Accepted Manuscript

Synthesis and Biological Evaluation of 1-Alkylaminomethyl-1,1-Bisphosphonic Acids against *Trypanosoma cruzi* and *Toxoplasma gondii*

Tamila Galaka, Bruno N. Falcone, Catherine Li, Sergio H. Szajnman, Silvia N.J. Moreno, Roberto Docampo, Juan B. Rodriguez

PII:	S0968-0896(19)30740-0
DOI:	https://doi.org/10.1016/j.bmc.2019.07.004
Reference:	BMC 14988
To appear in:	Bioorganic & Medicinal Chemistry
Received Date:	9 May 2019
Revised Date:	23 June 2019
Accepted Date:	3 July 2019

Please cite this article as: Galaka, T., Falcone, B.N., Li, C., Szajnman, S.H., Moreno, S.N.J., Docampo, R., Rodriguez, J.B., Synthesis and Biological Evaluation of 1-Alkylaminomethyl-1,1-Bisphosphonic Acids against *Trypanosoma cruzi* and *Toxoplasma gondii*, *Bioorganic & Medicinal Chemistry* (2019), doi: https://doi.org/10.1016/j.bmc.2019.07.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis and Biological Evaluation of 1-Alkylaminomethyl-1,1-Bisphosphonic Acids against *Trypanosoma cruzi* and *Toxoplasma* gondii

Tamila Galaka,^a Bruno N. Falcone,^a Catherine Li,^b Sergio H. Szajnman,^a Silvia N. J. Moreno,^b Roberto Docampo,^b and Juan B. Rodriguez^{a,*}

^aDepartamento de Química Orgánica and UMYMFOR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina, ^bCenter for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA

Abstract – As an extension of our project aimed at the search for new chemotherapeutic agents against Chagas disease and toxoplasmosis, several 1,1-bisphosphonates were designed, synthesized and biologically evaluated against Trypanosoma cruzi and Toxoplasma gondii, the etiologic agents of these diseases, respectively. In particular, and based on the antiparasitic activity exhibited by 2-alkylaminoethyl-1,1bisphosphonates targeting farnesyl diphosphate synthase, a series of linear 2alkylaminomethyl-1,1-bisphosphonic acids (compounds 21-33), that is, the position of the amino group was one carbon closer to the gem-phosphonate moiety, were evaluated as growth inhibitors against the clinically more relevant dividing form (amastigotes) of T. cruzi. Although all of these compounds resulted to be devoid of antiparasitic activity, these results were valuable for a rigorous SAR study. In addition, unexpectedly, the synthetic designed 2-cycloalkylaminoethyl-1,1-bisphosphonic acids 47-49 were free of antiparasitic activity. Moreover, long chain sulfur-containing 1,1-bisphosphonic acids, such as compounds 54-56, 59, turned out to be nanomolar growth inhibitors of tachyzoites of T. gondii. As many bisphosphonate-containing molecules are FDAapproved drugs for the treatment of bone resorption disorders, their potential nontoxicity makes them good candidates to control American trypanosomiasis and toxoplasmosis.

Introduction

American Trypanosomiasis (Chagas disease) is a chronic zoonosis produced by the kinetoplastid parasite Trypanosoma cruzi, is the major parasitic disease burden of the American continent, and can be considered as one of the most important diseases in the world together with malaria and schistosomiasis.¹ The commonly affected organ is the heart with myocarditis and the central nervous system is also commonly attacked.²⁻⁴ In addition, the second most common symptoms are the so-called megavisceras; therefore, the most commonly affected system is the digestive tract. The current chemotherapy is still deficient and based on two empirically-discovered drugs: nifurtimox (Lampit®, Bayer - El Salvador), which is available under a CDC investigational protocols⁵ and benznidazole (Abarax®, Elea - Argentina), which was a recently FDA-approved but for use only.⁵ drug pediatric (https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm573942.htm). In most of endemic countries benznidazole is a drug of choice to treat the acute phase of the infection and is indicated to treat the chronic phase even with low efficiency.⁶ As both of these drugs are associated to long term treatment and severe side effects there is a serious necessity to develop new safe drugs based on the knowledge of the biochemistry and physiology of these microorganisms. In AIDS-infected patients, chronic suppressive therapy is required and this is associated with neurotoxicity due to the drugs.

On the other hand, *T. gondii* is an opportunistic protozoan parasite that is responsible for toxoplasmosis.⁷ *T. gondii* is able to infect a wide range of hosts, particularly humans and warm-blooded animals.⁸ Toxoplasmosis is positively one of the most prevalent parasitic diseases affecting close to one billion people worldwide.⁹ Particularly, this parasite can cause mortality among immunocompromised individuals such as AIDS patients, organ transplant recipients, as well as congenitally infected children. Toxoplasmosis may lead to severe central nervous system disease. As occurs with Chagas disease treatment, the current chemotherapy for toxoplasmosis is still deficient as well.¹⁰

Several enzymes of the isoprenoid pathway, involved in the synthesis of sterols and farnesyl diphosphate, have been reported to be excellent drug targets against trypanosomatids.^{11,12} Regardless of their different structures and functional diversity, all

isoprenoids have a common precursor: isopentenyl diphosphate, and its isomer, dimethylallyl diphosphate. In T. cruzi, isopentenyl diphosphate is biosynthesized exclusively via the so-called mevalonate pathway, which has the 3-hydroxy-3methylglutaryl-CoA (HMG-CoA) reductase as the fundamental directing enzyme. Although T. cruzi takes up sterols from its mammalian host (largely cholesterol), it has an essential requirement for de novo sterol biosynthesis in all stages of its life cycle and is extremely susceptible to sterol biosynthesis inhibitors. On the other hand, T. gondii lacks the mevalonate pathway and employs an apicoplast localized biosynthesis, prokaryotic-type, 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway, instead.^{13,14} The DOXP pathway is not present in the host. In addition, as T. gondii does not synthesize cholesterol, which is taken from the host indicating that inhibitors of the host isoprenoid biosynthesis would be putative growth inhibitors of T. gondii.¹⁵ Certainly, mevalonate pathway inhibitors are able to control proliferation of a number of Apicomplexan parasites such as *Babesia divergens*,¹⁶ *Plasmodium falciparum*,¹⁷ *Cryptosporidium* parvum,¹⁸ and T. gondii,¹⁹ indicating that parasites lacking the mevalonate pathway are reliant on host precursors of isoprenoid biosynthesis. Interestingly, the synergistic effect of host and parasite isoprenoid pathway inhibitors has been reported.²⁰ For example, the used of two commonly used drugs, zoledronic acid and atorvastatin, exhibited a strong synergism in modulating T. gondii multiplication.²⁰ It would be possible to take advantage the fact of T. cruzi and T. gondii proliferate intracellularly to be used as a model for two major groups of parasites: trypanosomatids (T. cruzi, African trypanosomes, Leishmania spp) and Apicomplexan (P. falciparum, C. parvum, etc.). T. gondii main proliferative stage in the mammalian host is the rapidly dividing or tachyzoite stage, which is the form used in this study. Sometimes they are described as cells because these are unicellular parasites. We now use tachyzoites all the time to avoid confusion.⁹ Scheme 1 illustrates ergosterol biosynthesis for trypanosomatids. Farnesyl diphosphate synthase (FPPS) is a key enzyme of the isoprenoid biosynthesis that catalyzes the consecutive condensation of isopentenyl diphosphate with dimethylallyl diphosphate and with geranyl diphosphate to form farnesyl diphosphate, which is the common substrate for enzymes to produce sterols, ubiquinones, dolichols, heme a, and prenylated proteins. Farnesyl diphosphate is able to be condensed with an additional molecule of isopentenyl diphosphate by the geranylgeranyl diphosphate synthase (GGPPS) to form the 20-carbon isoprenoid geranylgeranyl diphosphate.²¹

Scheme 1. Ergosterol biosynthesis for trypanosomatids.

