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ABSTRACT

This paper deals with fluidized sand simulation in order to estimate the impact of sand particle motion on
the BLOODHOUND SuperSonic Car (SSC) drag forces, such phenomenon is known as a spray drag effect.
A gas-particle model is used to simulate the sand particles that rise from the ground because of the strong
shockwave-desert surface interaction. A finite volume scheme is used to discretise the continuous model with a
special treatment of the solid phase equations. An indefinitely differentiable and anisotropic limiter to reinforce
the method stability and reduce any excessive smearing is applied. To estimate the area where sand particles
are detached from the ground, a criterion based on pressure change is proposed. The model is first validated
on a curved 90° bend test case with comparison to experimental results and then applied to the supersonic car.

Keywords: Gas-Particle Mode, Drag Forces, Navier-Stokes Equations, Finite Volume Method, HLLC Solver.

Section: Mathematical, Physical & Engineering Sciences and Life

1. INTRODUCTION

The BLOODHOUND SSC (Supersonic Car) Project'!)
was publicly announced in October 2008, with the objec-
tive of constructing a vehicle to take the World Land
Speed Record to 1000 mph, see Figure 1 for an artist’s
impression of the car. To successfully achieve this feat,
many major technological problems have been tackled.
The aerodynamic design of the vehicle is one of them,
and for this project it is exclusively based on computa-
tional fluid dynamic (CFD) simulations. This paper con-
centrates on one aspect, the study of the sand particle
motion and impact with the vehicle on the drag forces
(spray drag). As BLOODHOUND SSC travels at super-
sonic speed, the shockwaves created around the body of
the car interact with the surroundings disturbing the desert
surface. This causes sand and dust particles to rise up
from the ground under the influence of pressure forces

*Author to whom correspondence should be addressed.
Email: Iremaki@bcamath.org

and these particles will then be moved up into the air
by resistive drag forces. As the particles accelerate, their
velocity overtake the velocity of the air resulting in a
local air acceleration. Therefore, a critical amount of par-
ticles could significantly affect the flow and then create
additional resistive forces acting on the car which are not
typically accounted for in traditional CFD analysis. A Gas-
Particle model (see for instance Refs. [2,3,6]) is proposed
to simulate this phenomenon. In addition to the classical
Navier-Stokes equations, a typical continuity equation of
particle volume fraction is solved as well as a momentum
equation where drag forces and gravity are considered for
coupling. The numerical scheme is implemented within
the FLITE package (see Refs. [4,5,11,33]). This package
consists of a Delaunay mesh generator and a cell-centred
finite volume flow solver. For the fluid phase, fluxes are
estimated using a Harten-Lax-van Leer-Contact (HLLC)
Riemann solver with a sigmoid-based limiter belonging
to C*, the space of indefinitely differentiable functions
(the derivatives of any order exist and are continuous),
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Fig. 1. BLOODHOUND SSC artist’s impression.

for better stability and convergence and with anisotropic
action to reduce excessive smoothing. For the solid phase,
a centred scheme is used. To stabilize the momentum equa-
tion we propose adding artificial viscosity with an ori-
entation control coefficient that allow diffusion mostly in
the streamline direction mimicking the Streamline upwind
Petrov-Galerkin (SUPG) approach. The model is validated
against experimental results from a 90° curved bend pro-
vided in Ref. [36]. Finally the model is applied to the
BLOODHOUND SSC. To estimate the area where sand
particles detach from the ground and entering the calcu-
lation domain, a criterion based on pressure change and
gravity is proposed and applied to define the boundary
condition on the ground for the particles volume fraction
variable.

