy perturbations are decoupled, we leave vorticity and entropy perturbations unspecified and consider only the
pressure field.

Figure 1. Sketch of geometry.

In particular, we have in a circular duct r = 1,−∞ < x < ∞ with uniform mean flow Mach number M = U0/c0 > 0
and a hard wall along x < 0 and a wall of impedance Z along x > 0 the time-harmonic acoustic field, with frequency
ω > 0, that satisfies (

iω + M
∂

∂x

)2
p − ∇2 p = 0, (1a)(

iω + M
∂

∂x

)
v + ∇ p = 0, (1b)

with Ingard-Myers boundary conditions32, 33 along r = 1

x < 0 : (v· er ) = 0, (2a)

x > 0 : iωZ(v· er ) =
(

iω + M
∂

∂x

)
p, (2b)

while the field is regular at r = 0. Note that Z = Z(ω) in some physically suitable way. Assume the incident (i.e.
rightrunning) mode in the hard-walled part x < 0

pin = Jm(αmµr) e−imθ−iκmµx (3)
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where m ≥ 0, Jm is the m-th order ordinary Besselfunction of the first kind34. −α2
mµ is an eigenvalue of the Laplace

operator in a circular cross section with Neumann boundary conditions, and given by

α1−m
mµ J′

m(αmµ) = 0, (4)

i.e. the non-trivial zeros of J′
m . αmµ is usually called the radial modal wave number. The axial modal wave number

κmµ is defined through the dispersion relation

α2
mµ + κ2

mµ = (ω − Mκmµ)
2 (5)

such that the branch is taken with Re(κmµ) > 0 if the mode is cut-on or Im(κmµ) < 0 if the mode is cut-off. Due to
circumferential symmetry, the scattered wave will depend on θ via e−imθ only, and we will from here on assume that
p := p e−imθ where the exponent will be dropped.

After introducing the velocity potential with v = ∇φ, we can integrate (1b) to get

(
iω + M

∂

∂x

)
φ + p = 0. (6)

(The integration constant is not important.) So we have for the corresponding incident mode

φin = i

ω − Mκmµ
pin. (7)

We introduce the scattered part ψ of the potential by

φ = φin + ψ. (8)

It is convenient to reformulate the boundary condition by way of the wall stream line given by

r = 1 + Re
(
h(x) eiωt−imθ). (9)

We have then at r = 1 (note that ∂
∂r φin = 0 at r = 1)

∂ψ

∂r
= 0 for x < 0, (10a)

∂ψ

∂r
=

(
iω + M

∂

∂x

)
h for x > 0, (10b)

p = iωZh for x > 0. (10c)

We expect some singular behaviour at x = 0, but no more than what goes together with a continuous wall streamline,
so h(0) = 0 and h(x+) ≤ O(xη) for a η > 0.

III. The Wiener-Hopf analysis

We introduce the Fourier transforms to x

ψ̂(κ, r) =
∫ ∞

−∞
ψ(x, r) eiκx dx, (11a)

H+(κ) =
∫ ∞

0
h(x) eiκx dx, (11b)

P−(κ) =
∫ 0

−∞

(
iω + M

∂

∂x

)
ψ(x, 1) eiκx dx, (11c)

to obtain for ψ̂ the Bessel-type equation

∂2ψ̂

∂r2 + 1

r

∂ψ̂

∂r
+

[
(ω − Mκ)2 − κ2 − m2

r2

]
ψ̂ = 0. (12)
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We introduce the reduced frequency�, Fourier wavenumber σ and radial wave number γ as follows.

β =
√

1 − M2, ω = β�, κ = �

β
(σ − M)

�γ =
√
(ω − Mκ)2 − κ2 = �

√
1 − σ 2, γ =

√
1 − σ 2 where Im(γ ) ≤ 0.

(13)

With (10a), (10b) and (11b) we arrive at the solution

ψ̂ = A(σ ) Jm(�γ r), (14a)

A(σ ) = i
1 − Mσ

βγ J′
m(�γ )

H+. (14b)

Since (
iω + M

∂

∂x

)
ψ = pin − p, (15)

we have along the wall r = 1

i(ω − Mκ)A Jm(�γ ) = P− +
∫ ∞

0
pin eiκx dx −

∫ ∞

0
p eiκx dx, (16)

which reduces to

i(ω − Mκ)A Jm(�γ ) = P− + i Jm(αmµ)

κ − κmµ
− iωZ H+, (17)

and

− �

β2 (1 − Mσ)2
Jm(�γ )

γ J′
m(�γ )

H+ + iβ�Z H+ = P− + iβ Jm(αmµ)

�(σ − σmµ)
(18)

where we introduced

σmµ =
√

1 − α2
mµ

�2
, (19)

such that Re(σmµ) > 0 and Im(σmµ) = 0, or Im(σmµ) < 0. This yields

P−(σ )+ iβ Jm(αmµ)