On the other hand, Scheme 2 shows the alternate pathway found in Apicomplexan parasites to biosynthesize isopentenyl and dimethylallyl diphosphate. It is well-documented that FPPS is essential for trypanosomatids.²² *Tg*FPPS can be considered a key enzyme only under certain circumstances, to be precise, when the isoprenoid biosynthesis of the host is inhibited, process known as genetic validation.²⁰ The essentiality of FPPS was demonstrated in *T. brucei* rather than *T. cruzi* because of the availability of better genetic tools for work with *T. brucei*.²²

Scheme 2. The 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway to biosynthesize isopentenyl diphosphate and dimethylallyl diphosphate in Apicomplexan parasites.

The recent report of the crystal structure of some complexes of lineal 1,1bisphosphonates, developed in our laboratory such as 2-alkylaminoethyl-1,1bisphosphonates, with the target enzyme *T. cruzi* farnesyl diphosphate synthase (*Tc*FPPS) provided conclusive data in determining the precise mechanism of action of these antiparasitic agents.²³ These results, together with previous findings by other

groups^{24,25} indicated that these compounds behave as competitive inhibitors of the substrate by binding to the allylic site of the enzyme, with the phosphonic moieties coordinating three magnesium ions at the active site.²³ It is worth mentioning that predictions of the inhibitors optimal chain length is not straightforward bearing in mind that small changes in the number of carbons of the alkyl chain brings about a dramatic influence on biological action.²⁶ In addition, FPPS of *T. gondii* is a bifunctional enzyme that catalyzes the condensation of isopentenyl diphosphate with three allylic substrates: dimethylallyl diphosphate, geranyl diphosphate, and farnesyl disphosphate.²⁷ Interestingly, *T. gondii* FPPS has less than 50% identity of *Tc*FPPS; therefore, it will be possible to access extremely selective inhibitors for both enzymes.⁹

We were able to develop effective inhibitors against either TcFPPS or TgFPPS.²¹ Until now all the FPPSs are homodimeric enzymes that involve Mg²⁺ or Mn²⁺ for activity.²⁸ TcFPPS is localized to the cytosol.²⁹

Bisphosphonates (2) are diphosphate (1) analogues in which a substituted methylene group replaces the oxygen atom bridge between the two phosphorus atoms of the pyrophosphate moiety giving rise to a large family of compounds.³⁰ Several bisphosphonates are potent inhibitors of bone resorption and are in clinical use for the treatment and prevention of osteoporosis, Paget's disease, hypercalcemia, tumor bone metastases, and other bone diseases.³⁰⁻³² Aminobisphosphonates became putative antiparasitic drugs when these molecules were first found to be effective inhibitors T. cruzi proliferation in in vitro and in vivo assays without toxicity to the host cells.³³ In addition, this behavior was not limited exclusively to T. cruzi but was also observed in other trypanosomatids (T. brucei rhodesiense and Leishmania donovani) and Apicomplexan parasites, such as T. gondii and P. falciparum³⁴⁻³⁷, indicating that bisphosphonates are promising molecules to control parasitic infections. Selective action on bone is based on the binding of the bisphosphonate moiety to the bone mineral.³⁰ Interestingly, the acidocalcisomes are equivalent in composition to the bone mineral and that accumulation of bisphosphonates in these organelles, as they do in bone mineral, aids their antiparasitic activity.^{4,38–41} The isoprenoid pathway is the target of bisphosphonates through the inhibition of the enzymatic activity of FPPS.^{21,42}

Figure 1. Chemical structures of pyrophosphoric acid, general formula of bisphosphonic acids and representative FDA-approved bisphosphonates clinically employed for the treatment of different bone disorders.

A relevant achievement of our laboratory was the finding that linear 1,1bisphosphonates turned out to be efficient antiparasitic agents^{43–45} where, in most of them, the hydroxyl group at the C-1 position, usually found in those bisphosphonates currently employed in the treatment of bone disorders, was absent.⁴² Compounds 6-9 were the first examples of linear bisphosphonates that exhibited antiparasitic activity against trypanosomatids and Apicomplexan parasites targeting parasitic FPPS.^{27,43–46} For example, 6 was a moderate growth inhibitor of intracellular T. $cruzi^{43}$ and also against tachyzoites of T. gondii,^{27,46} whereas 7 was effective against P. falciparum.²⁷ 8 was practically devoid of activity,⁴⁴ whereas **9** showed similar cellular activity against T. cruzi.⁴⁵ In addition, α -fluoro-1,1-bisphosphonates such as 10 and 11 were neither effective against amastigotes of T. cruzi nor the target enzyme TcFPPS; nevertheless, they were extremely effective inhibitors of the enzymatic activity of TgFPPS.⁴⁷ Of paramount concern were the 2-alkyl(amino)ethyl-1,1-bisphosphonate derivatives, which were potent inhibitors of T. cruzi proliferation targeting TcFPPS with IC₅₀ values in the low nanomolar concentrations.48,49 Unquestionable, compounds 12-14 emerge as pertinent members of this type of bisphosphonates. For example, 12 was significantly more potent than the well-known antiparasitic agent WC-9 against T. cruzi (amastigotes),⁴⁸ under the same assays conditions;⁵⁰ while **13** was a potent inhibitor of the enzymatic activities of TcFPPS.⁴⁸ Moreover, **14**, the bisphosphonate bearing a long aliphatic chain, was an effective growth inhibitor of T. cruzi.⁴⁹ 15 was a motivating example of a linear bisphosphonate that was designed and synthesized in order to optimize structures 12-14. 15 had been designed based on the fact that the presence of electron withdrawing group (HO-) at C-1 would enhance the ability to coordinate Mg²⁺, would increase pK_a and also by the fact that most bisphosphonates clinically in use have this functionality at C-1.⁵¹ Unfortunately, 15 is devoid of activity against T. cruzi