2. GOVERNING EQUATIONS

The equations governing three dimensional unsteady vis-
cous compressible flow coupled with a particle motion
equation in Eulerian modelisation can be expressed as:
Fluid phase:

%(tf)gpg)-l- V(é,p,U)=0, onQx[o,T] (1)

d
E(d)gngg) + V(('bgngg ® Ug)
=-VP,+V1,—B(U,~U,), onQx[o,T] (2)

Particle phase:

LGP VB,p,U) =0, on Ox[0.T] ()

d
E(d)ppp Up) + V(d)ppp Up ® Up)

¢ Pe -
—~2EP 4 (U, - U,,)+¢,,< - p—g)g,

p P

on O x[o,T] (4)

where ¢,, ¢, are the gas and particle volume fractions
satisfying the conservation condition with ¢, + ¢, =1,

24, u,-v,
150¢"g; +1.75¢"pg|D" it <038
¢p p
S P ®
ch ppg DP 8 ¢;265 Else

p
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with

24
R—(l +0.15R3f87) if R, <1000
Cd = ép

0.4 Else

is the drag coefficient, R, = (D,¢,|U, = U,|)/v, is the
particle Reynolds number, and g is the gravity.

In this model only drag and gravity forces are consid-
ered in the gas-particle interaction. Note that several drag
formulas exist in the literature. We selected the one that
gave satisfactory results according to examples in the lit-
erature (see for instance Ref. [6]).

3. NUMERICAL DISCRETISATION

A finite volume method described below is used to discre-
tise the overall gas-particle model. In the solid phase, the
particle volume fraction variable vanishes where the sand
is absent which results in dividing by zero when comput-
ing the velocity vector in Eq. (4). This leads obviously
to a severe instability of the scheme. To avoid this situa-
tion the non-conservative form of the momentum equation
is considered, while the conservative form of the volume
fraction is kept. The momentum equation takes the form:

d
E(Up)+V(Up®Up)
1 1
VP, +dy—(U,— U+ (1-22),
ppy T Py

on Q x [0, T] (6)

3.1. Finite Volume Method

For the sake of simplicity the finite volume method utilised
for the Navier-Stokes equations without the solid phase
coupling is described here. The Favre averaged equations
governing three dimensional turbulent compressible flow
are expressed, relative to a Cartesian (x,, x,, x3) coordi-
nate system, over a fixed volume V with a closed surface
S, in the integral form

PR L. L.
—/ 0dv = —/F“(Q)n“d5+/ G(0)n* ds
at Jy s s
a=1,2,3 (7)
where the summation convention is employed and 7 =
(n', n?, n) denotes the unit outward normal vector to S.

In this equation, the unknown é, the inviscid flux vectors
F* and the viscous flux vectors G* are defined by

P Pity
pu, puy ity + P,
O=1pu, | Fe=| puyu,+ps,,
pu; pusty+ pog,
E (E+p)u,
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where p, p and E denote the averaged density, pressure
and total energy of the fluid respectively, u,, is the averaged
velocity of the fluid in direction x,,, ¢ is the time and §,, g is
the Kronecker delta. The averaged deviatoric stress tensor

is defined by
du du
Motu(GL45) O
Xk

and the averaged heat flux is given by

aT

Qo = —K7—

dxg (10)

In these equations, u denotes the sum of the laminar and
the turbulent viscosity, k is the sum of the laminar and
the turbulent thermal conductivity and 7 is the averaged
absolute temperature. The equation set is completed by the
addition of the perfect gas equation of state. The laminar
viscosity is assumed to vary with temperature according
to the Sutherland Law(”) and the distribution of the turbu-
lent viscosity is determined using a one equation Spalart—
Allmaras model.®® The Prandtl number is taken to be
constant. Steady state solutions of the resulting equation
set are sought in a fixed spatial computational domain ).