�(σ − σmµ)
= −K (σ )H+(σ ), (20)

where the Wiener-Hopf kernel K is defined by

K (σ ) = �

β2
(1 − Mσ)2

Jm(�γ )

γ J′
m(�γ )

− iβ�Z (21)

Note that Jm(�γ )/�γ J′
m(�γ ) is a meromorphic function of �2γ 2 and therefore of σ 2. So K is a meromorphic

function of σ with isolated poles and zeros. The zeros, corresponding with the reduced axial wave numbers in the
lined part of the duct, are given by

χ(σ) = (1 − Mσ)2 Jm(�γ )− iβ3 Zγ J′
m(�γ ) = 0 (22)

denoted by σ = τmν , ν = 1, 2, . . . , for the rightrunning modes of the lower complex half plane (see figure 2). The
only possible candidate of a rightrunning mode from the upper-half plane (which then has to be an instability) will be
denoted (following [1]) by σ = σH I , where the subscript refers to ”hydrodynamic instability” (a possible example is
found in the upper right corner of figure 2). The poles, corresponding with the reduced axial wave numbers in the hard
part of the duct, are given by

γ 1−m J′
m(�γ ) = 0, (23)

denoted by σ = σmν , implicitly given by �γ = αmν , ν = 1, 2, . . . where αmν denote the non-trivial zeros of J′
m . For

hard-walled ducts, the left and right running reduced wave numbers are symmetric, and so the left-running hard-wall
modes are given by σ = −σmν .
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Figure 2. Typical location of soft-wall wave numbers τmν (indicated by ◦) and hard-wall wave numbers σmν (indicated by ×). Note the 3
soft-wall surface waves. (Z = 0.8 − 2i, ω = 10,M = 0.5,m = 0.)

In the usual way29 we split K into functions that are analytic in the upper and in the lower half plane (but note a
possible instability pole in the upper half plane that really is to be counted to the lower half plane; see below)

K (σ ) = K+(σ )
K−(σ )

. (24)

Following appendix A, we introduce the auxiliary split functions N+ and N−, satisfying

K (σ ) = N+(σ )
N−(σ )

(25)

and given by

log N±(σ ) = 1

2π i

∫ ∞

0

[
ln K (u)

u − σ
− ln K (−u)

u + σ

]
du. (26)

The + sign corresponds with Im σ > 0 or Im σ = 0 & Re σ < 0, and the − sign with Im σ < 0 or Im σ =
0 & Re σ > 0. (Use for points from the opposite side the definition K N− = N+.) Following appendix A, we obtain
the following asymptotic behaviour

N±(σ ) = O(σ±1/2). (27)

When no instability pole crossed the contour, we identify

K+(σ ) = N+(σ ), K−(σ ) = N−(σ ). (28)

When an instability pole σH I crossed the contour and is to be included among the right-running modes of the lower
half-plane, N− contains the factor (σ − σH I )

−1, so the causal split functions are

K+(σ ) = (σ − σH I )N+(σ ), K−(σ ) = (σ − σH I )N−(σ ). (29)

We continue with our analysis. We substitute the split functions in equation (20) to get

K−(σ )P−(σ )+ iβ Jm(αmµ)
K−(σ )− K−(σmµ)

�(σ − σmµ)
= −K+(σ )H+(σ )−

iβ Jm(αmµ)K−(σmµ)

�(σ − σmµ)
(30)

The left hand side is a function analytic in the lower halfplane, while the right hand side is analytic in the upper
halfplane. So together they define an entire function E .

From the estimate h(x) = O(xη) for x ↓ 0 and η > 0, it follows [29, page 36] that

H+(σ ) = O(σ−η−1) (σ → ∞). (31)
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This gives us the information to determine E . If there is no instability pole, then K+(σ )H+(σ ) = O(σ−η−1/2), and so
E vanishes at infinity and has to vanish everywhere according to Liouville’s theorem.29 If there is an instability pole,
we have an extra factor σ and so K+(σ )H+(σ ) = O(σ−η+1/2). This means that if η = 1/2 (no smooth streamline at
x = 0, i.e. no Kutta condition), the entire function is only bounded and equal to a constant. If unmodelled physical
effects (nonlinearities, viscosity) requires a smooth behaviour of h near x = 0, i.e. the Kutta condition, we have to
choose E = 0, as this yields η = 3/2. See figure 3.

(a) no Kutta condition, no instability (b) no Kutta condition, instability (c) Kutta condition, instability

Figure 3. Types of edge singularity. Note that in the Ingard-Myers model the perturbed wall stream line does not cross the wall. It is
positioned slightly off the wall at a distance, small compared to a wave length but large compared to any acoustic perturbation.