growth and TcFPPS, but exhibited a potent and selective inhibition of the enzymatic activity towards TgFPPS.⁵¹ Linear sulfur-containing bisphosphonates are interesting examples of selective anti-Toxoplasma agents as it is the case of 16 and 17.52 Certainly, **16** is a potent inhibitor of *T. gondii* proliferation. This cellular activity was associated with a potent action against the target enzyme TgFPPS,⁵² whereas 17 is an unusually potent inhibitor towards TgFPPS.⁵² A strong synergistic effect is observed when the sulfur-containing 1,1-bisphosphonate 16 was used in combination with statins against the hypervirulent RH strain of T. gondii in in vivo assays.⁵³ Statins, which block the mevalonate pathway within the mammalian cells, had exhibited a rather modest inhibitory effect against T. gondii cells when tested alone.⁵³ Moreover, the sulfonecontaining derivative 18 exhibited a very potent in vitro activity against T. gondii (ED₅₀ = 0.1 μ M).⁵⁴ This compound also showed high activity in vivo (ED₅₀ of 0.02 mg/kg) in a toxoplasmosis mouse model employing the hypervirulent RH strain of T. gondii.⁵⁴ It is worth mentioning that 18 did not behave as an effective inhibitor of the enzymatic activity of T_g FPPS (IC₅₀ = 0.27 μ M) indicating that T_g FPPS was not the primary target of this molecule.⁵⁵ The methylsulfonium derivative **19** has proven to be a moderate growth inhibitor against both T. cruzi and T. gondii cells, but a very potent inhibitor of the enzymatic activity towards the target enzymes TcFPPS and TgFPPS.⁵² Finally, α fluoro-2-alkyl(amino)ethyl derivatives such as 20a-20h were unpredictably free of cellular activity.⁵⁵ The structures of these representative compounds are illustrated in Figure 2, whereas relevant already published antiparasitic data are listed in Table 1.

20a, R = *n*-propyl; **20b**, R = *n*-butyl; **20c**, R = *n*-pentyl; **20d**, R = *n*-hexyl; **20e**, R = *n*-heptyl; **20f**, R = *n*-octyl; **20g**, R = *n*-nonyl; **20h**, R = *n*-decyl;

Figure 2. Chemical structures of representative lineal bisphosphonic acids developed in our laboratory as putative antiparasitic agents targeting FPPS.

Compound	T. cruzi growth ED ₅₀ (μM)	<i>Tc</i> FPPS IC ₅₀ (μM)	<i>T. gondii</i> growth ED ₅₀ (μM)	<i>Tg</i> FPPS IC ₅₀ (μM)
10	> 10.0	> 1.0	2.67	0.035
11	> 10.0	> 1.0	> 10.0	0.060
12	0.84	0.49	9.4	0.14
13	10.0	0.058	> 50.0	0.095
14	0.67	0.81	6.23	0.093
15	> 10.0	> 10.0	2.0	0.039
16	> 20.0	> 10.0	0.97	0.069
17	> 20.0	0.097	1.8	0.021
18	NT	NT	0.11	0.27
19	>20.0	0.040	7.0	0.013
Dationals				

Table 1. Biological activity of bisphosphonates previously prepared in our laboratoryagainst *T. cruzi* (amastigotes), *T. gondii* (tachyzoites), *Tc*FPPS, and *Tg*FPPS.

Rationale

The lack of antiparasitic activity found in the α -fluoro-2-alkyl(amino)ethyl derivatives was rather unexpected. In fact we further evaluated compounds **20a–20h** as inhibitors of the enzymatic activity against the target enzymes *Tc*FPPS and *Tg*FPPS, respectively.

On the other hand, in order to study the influence of the position of the nitrogen atom in our linear 1,1-bisphosphonates, 2-alkylaminomethyl-1,1-bisphosphonates such as **21–33** could be considered as very exciting structural variations taking into account the selective and potent antiparasitic activity exhibited by 2-alkylaminoethyl-1,1bisphosphonates such as **12–14** towards both *T. cruzi* cells and *Tc*FPPS.^{23,48,49} Although some of the title compounds **21–33** had been previously described as growth inhibitors of *Entamoeba histolytica* and *Plasmodium* species in in vitro and in vivo studies, there were not spectroscopic data available for these compounds.⁵⁶ Therefore, the influence of the position of the nitrogen atom (C-3 versus C-2) seemed to be relevant from the pharmacological point of view.

Taking into account that the 2-alkylaminoethyl-1,1-bisphosphonates of type **12–14** were extremely effective growth inhibitors either of *T. cruzi* cells or of the enzymatic activity of the target enzyme TcFPPS,^{23,48,49} based on the biological activity exhibited by the cyclohexylamine-containing bisphosphonate,⁴⁸ which showed an IC₅₀ value of 0.013 μ M against *Tc*FPPS but limited biological activity against intracellular *T*.

cruzi, it was decided to prepare some 1,1-bisphosphonate derivatives bearing a cycloalkylamino group in their structure such as **47–49**.

Results and discussion

Preparation of the respective 2-alkylaminomethyl-1,1-bisphosphonic acids **21–33** was successfully carried out according to already published methods.^{57,58} Thus, following a slightly modified published protocol,⁵⁹ a suitable alkyl or cycloalkyl amine treated with triethyl orthoformate and diethyl phosphite at 135 °C for 2 hours gave rise to the corresponding tetraethyl ester derivatives **34–46** in a relatively modest but reproducible yields. Then, on treatment with concentrated hydrochloric acid at 100 °C overnight the esters were converted into the title molecules **21–33** in very good yields as shown in Scheme 3.

Scheme 3. Synthetic approach for the preparation of 2-alkylaminomethyl-1,1-bisphosphonic acids.

The 2-cycloalkylaminoethyl-1,1-bisphosphonates 47-49 were easily synthesized starting from the corresponding cycloalkylamine and the well-known Michael-type acceptor $50^{.60-62}$ Then, conjugate addition of the cycloalkylamine to form the respective tetraethyl esters 47-49 with excellent yields followed by hydrolysis by treatment with concentrated hydrochlroric acid yielded the desired molecules 47-49 as presented in Scheme 4.

Scheme 4. Synthetic approach for the synthesis of cycloalkyl 2-aminoethyl-1,1-

bisphosphonates.

Long chain sulfur-containing 1,1-bisphosphonates such as **54–59** were synthesized according to our previous results.⁵² Therefore, the Michael-type acceptor **50** was treated with undecylmercaptan and dodecylmercaptan to produce the respective tetraethyl esters **60** and **61**, respectively. On treatment with bromotrimethylsilane in methylane chloride, which is the protocol developed by McKenna,^{63,64} followed by digestion with methanol, **60** and **61** were converted into the free bisphosphonic acids **54** and **57**. Sulfur-containing 1,1-bisphosphonate esters are quite sensitive to hydrolysis by treatment with concentrated hydrochlroric acid.⁵² Each compound, in independent experiments, was oxidized by treatment with hydrogen peroxide (one equivalent) to yield the corresponding sulfoxides **55** and **58**, respectively or with two equivalents of hydrogen peroxide to produce the respective sulfones **56** and **59**, respectively as shown in Scheme 5.