On the generated consistent hybrid primal mesh, nodes
are located at the vertices of the elements and the spatial
discretisation of Eq. (1) is accomplished using a cell ver-
tex finite volume method. This requires the construction of
a dual mesh, in which each cell of the dual is associated
with a single node of the primal mesh. For those regions
in which the primal mesh consists only of isotropic tetra-
hedral cells, a median dual mesh is constructed by con-
necting cell edge midpoints, cell centroids and cell face
centroids, such that only one node is present within each
dual mesh cell.(®) With this strategy, each node / of the
domain mesh is associated with a volume (), of the dual
mesh. The boundary surface of the volume (), is denoted
by I',. Each edge of the domain mesh is associated with a
segment of the dual mesh interface between the nodes con-
nected to the edge. This segment is a surface constructed
from triangular facets, where each facet is connected to
the midpoint of the edge, a neighboring element centroid
and the centroid of an element face connected to the edge,
as illustrated in Figure 2(a). The midpoint of the edge
between node I and J is denoted by xZ/, the centroid of
the face with vertices /7, J and K is denoted by x/* and
the element centroid is designated by X.. The bold lines
on the dual mesh in this figure illustrate the boundaries

J. Coupled Syst. Multiscale Dyn., Vol. 2(3), 169-177

(b)

Fig. 2. (a) Ilustration of that part of the dual mesh cell surrounding
node / that is contained within a tetrahedral cell. (b) Illustration of the
dual mesh cell surrounding an internal node 7.

between the edges with which the dual mesh segment is
associated. With this dual mesh definition, the volume (),
can be viewed as being constructed in terms of a set of
tetrahedra, as illustrated for a typical interior node [ in
Figure 2(b). The surface of the dual mesh cell surrounding
node [ is defined in terms of the closed set of planar tri-
angular facets 'Y, where each facet only touches a single
edge of the domain mesh. The set of facets touching the
edge between nodes / and J is denoted by I7;.

In general, the median dual approach cannot be used
for the hybrid elements produced by merging the stretched
tetrahedra generated by the advancing layers method. This
is because cells created in this way may be warped so
severely that a vertex can lie outside the corresponding
median dual cell. This may occur in regions of high geom-
etry curvature or at the interface between the hybrid and
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isotropic meshes. To overcome this problem, the informa-
tion contained in the primal tetrahedral mesh is used to
ensure that the topology of the control volume cells is
valid.(®)

Equation (1) is applied to each cell ), of the dual mesh
in turn. To perform the numerical integration of the invis-
cid fluxes over the surface I, of this cell, a set of coef-
ficients is calculated for each edge using the dual mesh
segment associated with the edge. The values of these
coefficients for an internal edge are evaluated as*’-3®)

a @
= 3 Ay Mrx

Kely,

(11)

where Apx is the area of facet I'f and n‘ff[,( is the com-
ponent, in direction x,, of the outward unit normal vector
of the facet from the viewpoint of node /. The integral of
the inviscid flux over the surface I, is then approximated,
using the summation of edge contributions, as(*":3%)

FentdS~ Y I;}J

Iy JeA;

(12)

where A, denotes the set of nodes connected to node / by
an edge in the domain mesh. Here,

P41y
puq; + P”}J

Fy =1 purqy, +P”%J (13)
pusq; + P”;J
(E+p)ay
is a consistent numerical inviscid flux function and
gy = ngy (uy); (14)

is the velocity in the direction of the edge connecting
nodes / and J. Similarly, the integral of the viscous flux
over the surface I is approximated as
GnedS~ Y Gy =Y ZL(Gi+Gh  (15)
I JeA; JeA; 2
where the physical viscous flux function is employed.®)
The solution is advanced in time to steady state using an
explicit multi-stage Runge Kutta procedure and the con-
vergence is accelerated by the use of local time stepping
and by the addition of an agglomerated multigrid process.

