295 research outputs found

    Validation of suitable internal control genes for expression studies in aging.

    Get PDF
    Quantitative data from experiments of gene expression are often normalized through levels of housekeeping genes transcription by assuming that expression of these genes is highly uniform. This practice is being questioned as it becomes increasingly clear that the level of housekeeping genes expression may vary considerably in certain biological samples. To date, the validation of reference genes in aging has received little attention and suitable reference genes have not yet been defined. Our aim was to evaluate the expression stability of frequently used reference genes in human peripheral blood mononuclear cells with respect to aging. Using quantitative RT-PCR, we carried out an extensive evaluation of five housekeeping genes, i.e. 18s rRNA, ACTB, GAPDH, HPRT1 and GUSB, for stability of expression in samples from donors in the age range 35-74 years. The consistency in the expression stability was quantified on the basis of the coefficient of variation and two algorithms termed geNorm and NormFinder. Our results indicated GUSB be the most suitable transcript and 18s the least for accurate normalization in PBMCs. We also demonstrated that aging is a confounding factor with respect to stability of 18s, HPRT1 and ACTB expression, which were particularly prone to variability in aged donors

    Gene and MicroRNA Expression Profile Changes in ISS Crewmembers Blood Samples

    Get PDF
    In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. This study is part of the Functional Immune Project, intended to determine alterations in crewmember immunobiology before, during, and after spaceflight. It emphasizes the study of DNA damage in the ISS crewmembers peripheral blood mononuclear cells (PBMCs), expression patterns of damage-response and inflammatory process genes, and changes in latent virus reactivation biomarkers

    Posicionamiento y fidelización de los clientes de la Pizzería Mostra de Nuevo Chimbote, periodo 2020

    Get PDF
    El presente proyecto, tiene como finalidad conocer el posicionamiento y fidelización de los clientes de la pizzería Mostra. Tuvo como objetivo general Determinar la relación que existe entre el posicionamiento y fidelización. La investigación tuvo un enfoque cuantitativo, de nivel correlacional y de diseño no experimental de tipo transversal. Se aplicado un cuestionario a una muestra de 98 consumidores, el cual fue validado por expertos obteniendo una prueba de confiabilidad de 0.83, determinado un cuestionario altamente confiable y validado. Se ha detectado que en la actualidad, a causa de la terrible situación que se está enfrentando por la pandemia llamada Coronavirus, el estilo de vida de las personas y la manera de distribución de productos que ofrecen las mypes ha dado un cambio radical, provocando que se esfuercen en dejar los antiguos modelo de distribución, e inicien en ejecutar estrategias enfocándose en la actualidad. Después de un riguroso análisis, se concluyó que el posicionamiento tiene una relación positiva moderada con la fidelización con un valor de 0.387, sin embargo, se ha determinado que esta variable no es determinante para la fidelización del consumidor, debido a que no hay una relación direccional entre las viables posicionamiento y fidelización

    DNA hydroxymethylation levels are altered in blood cells from Down syndrome persons enrolled in the MARK-AGE project

    Get PDF
    Down syndrome (DS) is caused by the presence of part or an entire extra copy of chromosome 21, a phenomenon that can cause a wide spectrum of clinically defined phenotypes of the disease. Most of the clinical signs of DS are typical of the ageing process including dysregulation of immune system. Beyond the causative genetic defect, DS persons display epigenetic alterations, particularly aberrant DNA methylation patterns that can contribute to the heterogeneity of the disease. In the present work we investigated the levels of 5-hydroxymethylcytosine (5hmC) and of the TET dioxygenase enzymes, which are involved in DNA demethylation processes and are often deregulated in pathological conditions as well as in ageing. Analyses were carried out on peripheral blood mononuclear cells of DS volunteers enrolled in the context of the MARK-AGE study, a large-scale cross-sectional population study with subjects representing the general population in eight European countries. We observed a decrease of 5hmC, TET1 and other components of the DNA methylation/demethylation machinery in DS subjects, indicating that aberrant DNA methylation patterns in DS, which may have consequences on the transcriptional status of immune cells, may be due to a global disturbance of methylation control in DS

    Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion

    Get PDF
    The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to rays of varying doses, and then cultured in receptor activator of nuclear factor-B ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase (Trap) and dendritic cell-specific transmembrane protein (Dcstamp). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein (Ocstamp) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the synthesis of adhesion molecules as much as microgravity

    An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants

    Get PDF
    The oxidation of guanine to 8-oxo-2′-deoxyguanosine (8-oxo-dG) is one of the most abundant and best studied oxidative DNA lesions and is commonly used as a biomarker for oxidative stress. Over the last decades, various methods for the detection of DNA oxidation products have been established and optimized. However, some of them lack sensitivity or are prone to artifact formation, while others are time-consuming, which hampers their application in screening approaches. In this study, we present a formamidopyrimidine glycosylase (Fpg)-based method to detect oxidative lesions in isolated DNA using a modified protocol of the automated version of the fluorimetric detection of alkaline DNA unwinding (FADU) method, initially developed for the measurement of DNA strand breaks (Moreno-Villanueva et al., 2009. BMC Biotechnol. 9, 39). The FADU-Fpg method was validated using a plasmid DNA model, mimicking mitochondrial DNA, and the results were correlated to 8-oxo-dG levels as measured by LC–MS/MS. The FADU-Fpg method can be applied to analyze the potential of compounds to induce DNA strand breaks and oxidative lesions, as exemplified here by treating plasmid DNA with the peroxynitrite-generating molecule Sin-1. Moreover, this method can be used to screen DNA-protective effects of antioxidant substances, as exemplified here for a small-molecule, i.e., uric acid, and a protein, i.e., manganese superoxide dismutase, both of which displayed a dose-dependent protection against the generation of oxidative DNA lesions. In conclusion, the automated FADU-Fpg method offers a rapid and reliable measurement for the detection of peroxynitrite-mediated DNA damage in a cell-free system, rendering it an ideal method for screening the DNA-protective effects of antioxidant compounds.Deutsche Forschungsgemeinschaft (Grant BU 698/6-1)National Institutes of Health (U.S.) (Grant ES002109)National Institutes of Health (U.S.) (Grant CA026731