Biological data are shown in Table 2 and 3. As previously mentioned, the α -fluoro-2-alkyl(amino)ethyl derivatives **20a–20h** resulted to be almost free of antiparasitic activity. In spite of not having a significant cellular activity compounds **20a–20h** were further evaluated against the main target of the linear bisphosphonates, FPPS. All of these fluorine-containing-1,1-bisphosphonates exhibited a potent inhibitory action towards the enzymatic activity of either *Tc*FPPS or of *Tg*FPPS. Certainly, most of these compounds showed to be nanomolar inhibitors of these key enzymes. Long chain derivatives such as **20f** and **20g** were representative examples of potent inhibitors showing IC₅₀ values of 0.085 µM and 0.079 µM against *Tc*FPPS and *Tg*FPPS, respectively for **20f** and 0.034 µM and 0.051 µM, respectively for **20g**. Unfortunately, it is difficult to rationalize the lack of cellular activity of this family of

compounds. Evidently, α -fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates do not have the appropriate physicochemical parameters to cross two cell membranes (the mammalian one and the parasite cell membrane) to reach the target enzyme. Moreover, the long chain α -fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates **20f–20h** were cytotoxic molecules making these derivatives of low interest in Medicinal Chemistry. This decrease in the antiparasitic activity by making small structural variations on nitrogen-containing bisphosphonates such as such **12–14**^{48,49} to give **15**⁵¹ has also been observed in other bisphosphonates acting on bone mineral affinity targeting the mevalonate pathway between α -hydroxy- and α -fluorobisphosphonates.⁶⁵

Biological evaluation of 1-alkylaminomethyl-1,1-bisphosphonic acids 21-29 indicated that this structural variation was not beneficial for the biological activity. With the exception of compound 28, which resulted to be a fairly modest growth inhibitor of intracellular *T. cruzi* (ED₅₀ 5.3 µM), all the title compounds were devoid of cellular activity and, for that reasons, they were not further analyzed.

Unexpectedly, the designed 2-cycloalkyl(amino)ethyl-1,1-bisphosphonates **47–49** were devoid of activity against *T. cruzi* cells and *T. gondii* cells. Interestingly, the long chain sulfur-containing-1,1-bisphosphonates were effective inhibitors of tachyzoites of *T. gondii* as anticipated according to our previous data in closely related sulfur-containing analogues.^{52–54} All of them **54–56**, **59** were nanomolar inhibitors of tachyzoites of *T. gondii* being **56** the most effective growth inhibitor with an ED₅₀ value of 0.53 μ M. In this regard, it is important to note that the reference structure **18** (Figure 2), which behaved as a potent inhibitor of tachyzoites of *T. gondii* proliferation (ED₅₀ = 0.1 μ M), did not have *Tg*FPPS as a primary target exhibiting a modest a fairly modest inhibitory action towards this target enzyme (IC₅₀ value of 0.8 μ M).⁵⁴ Indeed, these long chain sulfur-containing -1,1-bisphosphonates will require further efforts to investigate their precise mode of action.

Compound	T. cruzi cells	T. gondii cells	TcFPPS IC ₅₀	TgFPPS IC ₅₀	Cytotoxicity
_	ED ₅₀ µM	$ED_{50} \mu M$	(µM)	(µM)	$ED_{50}(\mu M)$
20a	> 10.055		0.060 ± 0.03	0.245 ± 0.081	NT
20b	> 10.055	> 10.055	0.173 ± 0.04	0.286 ± 0.087	> 200 ⁵⁵
20c	> 10.055	> 10.055	0.611 ± 0.37	0.299 ± 0.028	NT
20d	> 10.055	>10.055	0.915 ± 0.18	0.131 ± 0.017	NT
20e	> 10.055	>10.055	0.071 ± 0.02	0.088 ± 0.005	NT
20f	> 10.055	4.008 ± 1.191^{55}	0.085 ± 0.03	0.079 ± 0.013	161.755
20g	cytotoxic ⁵⁵	2.24 ± 0.31	0.034 ± 0.023	0.051 ± 0.006	15.0
20h	cytotoxic ⁵⁵	2.26 ± 0.75	0.136 ± 0.047	0.080 ± 0.004	20.0

Table 2. Biological activity of bisphosphonates against *T. cruzi* (amastigotes), *T. gondii*(tachyzoites), *Tc*FPPS, *Tg*FPPS, and Vero cells

Table 3. Biological activity of bisphosphonates against *T. cruzi* (amastigotes), *T. gondii* (tachyzoites), and Vero cells

Compound	<i>T. cruzi</i> cells	T. gondii cells	Cytotoxicity
	ED ₅₀ µM	ED ₅₀ μM	$ED_{50} (\mu M)$
21	> 10.0		
22	> 10.0		
23	> 10.0		
24	> 10.0		
25	> 10.0		
26	> 10.0		
27	> 10.0		
28	5.26 ± 0.45		
29	cytotoxic ^a		10.0
30	> 10.0		
31	> 10.0		
32	> 10.0		
33	> 10.0		
47	> 10.0	> 20.0	
48	> 10.0	> 20.0	
49	> 10.0	> 20.0	
54		0.54 ± 0.10	
55		0.53 ± 0.096	
56		0.38 ± 0.082	
59		0.93 ± 0.24	
benznidazole	2.58 ± 0.50		

 a cytotoxic at 10 $\mu M,$ 5 $\mu M,$ no inhibition at 2.5 μM

In order to account for the lack of activity of compounds bearing the amino group at position 2, Molecular Dynamics (MD) and Quantum Mechanical (QM) optimizations were carried out. The protein ligand complex for the compound with the

amino group at position 2 (compound **21**) was generated from the crystal structure for compound **62** (pdb id 4DXJ). Although no specific interactions between the amino groups and the receptor were observed in the 10 ns MD simulations, the side chain is fixed in one orientation, directed towards the unsymmetrical magnesium ion (Figure 3). A plot for the dihedral angle P-C1-C2-N for **21** and P-C1-N-C3 for **62** (Figure 4) shows that this angle remains constant throughout the simulation.

Figure 3. The side chain is fixed in one orientation, directed towards the unsymmetrical magnesium ion present at the allylic site of the active site of *Tc*FPPS.

Figure 4. Dihedral angle P-C1-C2-N for **21** (red) and P-C1-N-C3 for **62** (black) throughout the MD simulation

QM optimizations at the B3LYP/6-311+G(d,p) level were carried out for the main conformers of each model compound (63 and 64), simulating the aqueous solvent with the polarizable continuum method (PCM). Consistent with previous studies,⁵¹ the phosphate groups were considered to be doubly protonated, as it is expected for a physiological pH of 6.5. We have considered both protonation states for the amino group, yielding equivalent conclusions. The molecules were completed by the addition of one magnesium atom. The lowest energy conformations (Figure 5) show a strong intramolecular hydrogen bond between the phosphate groups for both compounds. However, compound 64 shows a weak H-bond between the amino and phosphate groups (bond length 2.32 Å and N-H...O angle 120°) while the equivalent H-bond is relatively strong for compound 63 (1.77 Å, 151°). The formation of this strong H-bond is expected to decrease the conformational entropy in solution, therefore decreasing the entropy penalty upon complex formation, and yielding a higher inhibition activity. It is worth mentioning that, consistently with our MD and QM studies, ITC measurements²³ found that bisphosphonate compounds bind to the active site due to a combination of a favorable entropic driving force and an unfavorable enthalpic energy.