We will start with the assumption of an instability pole. As we will see, the other case will be automatically
included in the formulas, and it will not be necessary to consider both cases separately.

We scale the constant E

E = −iβ Jm(αmµ)K−(σmµ)

�(σH I − σmµ)
(1 − �) = − iβ

�
Jm(αmµ)N−(σmµ)(1 − �) (32)

such that � = 0 corresponds with no excitation of the instability (no contribution from σH I ), while � = 1 corresponds
with the full Kutta condition. Anything inbetween will correspond to a certain amount of instability wave, but not
enough to produce a smooth solution in x = 0. It is readily verified that the assumption of no instability pole, i.e.
K+ = N+ and E = 0, leads to exactly the same formula as with � = 0. So in the following we will identify with
condition � = 0 both the situation of no instability pole as well as the situation of an instability that is (for whatever
reason) not excited.

The total solution is now given by the following inverse Fourier integral, with a deformation around the pole
σ = σH I if � 	= 0. (This deformation will result in a residue contribution if x > 0.)

p = pin +
�

2π iβ2 Jm(αmµ)N−(σmµ)

∫ ∞

−∞
∩ (1 − Mσ)2 Jm(�γ r)

γ J′
m(�γ )N+(σ )

[
1

σ − σmµ
− �

σ − σH I

]
exp

(
i
�

β
(M − σ)x

)
dσ (33)

For x < 0 we close the contour around the lower complex half-plane, and sum over the residues of the poles in
σ = −σmν , the axial wave numbers of the left-running hard-walled modes. We obtain the field

p = pin +
∞∑
ν=1

Rmµν Jm(αmν) exp
(

i
�

β
(M + σmν)x

)
(34)

where

Rmµν = Jm(αmµ)N−(σmµ)(1 + Mσmν )
2

β2σmν

(
1 − m2

α2
mν

)
Jm(αmν)N+(−σmν)

[
1

σmν + σmµ
− �

σmν + σH I

]
(35)

In particular

R011 = 1 + M

1 − M

N−(1)
N+(−1)

[
1

2
− �

1 + σH I

]
(36)
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For the transmitted field in x > 0 we close the contour around the upper half-plane and sum over the residues
from σ = τmν , σmµ and (if � 	= 0) σ = σH I . We note that the residue from σ = σmµ just cancels pin , while the other
residues (except from σH I ) are found after rewriting (cf. equation (22))

γ J′
m(�γ )N+(σ ) = �

β2χ(σ)N−(σ ). (37)

We obtain

p =
∞∑
ν=1

Tmµν Jm(βmνr) exp
(

i
�

β
(M − τmν)x

)

− �
�2

β2 Jm(αmµ)N−(σmµ)
(1 − MσH I )

2

βH I J′
m(βH I )N+(σH I )

Jm(βH I r) exp
(

i
�

β
(M − σH I )x

)
(38)

where βmν = �γ (τmν), βH I = �γ (σH I ), and

Tmµν = −β Jm(αmµ)N−(σmµ)(1 − Mτmν )
2

χ ′(τmν)N−(τmν)

[
1

τmν − σmµ
− �

τmν − σH I

]
, (39)

while χ ′(τmν) can be further specified to be

χ ′(τmν) = −iβ2 Z Jm(βmν)

[
ωτmν

(
1 − m2

β2
mν

− �4
mν

(ωβmν Z)2

)
− 2iM�mν

ωZ

]
, �mν = ω(1 − Mτmν)

β2
. (40)

(This expression may be compared with (16) of [35].)

IV. Causality

To determine the direction of propagation of the modes, and thus detect any possible instability, we have available
the following causality criteria:

• The Briggs-Bers3–5 formalism, where analyticity in the whole lower complexω-plane is enforced by tracing the
poles for fixed Re(ω), and Im(ω) running from 0 to −∞.

• The Crighton-Leppington12, 26 formalism, where analyticity in the whole lower complex ω-plane is enforced by
tracing the poles for fixed |ω|, and arg(ω) running from 0 to − 1

2π .

Interestingly, these two methods give conflicting results as to the existence or otherwise of instability waves, and in
fact it turns out that it is only the Crighton & Leppington approach which can be applied in this case. However, since
the Briggs-Bers method is in common use we will first describe its predictions in some detail, before explaining why
it is actually inapplicable here. We will then present the results from the (legitimate) application of the Crighton &
Leppington procedure.

For definiteness we will model the complex, frequency-dependent impedance as a simple mass-spring-damper
system

Z(ω) = R + iaω − ib

ω
, (41)

which satisfies the fundamental requirements for Z to be physical and passive (see e.g. [36]), viz. Z is analytic and
non-zero in Im(ω) < 0, Z(ω) = Z∗(−ω) and Re(Z) > 0. We will briefly consider another possible model at the end
of this section.