    Influence of PPh3 moiety in the anticancer activity of new organometallic ruthenium complexes

    Get PDF
    The effect of the PPh3 group in the antitumor activity of some new organometallic Ruthenium (II) complexes has been investigated. Several complexes of the type [Ru(II)(Cl)(PPh3)(Lig-N)], [Ru(II)(Cl)2(Lig-N)] (where Lig-N=pyridine derivate) and [Ru(II)(Cl)(PPh3)2], have been synthesized and characterized, and an important increment of the antitumor activity and cytotoxicity of the complexes due to the presence of PPh3 moiety has been demonstrated, affording IC50 values of 5.2 μM in HL-60 tumour cell lines. Atomic Force Microscopy, Circular Dichroism and Electrophoresis experiments have proved that these complexes can bind DNA resulting in a distortion of both secondary and tertiary structures. Ethidium bromide displacement Fluorescence Spectroscopy studies and Viscosity measurements support that the presence of PPh3 group induces intercalation interactions with DNA. Indeed, crystallographic analysis, suggest that intra-molecular π-π interactions could be involved in the intercalation within DNA base pairs. Furthermore, HPLC-MS studies have confirmed a strong interaction between Ruthenium complexes and proteins (Ubiquitin and Potato Carboxypeptidase Inhibitor -PCI-) including slower kinetic due to the presence of PPh3 moiety, which could have an important role in detoxification mechanism and others. Finally, Ion Mobility Mass Spectrometry (IMMS) experiments have proved that there is no change in the structural conformation of the proteins owing to their bonding to Ruthenium complexes. This seems particularly important in the case of PCI, that may be a suitable candidate for vehiculizing these complexes in a selective manner into tumour cells. In agreement with these results, further investigations should be carried out to clarify either there is a favoured binding to DNA or to specific proteins, thus to elucidate their main biological target

    New π-arene ruthenium (II) piano-stool complexes with nitrogen ligands

    Full text link
    The synthesis, characterization, DNA interaction and antiproliferative behavior of new π-arene ruthenium(II) piano-stool complexes with nitrogen ligands are described. Three series of organometallic compounds of formulae [RuCl2(η6-p-cym)L] were synthesized (with L = 2-, 3- or 4-methylpyridine; L = 2,3-, 2,4-, 2,5-, 3,4-, 3,5-dimethylpyridine and L = 1,2-, 1,3- 1,4-methylaminobenzene). The crystal structures of [RuCl2(p-cym)(4-methylpyridine)], [RuCl2(p-cym)(3,4-dimethylpyridine)] and [RuCl2(p-cym)(1,4-methylaminobenzene)] were resolved and the characterization was completed by spectroscopic UV-vis, FT-IR and 1H NMR studies. Electrochemical experiments were performed by cyclic voltammetry to estimate the redox potential of the Ru(II)/Ru(III) couple. The interaction with plasmid pBR322 DNA was studied through the examination of the electrophoretical mobility and atomic force microscopy, and interaction with ct-DNA by circular dichroism, viscosity measurements and fluorescence studies based on the DNA-ethidium bromide complex. The antiproliferative behavior of the series with L = methylpyridine was assayed against two tumor cell lines, i.e. LoVo and MiaPaca. The results revealed a moderate cytotoxicity with a higher activity for the LoVo cell line compared to the MiaPaca one

    Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARKAGE Study

    Get PDF
    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project ‘MARK-AGE’. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly

    Age-dependent expression of DNMT1 and DNMT3B in PBMCs from a large European population enrolled in the MARK-AGE study

    Get PDF
    Aging is associated with alterations in the content and patterns of DNA methylation virtually throughout the entire human lifespan. Reasons for these variations are not well understood. However, several lines of evidence suggest that the epigenetic instability in aging may be traced back to the alteration of the expression of DNA methyltransferases. Here, the association of the expression of DNA methyltransferases DNMT1 and DNMT3B with age has been analysed in the context of the MARK-AGE study, a large-scale cross-sectional study of the European general population. Using peripheral blood mononuclear cells, we assessed the variation of DNMT1 and DNMT3B gene expression in more than two thousand age-stratified women and men (35-75 years) recruited across eight European countries. Significant age-related changes were detected for both transcripts. The level of DNMT1 gradually dropped with aging but this was only observed up to the age of 64 years. By contrast, the expression of DNMT3B decreased linearly with increasing age and this association was particularly evident in females. We next attempted to trace the age-related changes of both transcripts to the influence of different variables that have an impact on changes of their expression in the population, including demographics, dietary and health habits, and clinical parameters. Our results indicate that age affects the expression of DNMT1 and DNMT3B as an almost independent variable in respect of all other variables evaluated
    corecore