Figure 5. A strong intramolecular hydrogen bond between the phosphate groups for both compounds.

In conclusion, the lack of antiparasitic activity shown by the regioisomers of the nitrogen-containing bisphosphonates 12–14, that is, amino derivatives 21–29 provided significant insights concerning chemical structure-biological activity relationship. The simple moving of the nitrogen atom in representative compounds 12–14 had a marked

outcome on the biological activity giving rise to inactive compounds. Efforts in optimizing linear bisphosphonates are currently being pursued in our laboratory.

Experimental Section

The glassware used in air- and/or moisture-sensitive reactions was flame-dried and reactions were carried out under dry argon. Unless otherwise noted, chemicals were commercially available and used without further purification. Solvents were distilled before use. Dichloromethane was distilled from phosphorus pentoxide. Nuclear magnetic resonance spectra were performed with a Bruker AVANCE NEO 500 or with a Bruker Fourier 300 spectrometers. The ¹H NMR spectra are referenced with respect to the residual CHCl₃ proton of the solvent CDCl₃ at $\delta = 7.26$ ppm. Coupling constants are reported in Hz. ¹³C NMR spectra were fully decoupled and are referenced to the middle peak of the solvent CDCl₃ at δ = 77.0 ppm. ³¹P NMR spectra are referenced with respect to the peak of 85% H₃PO₄ as external reference. For comparative purposes, all NMR spectra acquired in D₂O for free bisphosphonic acids were recorded at the same conditions. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quadruplet; dd, double doublet, etc. Melting points were determined with a Fisher-Johns apparatus and are uncorrected. IR spectra were recorded with a Nicolet Magna 550 spectrometer. Elemental analyses were performed with an Exeter CE-440 Elemental Analyzer. Analytical TLC was performed on commercial 0.2 mm aluminumcoated silica gel plates (F₂₅₄) and visualized by 254 nm UV or immersion in an aqueous solution of (NH₄)₆Mo₇O₂₄·4H₂O (0.04 M), Ce(SO₄)₂ (0.003 M) in concentrated H₂SO₄ (10%).

As judged from the homogeneity of the ¹H, ¹³C, ³¹P NMR spectra and HPLC analyses of the title compounds employing a Beckmann Ultrasphere ODS-2 column 5 μ M, 250 × 10 mm eluting with water–acetonitrile (9:1) at 3.00 mL/min with a refractive index detector indicated a purity >97%.

General procedure for the preparation of tetraethyl 1-*n*-alkylaminomethyl-1,1bisphosphonates

A mixture of the corresponding alkyl or cycloalkyl amine (30 mmol, 4.14 g), triethyl orthoformate (30 mmol, 5.0 mL) and diethyl phosphite (60 mmol, 7.7 mL) was heated at 135 °C for 2 h. Then, volatile components were evaporated and the respective

residues were purified by column chromatography (silica gel) eluting with mixtures of hexane–acetone giving rise to the desired tetraethyl esters.

General procedure for hydrolysis of tetraethyl 1-*n*-alkylaminomethyl-1,1bisphosphonates

The solvent was evaporated and the residue was treated with a concentrated aqueous solution of hydrochloric acid (2 mL). The resulting mixture was heated to reflux for 24 h. The solvent was evaporated and the residue was crystallized from ethanol–water.

Synthesis of tetraethyl 2-[(alkylthio)ethyl] 1,1-bisphosphonates. General procedure

To a solution of tetraethyl ethenylidenbisphosphonate (**50**; 300 mg, 1.0 mmol) in anhydrous dichloromethane (10 mL) was added triethylamine (1 mmol) and the corresponding alkylmercaptan (1 mmol). The reaction mixture was stirred at room temperature for 1 h. Water (20 mL) was added, and the mixture was extracted with dichloromethane (3×10 mL). The combined organic layers were washed with brine (20 mL), dried (MgSO₄), and the solvent was evaporated.

Synthesis of 2-(alkylthio)ethyl-1,1-bisphosphonic acids. General procedure. A solution of the corresponding tetraethyl 2-[(alkylthio)ethyl] 1,1-biphosphonate (1 mmol) in anhydrous methylene chloride (10 mL) was treated with trimethylsilyl bromide (10 equiv.) under an argon atmosphere. The reaction mixture was stirred at room temperature for 48 h. Then, methanol (1.0 mL) was added and the solvent was evaporated. The residue was dissolved in methanol (8 mL) and the mixture was stirred at room temperature for 24 h. The solvent was evaporated and the residue redissolved/evaporated in methanol four times, to complete the hydrolysis of remaining trimethylsilyl bromide and eliminate the hydrobromic acid created. The residue was purified by column chromatography on reverse phase with a mixture of water–methanol as eluent and the pure compound was obtained after lyophilization.

Tetraethyl 1-*n***-propylaminomethyl-1,1-bisphosphonate (34)**. Colorless oil; 16% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.92 (t, J = 7.4 Hz, 3H, H-5), 1.35 (dt, J = 7.1, 0.9 Hz, 12H, CH₂CH₃), 1.49 (sext, J = 7.2 Hz, 2H, H-4), 2.80 (t, J = 7.2 Hz, 2H, H-3), 3.25 (t, J = 21.7 Hz, 1H, H-1), 4.22 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃)

δ 11.5 (C-5), 16.39 (t, J = 3.1 Hz, CH₂CH₃), 16.44 (t, J = 3.1 Hz, CH₂C'H₃), 23.1 (C-4), 52.4 (t, J = 6.0 Hz, C-3), 54.3 (t, J = 145.5 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH₂CH₃), 63.2 (t, J = 3.3 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.74 ppm.

Tetraethyl 1-*n***-butylaminomethyl-1,1-bisphosphonate (35)**. Colorless oil; 15% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.90 (t, J = 7.3 Hz, 3H, H-6), 1.35 (dt, J = 7.1, 1.0 Hz, 12H, CH₂CH₃), 1.37 (m, J = 7.2 Hz, 2H, H-4), 1.45 (m, J = 7.2 Hz, 2H, H-5), 2.83 (t, J = 7.1 Hz, 2H, H-3), 3.24 (t, J = 21.7 Hz, 1H, H-1), 4.21 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 13.9 (C-6), 16.4 (t, J = 3.0 Hz, CH₂CH₃), 16.5 (t, J = 3.1 Hz, CH₂C'H₃), 20.1 (C-5), 32.1 (C-4), 50.3 (t, J = 6.1 Hz, C-3), 54.4 (t, J = 97.4 Hz, C-1), 62.8 (t, J = 3.4 Hz, CH₂CH₃), 63.3 (t, J = 3.2 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.77 ppm.

