17 research outputs found

    A global cline in a colour polymorphism suggests a limited contribution of gene flow towards the recovery of a heavily exploited marine mammal

    Get PDF
    Evaluating how populations are connected by migration is important for understanding species resilience because gene flow can facilitate recovery from demographic declines. We therefore investigated the extent to which migration may have contributed to the global recovery of the Antarctic fur seal (Arctocephalus gazella), a circumpolar distributed marine mammal that was brought to the brink of extinction by the sealing industry in the eighteenth and nineteenth centuries. It is widely believed that animals emigrating from South Georgia, where a relict population escaped sealing, contributed to the re-establishment of formerly occupied breeding colonies across the geographical range of the species. To investigate this, we interrogated a genetic polymorphism (S291F) in the melanocortin 1 receptor gene, which is responsible for a cream-coloured phenotype that is relatively abundant at South Georgia and which appears to have recently spread to localities as far afield as Marion Island in the sub-Antarctic Indian Ocean. By sequencing a short region of this gene in 1492 pups from eight breeding colonies, we showed that S291F frequency rapidly declines with increasing geographical distance from South Georgia, consistent with locally restricted gene flow from South Georgia mainly to the South Shetland Islands and Bouvetøya. The S291F allele was not detected farther afield, suggesting that although emigrants from South Georgia may have been locally important, they are unlikely to have played a major role in the recovery of geographically more distant populations

    Volcanic controls on the microbial habitability of Mars‐analogue hydrothermal environments

    Get PDF
    Due to their potential to support chemolithotrophic life, relic hydrothermal systems on Mars are a key target for astrobiological exploration. We analysed water and sediments at six geothermal pools from the rhyolitic Kerlingarfjöll and basaltic Kverkfjöll volcanoes in Iceland, to investigate the localised controls on the habitability of these systems in terms of microbial community function. Our results show that host lithology plays a minor role in pool geochemistry and authigenic mineralogy, with the system geochemistry primarily controlled by deep volcanic processes. We find that by dictating pool water pH and redox conditions, deep volcanic processes are the primary control on microbial community structure and function, with water input from the proximal glacier acting as a secondary control by regulating pool temperatures. Kerlingarfjöll pools have reduced, circum-neutral CO2-rich waters with authigenic calcite-, pyrite- and kaolinite-bearing sediments. The dominant metabolisms inferred from community profiles obtained by 16S rRNA gene sequencing are methanogenesis, respiration of sulphate and sulphur (S0) oxidation. In contrast, Kverkfjöll pools have oxidised, acidic (pH 42- and high argillic alteration, resulting in Al-phyllosilicate-rich sediments. The prevailing metabolisms here are iron oxidation, sulphur oxidation and nitrification. Where analogous ice-fed hydrothermal systems existed on early Mars, similar volcanic processes would likely have controlled localised metabolic potential and thus habitability. Moreover, such systems offer several habitability advantages, including a localised source of metabolic redox pairs for chemolithotrophic microorganisms and accessible trace metals. Similar pools could have provided transient environments for life on Mars; when paired with surface or near-surface ice, these habitability niches could have persisted into the Amazonian. Additionally, they offer a confined site for biosignature formation and deposition that lends itself well to in situ robotic exploration

    A global cline in a colour polymorphism suggests a limited contribution of gene flow towards the recovery of a heavily exploited marine mammal

    Get PDF
    Evaluating how populations are connected by migration is important for understanding species resilience because gene flow can facilitate recovery from demographic declines. We therefore investigated the extent to which migration may have contributed to the global recovery of the Antarctic fur seal (Arctocephalus gazella), a circumpolar distributed marine mammal that was brought to the brink of extinction by the sealing industry in the eighteenth and nineteenth centuries. It is widely believed that animals emigrating from South Georgia, where a relict population escaped sealing, contributed to the re-establishment of formerly occupied breeding colonies across the geographical range of the species. To investigate this, we interrogated a genetic polymorphism (S291F) in the melanocortin 1 receptor gene, which is responsible for a cream-coloured phenotype that is relatively abundant at South Georgia and which appears to have recently spread to localities as far afield as Marion Island in the sub-Antarctic Indian Ocean. By sequencing a short region of this gene in 1492 pups from eight breeding colonies, we showed that S291F frequency rapidly declines with increasing geographical distance from South Georgia, consistent with locally restricted gene flow from South Georgia mainly to the South Shetland Islands and Bouvetøya. The S291F allele was not detected farther afield, suggesting that although emigrants from South Georgia may have been locally important, they are unlikely to have played a major role in the recovery of geographically more distant populations.J.I.H., E.B., A.J.P., E.H., L.M.B., C.K., F.C., N.K., B.F. and A.M. were funded by Deutsche Forschungsgemeinschaft (DFG) standard grant no. (HO 5122/3-1) and this research was also partly funded by the DFG as part of the SFB TRR 212 (NC3, project A01). A.C.C., C.L., K.M.K. and A.L. were funded by projects from the Norwegian Antarctic Research Expeditions. The Department of Science and Technology of South Africa provided funding through the National Research Foundation (NRF) for Marion Island research. Support for the publication fee was provided by the DFG and the Open Access Publication Funds of Bielefeld University.http://rsos.royalsocietypublishing.orgam2019Mammal Research InstituteZoology and Entomolog