3.2. Inviscid Fluxes Estimation

3.2.1. Fluid Phase

The inviscid fluxes of the fluid phase are estimated using a
second order HLLC Riemann solver and the limiter devel-
oped in Ref. [10]. In the following, the limiter formula-
tion is briefly described. To obtain a second order HLLC
solver, the quantities QF and QX of a typical primitive

172 http://www.aspbs.com/jcsmd

scalar variable O, employed in the HLLC formulation of
the Riemann problem, are replaced by the expressions

05, =05+ zIJ VO, 0F =05+ 7111 Vo,  (16)

where fz,, -VQ, and h 51 - VQ, denote appropriate gradi-
ent approximations. To ensure stability for simulations
of flows involving discontinuities or steep gradients, the
reconstructed gradient must be limited in some fashion. To
avoid oscillatory scheme, first we force the local extremum
diminishing (LED) property to be satisfied which guar-

anties that we always have
min (Q, - Q,) < ];IK VO, <max(Q, —0Q,) (17)
JeA; JeA;

This is achieved using the following limiter

) n<maX_{eA,(QJ_Q1)> if ﬁ,K~VQ1>0
h[K (VQ)I
_ min — h
CDIK_ Sgn( JEA[ (QJ Ql)) if hIK'VQI <0 (18)
hIK'VQI
. otherwise

where sg, (1) =1t/(1+1")"/".

The reconstructed gradient ﬁ,K -VQ, is then replaced
by <I>,K71,K -VQ,. Such a limiter has many advantages; it
is indefinitely differentiable which improves the overall
scheme convergence. It provides a gradual gradient nor-
malization that maintains the local variation behavior of
the solution. In addition the sg,(¢) function has the attrac-
tive property sg, () <t and sg, (¢) <1 for ¢t > 0 that guar-
anties the condition (17) to be always satisfied with the
non-amplification of local gradients. Furthermore, sg,(f)
is a good approximation of the minimum function, since

(19)

lim (sg,(¢)) =min(1,7) for¢t>0

For the tests of this paper, the value n = 2 is used.

Note that we don’t take the minimum of ®,, as it is usu-
ally the case, which leads to an anisotropic limiting. The
advantage of doing so is that the likely excessive limiting
(due to taking the minimum) that results in excessive diffu-
sion is reduced. However the conservation property is vio-
lated. To remedy this situation we proceed as in Ref. [11]
by imposing the following conservation condition

q)IJ];IJ ' VQ[ = _((DJIEJI : VQJ) (20)

This condition could be satisfied by using a minmod
function where <I>,,71,J - VO, and @,,fz” - VO, are
replace by minmod(¢,,71,, . VQ,,<I>,,71,J - VQ,) and
—minmod(fl)uiz” -Vo,, CDJ,iz” -VQ,) respectively. The
minmod function is defined as

0 if ab<0
else
minmod(a, b) = 21
@O=10 itz @Y
b if|al =[]
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3.2.2. Particle Phase

A centered scheme is used for the non-conservative
momentum equations of the particle phase, and it is sta-
bilized by adding a first order artificial viscosity of the
form

AQi = Z /\IJ(QJ - Q1)

JeN;

(22)

To allow diffusion to act mostly in the flow direction
while minimizing the cross wind effects similar to stream-
line diffusion methods, we propose the coefficients A;; to
have the following form:

1

1 +tan(6;,)? @3

1

Where 0,, is the angle between the normal to the sur-
face n, and the velocity vector U,.

For the conservative continuity equation, recall that
to estimate the flux at each interface, a typical equa-
tion (3/dt)(¢,) +q;;(d/ds)(¢,) =0 is considered, where
q1; = U;jmy,, U being the particle velocity at node / and
7m,, the normal to the surface separating dual cells associ-
ated with node / and J. This equation is solved using a
Riemann solver.