Tetraethyl 1-*n***-pentylaminomethyl-1,1-bisphosphonate (36).** Colorless oil; 11% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H, H-7), 1.30 (m, 4H, H-5, H-6), 1.35 (dt, J = 7.1, 1.0 Hz, 12H, CH₂CH₃), 1.47 (m, 2H, H-5), 2.82 (t, J = 7.2 Hz, 2H, H-3), 3.25 (t, J = 21.8 Hz, 1H, H-1), 4.22 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.0 (C-7), 16.39 (t, J = 3.1 Hz, CH₂CH₃), 16.44 (t, J = 3.1 Hz, CH₂C'H₃), 22.5 (C-6), 29.1 (C-5), 29.7 (C-4), 50.6 (t, J = 6.0 Hz, C-3), 54.3 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH₂CH₃), 63.2 (t, J = 3.2 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.74 ppm.

Tetraethyl 1-*n*-hexylaminomethyl-1,1-bisphosphonate (37). Colorless oil; 27% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H, H-8), 1.30 (m, 6H, H-5, H-6, H-7), 1.35 (dt, J = 7.1, 1.1 Hz, 12H, CH₂CH₃), 1.46 (p, J = 7.3 Hz, 2H, H-4), 2.82 (t, J =7.2 Hz, 2H, H-3), 3.25 (t, J = 21.7 Hz, 1H, H-1), 4.22 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.0 (C-8), 16.42 (t, J = 3.1 Hz, CH₂CH₃), 16.46 (t, J = 3.0 Hz, CH₂C'H₃), 22.6 (C-7), 26.7 (C-5), 30.0 (C-4), 31.5 (C-6), 50.6 (t, J = 6.0 Hz, C-3), 54.3 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH₂CH₃), 63.2 (t, J = 3.0 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.76 ppm.

Tetraethyl 1-*n***-hepylaminomethyl-1,1-bisphosphonate (38)**. Colorless oil; 11% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.86 (t, J = 6.8 Hz, 3H, H-9), 1.26 (m, 8H, H-5, H-6, H-7, H-8), 1.33 (t, J = 7.1 Hz, 12H, CH₂CH₃), 1.44 (p, J = 7.1 Hz, 2H, H-4), 2.80 (t, J =

7.1 Hz, 2H, H-3), 3.23 (t, J = 21.7 Hz, 1H, H-1), 4.22 (m, 8H, CH_2CH_3); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.0 (C-9), 16.40 (t, J = 3.1 Hz, CH_2CH_3), 16.44 (t, J = 3.0 Hz, $CH_2C'H_3$), 22.6 (C-8), 27.0 (C-5), 29.1 (C-6), 30.0 (C-4), 31.8 (C-7), 50.6 (t, J = 6.0 Hz, C-3), 54.3 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.2 Hz, CH_2CH_3), 63.2 (t, J = 3.2 Hz, $C'H_2CH_3$); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.74 ppm.

Tetraethyl 1-*n*-octylaminomethyl-1,1-bisphosphonate (**39**). Colorless oil; 23% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H, H-10), 1.26 (m, 10H, -CH₂-), 1.35 (t, J = 7.1 Hz, 12H, CH₂CH₃), 1.46 (p, J = 7.21 Hz, 2H, H-4), 2.82 (dt, J = 7.1, 1.1 Hz, 2H, H-3), 3.24 (t, J = 21.7 Hz, 1H, H-1), 4.21 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-10), 16.4 (t, J = 3.1 Hz, CH₂CH₃), 16.5 (t, J = 3.0 Hz, CH₂C'H₃), 22.6 (C-9), 27.0 (C-5), 29.2 (C-6), 29.4 (C-7), 30.0 (C-4), 31.8 (C-8), 50.6 (t, J = 6.0 Hz, C-3), 54.4 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH₂CH₃), 63.2 (t, J = 3.2 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.76 ppm.

Tetraethyl 1-*n***-nonylaminomethyl-1,1-bisphosphonate (40).** Colorless oil; 22% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H, H-11), 1.25 (m, 12H, - CH₂-), 1.35 (dt, J = 7.0, 1.0 Hz, 12H, CH₂CH₃), 1.45 (p, J = 7.2 Hz, 2H, H-4), 2.81 (t, J = 7.2, 1.1 Hz, 2H, H-3), 3.25 (t, J = 21.7 Hz, 1H, H-1), 4.20 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.0 (C-11), 16.37 (t, J = 3.1 Hz, CH₂CH₃), 16.42 (t, J = 3.1 Hz, CH₂C'H₃), 22.6 (C-10), 27.0 (C-5), 29.2 (C-6), 29.4 (C-7), 29.4 (C-8), 30.0 (C-4), 31.8 (C-9), 50.8 (t, J = 5.7 Hz, C-3), 54.3 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH₂CH₃), 63.2 (t, J = 2.9 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.73 ppm.

Tetraethyl 1-*n***-decylaminomethyl-1,1-bisphosphonate (41)**. Colorless oil; 26% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.86 (t, J = 6.8 Hz, 3H, H-12), 1.26 (m, 14H, -CH₂-), 1.33 (t, J = 6.7 Hz, 12H, CH₂CH₃), 1.43 (p, J = 7.2 Hz, 2H, H-4), 2.79 (t, J = 7.0, 1.1 Hz, 2H, H-3), 3.23 (t, J = 21.7 Hz, 1H, H-1), 4.19 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-12), 16.39 (t, J = 3.0 Hz, CH₂CH₃), 16.44 (t, J = 3.1 Hz, CH₂C'H₃), 22.6 (C-11), 27.0 (C-5), 29.3 (C-6), 29.4 (C-7), 29.5 (C-8), 29.6 (C-9), 30.0 (C-4), 31.8 (C-10), 50.6 (t, J = 6.0 Hz, C-3), 54.3 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3Hz, CH₂CH₃), 63.2 (t, J = 3.0 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.74 ppm.

Tetraethyl 1-*n***-Undecylaminomethyl-1,1-bisphosphonate (42)**. Colorless oil; 19% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.86 (t, J = 6.8 Hz, 3H, H-13), 1.23 (m, 16H, - C H_2 -), 1.33 (t, J = 6.7 Hz, 12H, CH₂C H_3), 1.43 (p, J = 7.2 Hz, 2H, H-4), 2.79 (t, J = 7.0 Hz, 2H, H-3), 3.22 (t, J = 21.7 Hz, 1H, H-1), 4.19 (m, 8H, C H_2 CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-13), 16.39 (t, J = 3.0 Hz, CH₂CH₃), 16.44 (t, J = 3.1 Hz, CH₂C'H₃), 22.6 (C-12), 27.0 (C-5), 29.3 (C-6), 29.47 (C-7), 29.57 (C-8), 29.59 (C-9, C-10), 30.0 (C-4), 31.9 (C-11), 50.6 (t, J = 6.1 Hz, C-3), 54.3 (t, J = 145.6 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH₂CH₃), 63.3 (t, J = 3.2 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.75 ppm.

Tetraethyl (Cyclopentylamino)methyl-1,1-bisphosphonate (43). Colorless oil; 28% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 1.35 (dt, J = 7.1, 1.6 Hz, 12H, CH₂CH₃), 1.52 (m, 4H, -CH₂-), 1.72 (m, 4H, -CH₂-), 3.32 (t, J = 22.0 Hz, 1H, H-1), 3.48 (t, J = 5.8 Hz, 2H, H-3), 4.19 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 16.4 (t, J = 3.1 Hz, CH₂CH₃), 16.5 (t, J = 3.1 Hz, CH₂C'H₃), 23.9 (C-5), 32.8 (C-4), 52.6 (t, J = 145.4 Hz, C-1), 59.2 (t, J = 5.9 Hz, C-3), 62.8 (t, J = 3.4 Hz, CH₂CH₃), 63.4 (t, J = 3.4 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.93 ppm.