Turning first to the Briggs-Bers method, sample results are presented on the left of figures 4 & 5. Note that in
figure 4 the instability wave starts in the first quadrant of the κ plane, but then crosses the real axis as Im(ω) → −∞.
The Briggs-Bers method therefore predicts that this mode propagates downstream (i.e. its group velocity points in the
downstream direction) and that it is unstable. In contrast, note that in figure 5 the surface mode remains above the κ
axis as Im(ω) → −∞, so that the Briggs-Bers method predicts that this mode propagates in the upstream direction
and decays. It is straightforward to derive a criterion to distinguish between these two different cases, by considering
the behaviour of the corresponding root of the dispersion relation (22) as Im(ω) → −∞. We write

σ = Im(ω)σ0 + σ1 + O(Im(ω)−1), (42)
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and then note that

γ
J′

m(�γ )

Jm(�γ )
∼ Im(ω)σ0 + σ1 + O(Im(ω)−1). (43)

Substituting this result into (22) and equating powers of Im(ω), we find an expansion for the surface-wave mode
number in the form

κ = Im(ω)2aβ

M2
− Im(ω)Rβ

M2
+ i

Im(ω)

β2 M2

[
M(2 − M2)− 2aβ3 Re(ω)

] + . . . . (44)

From this expression we can see straightaway that in the Briggs-Bers method instability will be predicted (i.e. the mode
approaches infinity through the lower half of the κ plane as Im(ω) → −∞) if and only if M(2− M2)/2β3 Re(ω) > a,
and this condition exactly matches the behaviour seen in figures 4 & 5. Note that in figure 5(b) the critical value of a
for instability is a = 0.1451, compared to the value a = 0.15 used in the computation, explaining why the trajectory
of the mode is almost parallel to the real κ axis.
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Figure 4. Causality contours for complex ω according to the Briggs-Bers (left) and the Crighton-Leppington (right) formalism. The crosses
indicate the location of the modes when Im(ω) = 0. Both criteria agree in their conclusion about the instability. (Z = 1 − 0.9i, ω = 1,M =
0.5,m = 0, a = 0.1, b = 1.)

Unfortunately, the Briggs-Bers predictions described in the previous paragraph cannot be applied to our real prob-
lem. This is because there is a rather subtle, but crucial, technical condition which needs to be satisfied before the
Briggs-Bers method can be used. What is required is that the system has a finitely-bounded temporal growth rate for
all real κ , which allows the temporal inversion contour to be located sufficient low in the complex ω plane so as to lie
below all singularities in the ω Fourier transform. To be completely specific, consider the linear system

D

(
i
∂

∂ t
,−i

∂

∂x
φ

)
= F(t)δ(x), (45)

where D is a linear operator and F(t) is the forcing such that F(t) = 0 for t < 0. Fourier transforming in t and x and
inverting, we find the solution

φ(x, t) = 1

4π2

∫
C

∫ ∞

κ=−∞
F (ω)

D(κ, ω)
eiωt−iκx dκdω. (46)

In order to have the causal response φ = 0 when t < 0 we need to choose the temporal inversion contour C to lie
below the singularities (in ω-domain) of

φ (x, ω) = 1

2π
F (ω)

∫ ∞

κ=−∞
e−iκx

D(κ, ω)
dκ (47)

Since F(t) < 0 for t < 0, it follows that its Fourier transform, F (ω), is analytic in the lower half plane, so that
non-analytic behaviour (in ω) of φ (x, ω) would arise from any singularity of the integrand κn(ω), i.e. given by
D(κ, ω) = 0, crossing the real κ-axis for some ω ∈ C. Hence we need to choose C such that for any κn

Im(κn(ω)) 	= 0 for all ω ∈ C. (48)
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(a) Z = 1 + 3.335i, ω = 10,M = 0.7,m = 0, a = 0.335, b = 0.15
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Figure 5. Causality contours for complex ω according to the Briggs-Bers (left) and the Crighton-Leppington (right) formalism. The crosses
indicate the location of the modes when Im(ω) = 0. The criteria disagree.