4. VALIDATION

Before applying the gas-particle model described above to
the assessment of fluidized sand impact on drag forces,
the model is validated against experimental results of a
90° bend test case described in Ref. [36]. This test case
was selected first because of the availability of experi-
mental data and then for the wide use of curved ducts
in industrial applications such as air-coal flows in coal
combustion equipment, coal liquefaction-gasification pipe
systems, gas-particle flows in turbo machinery, and con-
taminant particle flows in ventilation ducts. The apparatus
and geometry of the test are shown in Figure 3 scanned
from the Ref. [36]. The 90° duct has a square cross-section
of D =0.1 m and upstream and downstream duct lengths
are 1 m and 1.2 m, respectively. Glass spherical particles
with a material density of 2990 kg/m*® and diameter size
of 50 m are used. The inlet fluid and particle velocity
is set to 52.19 m/s, for more details see Ref. [36]. For
the numerical simulation a hybrid mesh is used as shown
in Figure 4. The mesh contains 766614 tetrachordal ele-
ments and 1229952 prisms forming 12 boundary layers.
The computational domain starts 10D upstream from the
bend entrance and extends up to 12D downstream from
the bend exit. The classical viscous flow boundary con-
ditions are imposed for the fluid phase, typically pres-
sure inlet, pressure outlet, and non-slip wall condition.
For the initial condition we considered a uniform zero
velocity and constant temperature of 273.15 Kelvin, and a
constant density of 1.2886 kg/m>. A rebounding particle-
wall conditions with normal and tangential restitution coef-
ficients of 0.9 and 0.8 respectively, are considered for

J. Coupled Syst. Multiscale Dyn., Vol. 2(3), 169-177

@

(b)

Fig. 3. Experimental apparatus: (a) General flow system, (b) geometry
of the curved square duct.

the solid phase. Finally, the turbulence features are cap-
tured using the Shear Stress Transport (SST) turbulence
model. The simulation ran on 20 cores of a PC Clus-
ter based on quad core AMD Opteron 240 1.4 Ghz pro-
cessors and 4 Gig of memory per processor. The PC
Cluster makes use of a 2 Gbit/s Myrinet Optical Fibre
interconnect and parallelisation was implemented using
MPI. The simulation required 24 hours wall-clock time for
convergence.

Fig. 4. Hybrid used mesh and volume fraction profile for the curved
duct.
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Fig. 5. Bend case: Residual convergence.

4.1. Results
Figure 4 shows the used mesh and the particles volume
fraction profile. Figure 5 show the residual convergence

that drops by 5 orders of magnitude. Figure 6 shows a
good agreement of the fluid and particles mean stream

velocity with experimental results for the different sta-
tions shown in 3(b), that are lines perpendicular to the
bend wall and belonging to the cutting plan that contains
the central dash line of the figure. This demonstrates the
validity and the accuracy of the physical and numerical
models, which motivates and justifies its application to the
BLOODHOUND SSC.

5. APPLICATION TO BLOODHOUND SSC

After validating the gas-particle model and the numerical
scheme described above, the model is applied to simulate
sand particles entrained by the flow around the BLOOD-
HOUND SSC which is the targeted application in this
work. The imposed running conditions are Mach num-
ber, M = 1.3, angle of attack, AoA = 0.0 and Reynolds
number, Re = 13752000. For the initial condition we con-
sidered a uniform velocity of 445.9 m/s and constant
temperature of 273.15 Kelvin, and a constant density of
1.2886 kg/m®. The sand characteristics are D = 0.08 mm
and p, = 1850 kg/m?. A hybrid mesh is generated using
FLITE package (described Refs. [4 and 5]).

Fig. 6. 90° Bend case: Mean stream fluid and particles velocity comparison to experimental results for the different stations.

174 http://www.aspbs.com/jcsmd
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5.1. Boundary Conditions

The far-field boundary condition is imposed for the fluid
phase and the slip condition is considered on the wall
(ground) to simulate ground motion. A tangential velocity
is imposed to the wheels to simulate rotation since they
are considered as full discs. The particle volume fraction
boundary conditions on the ground are not obvious how-
ever. The amount of particles (sand) that should be injected
into the air and the area where they should be released
is not clear. In our case the variation of the pressure is
considered as the principle cause of sand rising, therefore
the gradient of pressure in the normal direction normal-
ized by the gravity is selected as a criterion to define the
sand entrainment area (see Eq. (24)). More precisely par-
ticles are injected in the air if ¢ > 1. This means that
particles are released if the pressure decreases just above
the ground in one hand and the exerted pressure force is
greater than the one exerted by the gravity. Note that we
neglected the friction. As for the quantity of sand to inject,
a uniform concentration is imposed and different values of
volume fraction, namely 1.5 x 1073, 5x 1073 and 5 x 1072
are selected. This choice is based on the maximum frac-
tion volume values recorded on the near center of a sand-
storm (this information could be obtained by UK weather
for example), which are of the order 1073, This choice
is motivated by the fact that the car speed can’t rise up

