36 research outputs found
Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e., tachyzoites) and establishing chronic infection (i.e., bradyzoites). Calcium ion (Ca(2+)) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca(2+) signaling pathways in bradyzoites remain largely unexplored. Here, we show that Ca(2+) responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca(2+) responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca(2+) imaging demonstrated lower Ca(2+) basal levels, reduced magnitude, and slower Ca(2+) kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with downregulation of Ca(2+)-ATPases involved in intracellular Ca(2+) storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca(2+) rapidly restored their intracellular Ca(2+) and ATP stores, leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca(2+) signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility
A novel dense granule protein, GRA41, regulates timing of egress and calcium sensitivity in Toxoplasma gondii
Toxoplasma gondii is an obligate intracellular apicomplexan parasite with high seroprevalence in humans. Repeated lytic cycles of invasion, replication, and egress drive both the propagation and the virulence of this parasite. Key steps in this cycle, including invasion and egress, depend on tightly regulated calcium fluxes and, although many of the calcium-dependent effectors have been identified, the factors that detect and regulate the calcium fluxes are mostly unknown. To address this knowledge gap, we used a forward genetic approach to isolate mutants resistant to extracellular exposure to the calcium ionophore A23187. Through whole genome sequencing and complementation, we have determined that a nonsense mutation in a previously uncharacterised protein is responsible for the ionophore resistance of one of the mutants. The complete loss of this protein recapitulates the resistance phenotype and importantly shows defects in calcium regulation and in the timing of egress. The affected protein, GRA41, localises to the dense granules and is secreted into the parasitophorous vacuole where it associates with the tubulovesicular network. Our findings support a connection between the tubulovesicular network and ion homeostasis within the parasite, and thus a novel role for the vacuole of this important pathogen
Synthesis and biological evaluation of 1-alkylaminomethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii
As an extension of our project aimed at the search for new chemotherapeutic agents against Chagas disease and toxoplasmosis, several 1,1-bisphosphonates were designed, synthesized and biologically evaluated against Trypanosoma cruzi and Toxoplasma gondii, the etiologic agents of these diseases, respectively. In particular, and based on the antiparasitic activity exhibited by 2-alkylaminoethyl-1,1-bisphosphonates targeting farnesyl diphosphate synthase, a series of linear 2-alkylaminomethyl-1,1-bisphosphonic acids (compounds 21â33), that is, the position of the amino group was one carbon closer to the gem-phosphonate moiety, were evaluated as growth inhibitors against the clinically more relevant dividing form (amastigotes) of T. cruzi. Although all of these compounds resulted to be devoid of antiparasitic activity, these results were valuable for a rigorous SAR study. In addition, unexpectedly, the synthetic designed 2-cycloalkylaminoethyl-1,1-bisphosphonic acids 47â49 were free of antiparasitic activity. Moreover, long chain sulfur-containing 1,1-bisphosphonic acids, such as compounds 54â56, 59, turned out to be nanomolar growth inhibitors of tachyzoites of T. gondii. As many bisphosphonate-containing molecules are FDA-approved drugs for the treatment of bone resorption disorders, their potential nontoxicity makes them good candidates to control American trypanosomiasis and toxoplasmosis.Fil: Galaka, Tamila Pavlivna. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de MicroanĂĄlisis y MĂ©todos FĂsicos en QuĂmica OrgĂĄnica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de MicroanĂĄlisis y MĂ©todos FĂsicos en QuĂmica OrgĂĄnica; ArgentinaFil: Falcone, Bruno Nicolas. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de MicroanĂĄlisis y MĂ©todos FĂsicos en QuĂmica OrgĂĄnica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de MicroanĂĄlisis y MĂ©todos FĂsicos en QuĂmica OrgĂĄnica; ArgentinaFil: Li, Catherine. University of Georgia; Estados UnidosFil: Szajnman, Sergio Hernan. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de MicroanĂĄlisis y MĂ©todos FĂsicos en QuĂmica OrgĂĄnica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de MicroanĂĄlisis y MĂ©todos FĂsicos en QuĂmica OrgĂĄnica; ArgentinaFil: Moreno, Silvia N.J.. University of Georgia; Estados UnidosFil: Docampo, Roberto. University of Georgia; Estados UnidosFil: Rodriguez, Juan Bautista. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de MicroanĂĄlisis y MĂ©todos FĂsicos en QuĂmica OrgĂĄnica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de MicroanĂĄlisis y MĂ©todos FĂsicos en QuĂmica OrgĂĄnica; Argentin
Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii
Expression of a bacterial transporter protein in Toxoplasma gondii results in parasite susceptibility to Formidomycin, a drug targeting isoprenoid precursor synthesis
Reduction of the metallochromic indicators arsenazo III and antipyrylazo III to their free radical metabolites by cytoplasmic enzymes
AbstractAt a concentration much lower than that usually employed for measuring cytosolic ionized Ca2+ concentrations, arsenazo III underwent a one-electron reduction by rat liver cytosolic fraction or a hypoxanthinexanthine oxidase system to produce an azo anion radical metabolite. NADH, NADPH, N1-methylnicotinamide, hypoxanthine, and xanthine, in that order, could serve as a source of reducing equivalents for the production of this free radical by the cytosolic fraction. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated O2 consumption were enhanced by calcium and magnesium. Antipyrylazo III was ineffective in increasing O2 consumption by rat liver cytosolic fraction and gave a much weaker ESR signal of an azo anion radical with both the liver cytosolic fraction, in the presence of NADH, and the hypoxanthine-xanthine oxidase system
A plasma membrane-type Ca(2+)-ATPase co-localizes with a vacuolar H(+)-pyrophosphatase to acidocalcisomes of Toxoplasma gondii
Ca(2+)-ATPases are likely to play critical roles in the biochemistry of Toxoplasma gondii, since these protozoa are obligate intracellular parasites and the Ca(2+) concentration in their intracellular location is three orders of magnitude lower than in the extracellular medium. Here, we report the cloning and sequencing of a gene encoding a plasma membrane-type Ca(2+)-ATPase (PMCA) of T.gondii (TgA1). The predicted protein (TgA1) exhibits 32â36% identity to vacuolar Ca(2+)-ATPases of Trypanosoma cruzi, Saccharomyces cerevisiae, Entamoeba histolytica and Dictyostelium discoideum. Sequencing of both cDNA and genomic DNA from T.gondii indicated that TgA1 contains two introns near the C-terminus. A hydropathy profile of the protein suggests 10 transmembrane domains. TgA1 suppresses the Ca(2+) hypersensitivity of a mutant of S.cerevisiae that has a defect in vacuolar Ca(2+) accumulation. Indirect immunofluorescence and immunoelectron microscopy analysis indicate that TgA1 localizes to the plasma membrane and co-localizes with the vacuolar H(+)-pyrophosphatase to intracellular vacuoles identified morphologically and by X-ray microanalysis as the acidocalcisomes. This vacuolar-type Ca(2+)-ATPase could play an important role in Ca(2+) homeostasis in T.gondii
Recommended from our members
Respiration and Oxidative Phosphorylation in the Apicomplexan Parasite Toxoplasma gondii
Respiration, oxidative phosphorylation, and the mitochondrial membrane potential (ÎΚ) of tachyzoites of the apicomplexan parasite Toxoplasma gondiiwere assayed in situ using very low concentrations of digitonin to render their plasma membrane permeable to succinate, ADP, safranin O, and other small molecules. The rate of basal respiration was slightly increased by digitonin when the cells were incubated in medium containing succinate. ADP promoted an oligomycin-sensitive transition from resting to phosphorylating respiration. Respiration was sensitive to antimycin A and cyanide, and N,N,NâČ,NâČ-tetramethyl-p-phenylenediamine (TMPD) was oxidized by antimycin A-poisoned mitochondria. The addition of ADP after TMPD/ascorbate also resulted in phosphorylating respiration. The antitoxoplasmosis drug atovaquone, at a very low concentration (0.03 ÎŒm), totally inhibited respiration and disrupted the mitochondrial membrane potential. Atovaquone was shown to inhibit the respiratory chain of T. gondii and mammalian mitochondria between cytochrome b and c1 as occurs with antimycin A1. Phosphorylation of ADP could not be obtained in permeabilized tachyzoites in the presence of either pyruvate, 3-oxo-glutarate, glutamate, isocitrate, dihydroorotate, α-glycerophosphate, or endogenous substrates. Although ADP phosphorylation was detected in the presence of malate, this activity was rotenone-insensitive and was probably due to the conversion of malate into succinate through a fumarate reductase activity that was detected in mitochondrial extracts. Together these results provide the first direct biochemical evidence that the respiratory chain and oxidative phosphorylation are functional in apicomplexan parasites, although the terminal respiratory pathway is different from that in the mammalian host