In particular, if any such κn , say κi (ω), is found in lower κ-half plane {Im(κ) < 0} for ω ∈ C but originates for real ω
from {Im(κ) > 0}, it may have to be interpreted as a right-running instability. In order to confirm this, we need to be
able to select C such that

max
ω∈C

[
Im(κi (ω))

]
< 0. (49)

With this condition fulfilled we find no crossing of the real κ-axis. Formulated in another way, C can be drawn at a
finite depth in the ω plane if the temporal growth rate is bounded for all real κ , i.e. when the inverse expression ωi (κ)

satisfies
min
κ∈R

[
Im(ω)

] ≡ −G, where 0 < G < ∞. (50)

Returning to our lined-duct dispersion relation (22), we consider large real κ , then it can be shown asymptotically that
the unstable surface wave has a growth rate proportional to

√
κ , a result which can easily be verified numerically. In

fact, this result is already hinted at in equation (44) above, given the leading-order dependence of κ on the square of
Im(ω). Hence, as κ → ∞ the growth rate grows without bound, so that G = ∞, the temporal inversion contour C
cannot be drawn below all singularities in the ω plane, and it therefore follows that the Briggs-Bers method cannot be
applied in this case. This situation mirrors the behaviour in the well-known Kelvin-Helmholtz instability of a vortex
sheet, for which Im(ω) ∝ κ .
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Having decided that the Briggs-Bers method cannot be applied, we now turn to the procedure of Crighton &
Leppington.12, 26 The analysis described in [12] concerns the causal solution for scattering of acoustic waves by a
semi-infinite vortex sheet, and in many ways can therefore be thought of as being analogous to problem considered in
the present paper. Specifically, the difficulty associated with the unbounded growth rate of the vortex sheet is handled
in [12,26] by first supposing that the argument of ω is close to (with the present sign convention) − 1

2π . This approach
is guaranteed to yield a causal result, since the solution then decays to zero as t → −∞. Once the Fourier transform
has been determined with imaginary ω, the idea is then to attempt to analytically continue the Fourier transform back
to the physically-relevant case of real ω. So we set

ω = |ω| exp(iϕ), (51)

and allow ϕ to increase from − 1
2π to 0. As ϕ increases, the singularities in the Fourier transform will move in the κ

plane, and to retain analyticity we must deform the κ inversion contour so as to prevent any singularities crossing it.
The singularities correspond to the κ roots of (22), and their motion in typical cases is shown in figures 4 and 5. Note
that in each case it is only the single surface wave which crosses the real κ axis, having started in the lower half of
the κ plane when ϕ = − 1

2π . It therefore follows that, in order to avoid a pole crossing, the κ inversion contour must
be deformed so as to run above this pole. This means that the surface wave is picked up when the spatial contour is
closed in the lower half plane for x > 0, and corresponds to a downstream instability. We can therefore conclude that
in each of the cases described in figures 4 & 5 the Crighton-Leppington method predicts that the system is unstable.

For the special case of a semi-infinite 2D half-space in the incompressible limit it was shown in [1] analytically that
the system is unstable according to the Crighton-Leppington procedure. In general, however, it appears that in order to
use this procedure to test the stability of our system we need to solve the dispersion relation numerically, tracking the
progress of the possible instability in the κ plane as ϕ is increased from − 1

2π to 0. Additional to the incompressible
limit, we can make further algebraic progress for large values of Re(ω). In much the same way as for the Briggs-Bers
method, we write

σ = |ω| exp(iϕ)σ0 + σ1 + O(|ω|−1), (52)

and after some algebra find that the unstable surface wave is given by

κ = −βa|ω|2
M2

exp(2iϕ)+
(

iβ3 R

M2
+ 2

M
− M

) |ω| exp(iϕ)

β2
+ O(|ω|−1). (53)

We now follow the Crighton-Leppington procedure of increasing ϕ from − 1
2π to 0, and we see from (53) that Im(κ) <

0 when ϕ = − 1
2π (since M < 1) and Im(κ) > 0 when ϕ = 0 (since R > 0). This shows us that this mode has crossed

the real κ axis as ϕ is increased, so that it is indeed a genuine instability. Note that even if a = 0 the mode still crosses
the real κ axis, although in this case the typical spatial growth rates are rather smaller, scaling on |ω| rather than |ω2|.

In summary, we can conclude that our system is genuinely unstable for the situations described in figures 4 & 5,
as well as in the limit of large real frequency. It should be noted, however, that this conclusion may be dependent on
the functional dependence of Z on ω, and different impedance models need to be studied on a case-by-case basis. We
do note that for another common case, the Helmholtz-resonator model, the conclusion of instability at large Re(ω) is
also obtained. Writing (for positive constants m and L)

Z = R + imω − i cot(ωL), (54)

and noting that cot z → i as z → ∞ with Im(z) < 0, we see that the large-Re(ω) expansion for the wavenumber is
again given by (53), but with R replaced by R + 1. It then follows that the mode still crosses the real κ-axis as ϕ is
increased, so that the system is again unstable.