Fig. 7. (a) BLOODHOUND SSC: Hybrid mesh, (b) the delimited area
using ¥ criterion.

J. Coupled Syst. Multiscale Dyn., Vol. 2(3), 169-177

Fig. 8. (a) Volume fraction cuts plan, (b) sand distribution on car
underside.

more particles than violent sandstorms, and this value is
considered as the worst case limit.

_ —(1/p,) VP
8

U (24)

where 17 is the normal to the ground and g is the gravity.
5.2. Results
Figure 7 shows the used mesh and the delimited area

obtained using the pressure criterion. The mesh contains
12384068 tetrahedral elements with 12 prismatic layers in

Fig. 9. Residual convergence.
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Fig. 10. Drag convergence before and after injecting sand particles: (a) Volume fraction = 1.5 x e, drag increases by 5%. (b) Volume fraction =
5 x e~3, drag increases by 10%. (c) Volume fraction = 5 x e~2, drag increases by 20%. (d) Comparison of drag jump with volume fraction.

the boundary layer mesh. A cut plan in Figure 8 shows
the propagation of a sand particle cloud behind the car and
fluid density is plotted on the ground and particles velocity
profile on the car. Particles of sand on the underneath of
the car are shown also. Figure 9 shows the residual con-
vergence that drops by 4 orders of magnitude. Figure 10
show the drag convergence before and after sand parti-
cles injection. To the different values of volume fraction
injected from the ground 1.51073, 51073 and 51072, corre-
spond a drag increase of 5%, 10% and 20% respectively.
Using the maximum fraction volume values near the cen-
tre of a sandstorm (of the order 10~* as mentioned above)
the expected increase of drag due to the spay drag phe-
nomenon, will not exceed 10%. This increase, from the
aerodynamic point of view, is acceptable and don’t require
any aerodynamic shape change of the Bloodhound SCC.
Note that the simulation using the same cluster described
before, run on 128 cores and took 35 hours wall-clock
time for convergence.

176 http://www.aspbs.com/jcsmd

6. CONCLUSIONS

The paper presented a spray drag analysis using a gas-
particle model to predict the impact of sand particles
entrained from the ground into an aerodynamic flow
because of shockwave-ground interaction on the BLOOD-
HOUND SuperSonic Car. The model is dicretized using a
dual mesh finite volume scheme. The HLLC solver is used
to estimate inviscid fluxes for the fluid with a sigmoid-
based limiter that has the nice property to indefinitely
differential. The limiter acts in anisotropic way to avoid
excessive limiting and then a conservative condition is
added using minmod function. A centred scheme is used
for the momentum equation stabilized by adding artificial
viscosity with orientation control coefficient that allow dif-
fusion mostly in the streamline direction mimicking the
SUPG technique. A validation of the physical and numer-
ical models is achieved on a 90 curved bend. The model
is then applied to BLOODHOUND SSC to predict the
effect of sand particle entrainment on drag forces. Spe-
cific boundary condition of the volume fraction variable

J. Coupled Syst. Multiscale Dyn., Vol. 2(3), 169-177
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used to estimate the area where the particles penetrate

the calculation domain, then a uniform concentration is
imposed based on a reference values from registered sand-
storms. The results show a drag increase of no greater than
10% Which is considered acceptable and don’t require any
aerodynamic adjustment of the car.
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