    QSI results from Mars analogue systems

    No full text
    This data set includes the in-situ measurements of the field sites, the complete S isotope measurements, and the complete results of the mode

    QSI results from Mars analogue systems

    No full text
    This data set includes the in-situ measurements of the field sites, the complete S isotope measurements, and the complete results of the mode

    Dataset QSI biosignatures from terrestrial Mars analogue systems

    No full text
    In-situ measurements, quadruple sulfur isotope dataset, and complete data from the model

    Choice of nest attributes as a frontline defense against brood parasitism

    No full text
    Breeding- and nest-site choice is a behavioral strategy often used to counter negative interactions. Site choices before breeding prevent costs of predation and competition but have been neglected in the context of brood parasitism. For hosts of brood parasites, the earlier brood parasitism is prevented in the breeding cycle the lower the future costs. Suitable nest-sites for cavity-nesting common redstarts (Phoenicurus phoenicurus), a host of the common cuckoo (Cuculus canorus), are a limited resource, but their cavity-nesting strategy could potentially deter predators and brood parasites. We altered the entrance size of breeding cavities and investigated redstart nest-site choice and its consequences to nest predation and brood parasitism risk, although accounting for potential interspecific competition for nest sites. We set-up paired nest-boxes and let redstarts choose between 7 cm and 5 cm entrance sizes. Additionally, we monitored occupancy rates in nest-boxes with 3 cm, 5 cm, and 7 cm entrance sizes and recorded brood parasitism and predation events. We found that redstarts preferred to breed in 5 cm entrance size cavities, where brood parasitism was eliminated but nest predation rates were comparable to 7 cm entrance size cavities. Only in 3 cm cavities both, brood parasitism and predation rates were reduced. In contrast to the other cavity-nesting species, redstart settlement was lowest in 3 cm entrance size cavities, potentially suggesting interspecific competition for small entrance size cavities. Nest-site choice based on entrance size could be a frontline defense strategy that redstarts use to reduce brood parasitism

    Sulfur isotopes as biosignatures for Mars and Europa exploration

    No full text
    Sulfur (S) isotopes are used to trace metabolic pathways associated with biological S-cycling in past and present environments on Earth. These pathways (sulfate reduction, sulfur disproportionation, and sulfide oxidation) can produce unique S isotope signals that provide insight into biogeochemical S-cycling. The S cycle is also relevant for extraterrestrial environments and processes. On early Mars, sulfur existed in different redox states and was involved in a large range of surface processes (e.g., volcanic, atmospheric, hydrothermal, and aqueous brines). Sulfur compounds have also been detected on Europa's icy moon surface, with the S cycle implicated in Europa's surface and ocean geochemistry. Given the well-established utility of S isotopes in providing a record for past life on Earth, S isotopes are an valuable tool for identifying biosignatures on Mars and Europa. Here, we review S isotopes as a biosignature, in light of two recent advances in understanding the S cycle in both Mars and Europa: (i) the measurements of δ34S in situ at Gale Crater and quadruple S isotopes (QSI) in Martian meteorites, and (ii) the identification of a likely exogenous origin of sulfur on Europa's surface. We discuss important considerations for unravelling QSI biosignatures in Martian environments, considering high and low sulfur environments, atmospheric S-MIF signals, and metabolic energy-limited niches. For Europa, we describe the potential for S isotopes to probe biogeochemistry, and identify key knowledge gaps to be addressed in order to unlock S isotopic tools for future life detection efforts. The resulting picture demonstrates how S isotopes will be a valuable tool for Mars Sample Return, and how future missions can focus on the search for environments where QSI signatures of microbial S-cycling processes have a greater chance of being preserved. For Europa, the first step will be to account for the S isotope composition of the various S pools, to recognise or rule out non-biologically mediated S isotope values, with a focus on experimental examination of potential S isotope signatures from exogenous sulfur sources
    corecore