V. Low-frequency asymptotics

An interesting limit in the present context is the one for small ω. In this case only the reflection coefficient R011 of
the plane wave is of interest. We have for small ω

K (σ ) = −2
(1 − Mσ)2

β2γ (σ)2
+ O(ω) (ω → 0). (55)

The double zeros σ = M−1 arise from two modes, one from the upper half plane and one from the lower half plane,
that meet each other at ω = 0. These modes are of surface wave type1 because the radial wave number is purely

11 of 19

American Institute of Aeronautics and Astronautics



imaginary, but for low ω the radial decay is so slow that their confinement to the wall inside the duct is meaningless.
The mode from the upper half plane is (in all cases considered) the instability σH I . The other one is in the nomenclature
of [1] the right-running acoustic surface wave σS R . In the present notation it is a mode from the set {τ0ν}, sayb, τ01 or
(to avoid any ambiguity) τ+

01. For smal but non-zero ω they are asymptotically given by

σH I = M−1 + 1
2 (1 + i)β2 M−2

√
ωZ + . . . (56a)

τ+
01 = M−1 − 1

2 (1 + i)β2 M−2
√
ωZ + . . . (56b)

This is illustrated by figure 6. The first two left and right-running modes are drawn as a function of Z = 1 + iλ,
where λ is varied from ∞ (hard wall) to −∞ (again hard wall). Starting as the right-running hard-wall plane wave
σ01 = 1, τ+

01 becomes slightly complex, resides near M−1 when λ = 0, but returns to its starting hard-wall value when
λ → −∞. The second right-running mode τ+

02 (the first cut-off) disappears to real −∞. The left-running mode τ−
01

starts as the hard-wall plane-wave mode −σ01 = −1, then moves to the right, resides near M−1 when λ = 0 (where it
apparently has changed its character and has become a right-running instability wave !) and then, instead of returning
to its original hard-wall value, it disappears to real +∞. Its position has been taken over by the second left-running
mode τ−

02.
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Figure 6. Modal wave numbers τ±
0ν as they traverse the complex σ -plane for varying impedance Z = 1 + iλ.

Now we can approximate the split functions

N+(σ ) � −2
1 − Mσ

β2(1 − σ)
, N−(σ ) � 1 + σ

1 − Mσ
, (57)

not necessarily with the same multiplicative factor as would arise from representation (A.9). This yields for the plane
wave reflection coefficient

R011 � −1 + M

1 − M

(
1 − 2M�

1 + M

)
+ . . . (ω → 0), (58)

resulting in the remarkably different values R011 = −1 for � = 1 and R011 = −(1 + M)/(1 − M) for � = 0,
irrespective of Z (although the limit Z → ∞, ω → 0 will be non-uniform). This result is exactly the same as found
for the low frequency plane wave reflection coefficients of a semi-infinite duct with jet or uniform mean flow.14, 19–22

The instability wave corresponding to (56a), with axial wave number the Strouhal number ω/M , vanishes in
pressure, due to the factor (1 − MσH I ), but survives in the potential or velocity. The transmission coefficient of the

bThere is no obvious way of sorting soft-wall modes; see figure 6.
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wave corresponding to (56b), with the same axial wave number, appears to be

T011 � 1
2�

(1 + M

1 − M

)1/2 + . . . (59)

VI. Results

In order to illustrate the above results we have evaluated numerically (see Appendix A) the reflection coefficients
R011 of the plane wave mode mµ = 01 into itself as a function of frequency ω, and reflection coefficient R111 of the
mode mµ = 11 into itself. The impedance is rather arbitrarily picked as Z = 1 − 2i and the Mach number M = 0.5.
Both modulus |R.11| and phase φ.11 are plot but for the lower frequencies the plane wave phase is reformulated to an
end correction δ011, i.e. the virtual point beyond x = 0, scaled by ω, where the wave seems to reflect with condition
|p| is minimal. Since ∣∣∣e−i ω

1+M x +R011 ei ω
1−M x

∣∣∣2 = 1 + |R011|2 + 2|R011| cos
(

2ω
1−M2 x + φ011

)
is minimal if 2ω

1−M2 x + φ011 = π , so

δ011 = (1 − M2)
π − φ011

2ω
. (60)

In order to facilitate comparison with the low ω-analysis, the results are both given for a small interval 0 ≤ ω ≤ 1 and a
large interval 0 ≤ ω ≤ 15. (The endcorrection is given only for the small interval because it loses its meaning for larger
frequencies.) The most striking result is probably the confirmation of the analytically found reflection coefficients 1
(Kutta condition; figure 7 left) and (1 + M)/(1 − M) (no Kutta condition; figure 8 left) for ω → 0, and in addition
that the end correction tends to a finite value (Kutta condition; figure 7 right) and to ∞ (no Kutta condition; figure 8
right). This is also in exact analogy with the jet.21 Note that this behaviour is not related to ω = 0 being a resonance
frequency because R111 tends to 1 at its first resonance frequency in both cases (figures 11 and 12).