Tetraethyl (Cyclohexylamino)methyl-1,1-bisphosphonate (44). Colorless oil; 11% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 1.06–1.25 (m, 5H, -CH₂-), 1.35 (dt, J = 7.1, 1.3 Hz, 12H, CH₂CH₃), 1.49 (m, 1H, -CH₂-), 1.59 (m, 1H, -CH₂-), 1.72 (m, 2H, -CH₂-), 1.83 (m, 3H, -CH₂-), 2.76 (tt, J = 9.9, 3.7 Hz, 2H, H-3), 3.42 (t, J = 22.0 Hz, 1H, H-1), 4.19 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 16.4 (t, J = 3.1 Hz, CH₂CH₃), 16.5 (t, J = 2.9 Hz, CH₂C'H₃), 24.7 (C-5), 26.0 (C-6), 33.1 (C-4), 51.0 (t, J = 145.4 Hz, C-1), 56.2 (t, J = 5.8 Hz, C-3), 62.8 (t, J = 3.3 Hz, CH₂CH₃), 63.3 (t, J = 3.2 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.94 ppm.

Tetraethyl (Cycloheptylamino)methyl-1,1-bisphosphonate (45). Colorless oil; 15% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 1.34 (dt, J = 7.1, 1.2 Hz, 12H, CH₂CH₃), 1.39 (m, 2H, -CH₂-), 1.52 (m, 4H, -CH₂-), 1.64 (m, 2H, -CH₂-), 1.78 (m, 4H, -CH₂-), 2.98 (p, J = 4.1 Hz, 2H, H-3), 3.36 (t, J = 22.1 Hz, 1H, H-1), 4.21 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 16.4 (t, J = 2.9 Hz, CH₂CH₃), 16.5 (t, J = 3.3 Hz, CH₂C'H₃), 24.0 (C-5), 28.4 (C-6), 34.3 (C-4), 51.7 (t, J = 145.3 Hz, C-1), 58.4 (t, J = 5.7 Hz, C-3),

62.7 (t, J = 3.3 Hz, CH_2CH_3), 63.4 (t, J = 3.2 Hz, $C'H_2CH_3$); ³¹P NMR (202.46 MHz, CDCl₃) δ 19.99 ppm.

Tetraethyl (Piperidin-1-yl)methyl-1,1-bisphosphonate (46). Colorless oil; 37% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 1.35 (dt, J = 7.1, 1.2 Hz, 12H, CH₂CH₃), 1.42 (m, 2H, -CH₂-), 1.54 (p, J = 5.4 Hz, 4H, -CH₂-), 1.64 (m, 2H, -CH₂-), 1.78 (m, 4H, -CH₂-), 2.96 (m, 4H, H-3), 3.34 (t, J = 25.0 Hz, 1H, H-1), 4.20 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 16.4 (t, J = 2.9 Hz, CH₂CH₃), 16.5 (t, J = 3.1 Hz, CH₂C'H₃), 23.9 (C-5), 26.8 (C-4), 53.0 (t, J = 4.5 Hz, C-3), 62.4 (t, J = 140.8 Hz, C-1), 62.7 (t, J = 3.3 Hz, CH₂CH₃), 63.4 (t, J = 3.2 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 18.56 ppm.

Tetraethyl 1-[(Cyclopentylamino)ethyl] 1,1-bisphosphonate (51). Colorless oil; 95% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 1.32 (t, J = 7.1 Hz, 12H, CH₂CH₃), 1.36 (m, 1H, -CH₂-), 1.51 (m, 2H, -CH₂-), 1.66 (m, 2H, -CH₂-), 1.80 (m, 2H, -CH₂-), 2.70 (tt, J = 23.5, 5.7 Hz, 1H, H-1), 3.12 (dt, J = 16.7, 6.0 Hz, 2H, H-2), 3.06 (q, J = 6.9 Hz, 1H, H-4), 4.16 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 16.3 (t, J = 3.2 Hz, CH₂CH₃), 16.4 (t, J = 3.1 Hz, CH₂C'H₃), 24.0 (C-5), 32.6 (C-4), 37.2 (t, J = 132.9 Hz, C-1), 44.2 (t, J = 4.2 Hz, C-2), 58.9 (C-4), 62.5 (t, J = 6.8 Hz, CH₂CH₃), 62.8 (t, J = 6.8 Hz, CH₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.60 ppm.

Tetraethyl 1-[(Cycloheptylamino)ethyl] 1,1-bisphosphonate (52). Colorless oil; 99% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 1.35 (t, J = 7.1 Hz, 12H, CH₂CH₃), 2.63 (tt, J = 23.6, 5.8 Hz, 1H, H-1), 3.15 (dt, J = 16.7, 5.9 Hz, 2H, H-2), 4.18 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 16.39 (t, J = 2.9 Hz, CH₂CH₃), 16.43 (t, J = 3.1 Hz, CH₂C'H₃), 24.3 (C-6), 28.3 (C-7), 34.5 (C-5), 37.4 (t, J = 132.2 Hz, C-1), 43.2 (t, J = 4.3 Hz, C-2), 57.9 (C-4), 62.5 (t, J = 6.6 Hz, CH₂CH₃), 62.8 (t, J = 6.8 Hz, C'H₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.87 ppm.

Tetraethyl 1-[(4-methylcyclohexylamino)ethyl] 1,1-bisphosphonic acid (53). Colorless oil, 94% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.87, 0.90 (d, *J* = 6.5 Hz, 3H CH₃), 1.342, 1.347 (t, *J* = 7.0 Hz, 12H, CH₂CH₃), 2.63 (tt, *J* = 22.9, 5.6 Hz, 1H, H-1), 3.15, 3.19 (dt, *J* = 16.5, 5.6 Hz, 2H, H-2), 4.19 (m, 8H, CH₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.78, 22.90 ppm.

1-*n***-Propylaminomethyl-1,1-bisphosphonic acid (21)**. White solid, 73% yield; mp 207 °C; ¹H NMR (500.13 MHz, D₂O) δ 0.91 (t, *J* = 7.5 Hz, 3H, H-5), 1.64 (sext, *J* = 7.5 Hz, 2H, H-4), 2.90 (t, *J* = 16.4 Hz, 1H, H-1), 3.22 (t, *J* = 7.5 Hz, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 10.1 (C-5), 19.8 (C-4), 51.1 (t, *J* = 2.8 Hz, C-3), 58.3 (t, *J* = 115.8 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.40 ppm. HRMS (ESI) calcd. for (C₄H₁₃O₆NP₂Na) [M+Na]⁺ 256.0110; found 256.0110. *Anal.* calcd. for (C₄H₁₃O₆NP₂.¹/₂H₂O): C, 19.84; H, 5.83; N, 5.79. Found C, 19.34; H, 6.08; N, 5.62.