VII. Conclusions

An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance
transition at x = 0 in a circular duct with uniform mean flow. A mode, incident from the hard-walled upstream part,
is scattered into reflected hard-wall and transmitted soft-wall modes. A plausible edge condition at x = 0 requires at
least a continuous wall streamline r = 1 + h(x, t), no more singular than h = O(x1/2) for x ↓ 0. By analogy with
a trailing edge scattering problem, the possibility of vortex shedding from the hard-soft transition would allow us to
apply the Kutta condition and require the edge condition to be no more singular than corresponding to h = O(x3/2)

for x ↓ 0.
The physical relevance of this Kutta condition is still an open question. It all depends on the direction of prop-

agation of the soft-wall modes. The Wiener-Hopf analysis shows that no Kutta condition can be applied if none of
the apparently up-stream running, decaying, soft-wall modes is in reality a downstream-running instability. However,
causality analyses in the complex frequency domain, taking into account the frequency dependence of the impedance,
indicate that under certain circumstances one soft-wall mode (per circumferential order) is to be considered as an
instability. In this cases we may be able to enforce a Kutta condition and thus excite the instability.

As the growth rate of this presumed instability may be very high, it remains to be seen if this result is an artefact
of the linearised model or really representative of reality. There is apparently a need for clarifying and distinguishing
experiments to be carried out.

We presented the results for either cases (Kutta and no Kutta condition), and showed that the difference is, for
certain choices of parameters, big enough for experimental verification. In particular, the pressure reflection coefficient
for the plane wave in the low Helmholtz number regime is near unity for Kutta, and near (1 + M)/(1 − M) for the no
Kutta condition case.

A. Appendix

Split functions

The complex function K (σ ) has poles and zeros in the complex plane, in particular also along the real axis. We need to
evaluate K , written as a quotient of two function that are analytic in upper and lower halfplane, along the real κ-axis.
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Figure 7. Modulus of reflection coefficient and end correction for plane wave mµ = 01 into 01, where plane wave is incident from hard-
walled section to lined section with impedance Z = 1 − 2i, while M = 0.5. Without Kutta condition at x = 0.
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Figure 8. Modulus of reflection coefficient and end correction for plane wave mµ = 01 into 01, where plane wave is incident from hard-
walled section to lined section with impedance Z = 1 − 2i, while M = 0.5. With Kutta condition at x = 0.
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Figure 9. Modulus and phase of reflection coefficient for plane wave mµ = 01 into 01. Same conditions as figure 7 but with larger frequency
range.
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Figure 10. Modulus and phase of reflection coefficient for plane wave mµ = 01 into 01. Same conditions as figure 8 but with larger
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Figure 11. Modulus and phase of reflection coefficient for mode mµ = 11 into 11. Otherwise same conditions as in figure 9.
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Figure 12. Modulus and phase of reflection coefficient for mode mµ = 11 into 11. Otherwise same conditions as in figure 10.
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For reasons of causality we need to start the analysis with a complex-valued ω (with Im(ω) < 0), see section IV. In
that case the zeros and poles and the real κ-axis, mapped (see (13)) into the σ -plane, are typically shifted into the
complex plane as indicated in figure 13 (the κ-axis really rotates around σ = M instead of 0, but as long as we remain
in the region of analyticity we can shift the contour to the right). A set of split functions can now be constructed as
follows. We want to write K (σ ) as the quotient of a function K+(σ ), which is analytic and non-zero in the upper half
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Figure 13. Sketch of zeros and poles of K (σ ) and contour of integration in the complex σ -plane for complex ω.

plane, and a function K−(σ ) which is analytic and non-zero in the lower half plane, while both are at most of algebraic
growth at infinity:

K (σ ) = K+(σ )
K−(σ )

. (A.1)

Construct an elongated rectangle C = C+ ∪ C− along the rotated κ axis, which makes for Im(ω) < 0 an angle with
the real axis. Select a point y inside C. With C passing in positive orientation we have

ln K (y) = 1

2π i

∮
C

ln K (u)

u − y
du. (A.2)

Let the ends of C tend to ±∞ symmetrically. Since

K (σ ) ∼ �M2

β2 σ − 2M�

β2 − iβ�Z (σ → ∞), K (σ ) ∼ −�M2

β2 σ + 2M�

β2 − iβ�Z (σ → −∞), (A.3)

the contributions from the ends cancel each other to leading order, such that the total contribution tends to 0. In
particular,

lim
L→∞

∫ L

−L

ln K (u)

u − y
du = lim

L→∞

∫ L

0

ln K (u)

u − y
− ln K (−u)

u + y
du =

∫ ∞

0

[
ln K (u)

u − y
− ln K (−u)

u + y

]
du (A.4)

because
ln K (u)

u − y
− ln K (−u)

u + y
= 2y

u2 ln

(
�M2

β2

)
+ . . . (A.5)

converges. Thus we can write

ln K (y) = 1

2π i

∫
C−

ln K (u)

u − y
du − 1

2π i

∫
C+

ln K (u)

u − y
du. (A.6)

We can identify, respectively, ln(K+) and ln(K−) with the first and second integral to get

K+(y) = exp
[ 1

2π i

∫
C−

ln K (u)

u − y
du

]
, K−(y) = exp

[ 1

2π i

∫
C+

ln K (u)

u − y
du

]
, (A.7)

because the respective domains can be extended in upward and downward direction without passing any singularities
(i.c. the integration contour). If we let Im(ω) ↑ 0, we obtain the sought split functions K± for real ω, provided we
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allow for any possible contour deformation if an instability pole crosses the real axis (see section IV). It is, however,
more convenient not to retain this deformed contour but write

K (σ ) = N+(σ )
N−(σ )

(A.8)

where both N+ and N− are now always given by the expression

log N±(σ ) = 1

2π i

∫ ∞

0

[
ln K (u)

u − σ
− ln K (−u)

u + σ

]
du (A.9)

with the + sign corresponding with Imσ > 0 or Im σ = 0 & Re σ < 0, and the − sign with Im σ < 0 or Im σ =
0 & Re σ > 0. (Use for points from the opposite side the definition K N− = N+.) As the split functions are defined
up to a multiplicative constant that is determined by the method of calculation, It is instructive to note that constants
and simple products are split by (A.9) as follows.

c = c1/2

c−1/2 , (σ − c+)(σ − c−) = −i(σ − c−)
−i(σ − c+)−1 (Im(c±) ≷ 0). (A.10)

When no instability pole crossed the contour, we identify

K+(σ ) = N+(σ ), K−(σ ) = N−(σ ). (A.11)

When an instability pole σH I crossed the contour, and is to be included among the right-running modes of the lower
half-plane, we write

K+(σ ) = (σ − σH I )N+(σ ), K−(σ ) = (σ − σH I )N−(σ ). (A.12)

When we write
K (σ ) = i�M2β−2γ (σ)L(σ ), (A.13)

then L is a well-behaved function, satisfying L(σ ) → 1 both for σ → ∞ and −∞, and can be split by the present
method into functions that remain bounded (see [29], p.15, Theorem C). The factor γ (σ) can be split by inspection
into the quotient of (1 − σ)1/2 and (1 + σ)−1/2. As a result we have the asymptotic estimates

N+(σ ) = O(σ 1/2), N−(σ ) = O(σ−1/2) for σ → ±∞, (A.14)

leading to corresponding behaviour for K+ and K−, depending on the included instability pole.

Numerical evaluation of K±
For numerical evaluation of the split functions, we need to evaluate the integral (A.9). First, we have to deal with

any possible zeros and poles along the real axis. A natural way to avoid them is by deforming the contour into the
upper complex plane, but taking good care to avoid any crossing of other poles or zeros (cf. [22]) A suitable choice
was found to be given by the parameterisation u = ξ(t) where

ξ(t) = t + id
4t/q

3 + (t/q)4
, 0 ≤ t < ∞. (A.15)

q + id denotes the position of the top of the indentation (see figure 14). d and q are adjustable constants and have to be
chosen such that q is large enough to avoid the real wavenumbers (usually between 0.5 and 1), while d is positive but
not too large in order to avoid closing in surface waves. This was tested in all cases considered by visual inspection.
For example for very small Z (see [1]), and for m = 0 and very small ω, there is a surface wave that approaches the real
value σ = M−1 from above. The next step is to change the infinite integral into a finite integral by the transformation
t = ζ(s) where

ζ(s) = s

(1 − s)2
, 0 ≤ s ≤ 1. (A.16)

This particular choice ensures that the resulting integral is easily evaluated by standard routines because the limiting
value of the integrand at s = 1 is just zero. This is seen as follows. After both transformations we have∫ ∞

0

[
ln K (u)

u − σ
− ln K (−u)

u + σ

]
du =

∫ 1

0

[
ln K (ξ(ζ(s)))

ξ(ζ(s))− σ
− ln K (−ξ(ζ(s)))

ξ(ζ(s))+ σ

]
ξ ′(ζ(s))ζ ′(s) ds (A.17)

For s ↑ 1, i.e. u → ∞, we have[
ln K (ξ(ζ(s)))

ξ(ζ(s))− σ
− ln K (−ξ(ζ(s)))

ξ(ζ(s))+ σ

]
ξ ′(ζ(s))ζ ′(s) = 4σ ln

(
�M2

β2

)
(1 − s)+ · · · → 0. (A.18)
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Figure 14. Deformed integration contour given by equation (A.15). Both u = ξ(t) and u = −ξ(t) are drawn. (Z = 2 − i, ω = 10, M =
0.5,m = 0, d = 0.2, q = 0.6.)
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