1-*n***-Butylaminomethyl-1,1-bisphosphonic acid (22)**. White solid; 100% yield; mp 215 °C; ¹H NMR (500.13 MHz, D₂O) δ 0.85 (t, *J* = 7.4 Hz, 3H, H-6), 1.32 (sext, *J* = 7.5 Hz, 2H, H-5), 1.61 (q, *J* = 7.6 Hz, 2H, H-4), 2.90 (t, *J* = 16.4 Hz, 1H, H-1), 3.25 (t, *J* = 7.5 Hz, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 12.9 (C-6), 19.0 (C-5), 28.3 (C-4), 49.5 (t, *J* = 2.9 Hz, C-3), 58.4 (t, *J* = 115.2 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.39 ppm. HRMS (ESI) calcd. for (C₅H₁₅O₆NP₂Na) [M + Na]⁺ 270.0267; found 270.0262. *Anal.* calcd. for (C₅H₁₅O₆NP₂): C, 24.30; H, 6.12; N, 5.67. Found C, 24.69; H, 6.60; N, 5.39.

1-*n***-Pentylaminomethyl-1,1-bisphosphonic acid (23)**. white solid; 70% yield; mp = 201 °C; ¹H NMR (500.13 MHz, D₂O) δ 0.79 (t, *J* = 7.1 Hz, 3H, H-7), 1.25 (m, 4H, H-5, H-6), 1.62 (q, *J* = 7.5 Hz, 2H, H-4), 2.88 (t, *J* = 16.3 Hz, 1H, H-1), 3.24 (t, *J* = 7.8 Hz, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 13.1 (C-7), 21.6 (C-6), 26.0 (C-5), 27.7 (C-4), 49.8 (t, *J* = 2.6 Hz, C-3), 58.5 (t, *J* = 115.4 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.45 ppm. HRMS (ESI) calcd. for (C₆H₁₈O₆NP₂) [M+H]⁺ 262.0604; found 262.0606.

1-*n*-Hexylaminomethyl-1,1-bisphosphonic acid (24). White solid, 81% yield; mp = 210 °C; ¹H NMR (500.13 MHz, D₂O) δ 0.77 (t, *J* = 7.1 Hz, 3H, H-8), 1.23 (m, 4H, H-6, H-7), 1.31 (m, 2H, H-5), 1.61 (q, *J* = 7.6 Hz, 2H, H-4), 2.87 (t, *J* = 16.3 Hz, 1H, H-1), 3.23 (t, *J* = 7.6 Hz, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 13.3 (C-8), 21.7 (C-7), 25.2 (C-5), 26.3 (C-4), 30.3 (C-6), 49.8 (t, *J* = 3.2 Hz, C-3), 58.5 (t, *J* = 116.3 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.46 ppm. HRMS (ESI) calcd. for (C₇H₂₀O₆NP₂) [M + H]⁺ 276.0760; found 277.0767. *Anal.* calcd. for (C₇H₁₉O₆NP₂): C, 30.55; H, 6.96; N, 5.09. Found C, 30.17; H, 7.06; N, 4.97.

1-*n***-Heptylaminomethyl-1,1-bisphosphonic acid (25).** White solid; mp 198 °C. ¹H NMR (500.13 MHz, D₂O) δ 0.78 (t, *J* = 6.9 Hz, 3H, H-9), 1.21 (m, 4H, H-7, H-8), 1.29 (m, 2H, H-5, H-6), 1.63 (p, *J* = 7.7 Hz, 2H, H-4), 2.90 (t, *J* = 16.4 Hz, 1H, H-1), 3.25 (t, *J* = 7.6 Hz, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 13.3 (C-9), 21.9 (C-8), 25.5 (C-5), 26.3 (C-4), 28.0 (C-6), 30.8 (C-7), 49.8 (t, *J* = 3.1 Hz, C-3), 58.4 (t, *J* = 116.0 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.36 ppm. HRMS (ESI) calcd. for (C₈H₂₁O₆NP₂Na) [M + Na]⁺ 312.0736; found 312.0735. *Anal.* calcd. for (C₈H₂₁O₆NP₂): C, 33.22; H, 7.32; N, 4.84. Found C, 33.65; H, 7.01; N, 5.11.

1-*n***-Octylaminomethyl-1,1-bisphosphonic acid (26).** White solid; 97% yield; mp = 201 °C. ¹H NMR (500.13 MHz, D₂O) δ 0.75 (m, 3H, H-10), 1.17 (m, 6H, -*CH*₂-), 1.28 (m, 4H, -*CH*₂-), 1.61 (m, 2H, H-4), 2.87 (t, *J* = 16.2 Hz, 1H, H-1), 3.22 (t, *J* = 7.0 Hz, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 13.4 (C-10), 22.0 (C-9), 25.6 (C-5), 26.3 (C-4), 28.1 (C-6), 28.2 (C-8), 31.0 (C-7), 49.8 (t, *J* = 2.8 Hz, C-3), 58.5 (t, *J* = 115.5 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.51 ppm. HRMS (ESI) calcd. for (C₉H₂₃O₆NP₂Na) [M+Na]⁺ 326.0893; found 326.0850. *Anal.* calcd. for (C₉H₂₃O₆NP₂): C, 35.65; H, 7.65; N, 4.62. Found C, 35.48; H, 8.01; N, 3.86.

1-*n***-Nonylaminomethyl-1,1-bisphosphonic acid (27)**. White solid; 82% yield; mp = 195 °C. ¹H NMR (500.13 MHz, D₂O) δ 0.77 (t, *J* = 6.8 Hz, 3H, H-11), 1.20 (m, 8H, - C*H*₂-), 1.28 (m, 4H, -C*H*₂-), 1.64 (p, *J* = 7.5 Hz, 2H, H-4), 3.00 (t, *J* = 16.3 Hz, 1H, H-1), 3.25 (t, *J* = 7.6 Hz, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 13.4 (C-11), 22.0 (C-10), 25.6 (C-5), 26.2 (C-4), 28.26 (C-6), 28.31 (C-9), 28.4 (C-8), 31.1 (C-7), 49.7 (t, *J* = 3.1 Hz, C-3), 57.0 (t, *J* = 113.3 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.34 ppm. HRMS (ESI) calcd. for (C₁₀H₂₆O₆NP₂) [M+H]⁺ 318.1230; found 318.1220. *Anal.* calcd. for (C₁₀H₂₅O₆NP₂): C, 37.85; H, 7.94; N, 4.41. Found C, 37.82; H, 8.07; N, 4.44.

1-*n***-Decylaminomethyl-1,1-bisphosphonic acid (28)**. White solid; 100% yield; mp = 197 °C; ¹H NMR (500.13 MHz, D₂O) δ 0.76 (t, *J* = 6.9 Hz, 3H, H-12), 1.18 (m, 10H, - C*H*₂-), 1.28 (m, 4H, -C*H*₂-), 1.62 (p, *J* = 7.4 Hz, 2H, H-4), 2.88 (t, *J* = 16.8 Hz, 1H, H-1), 3.23 (t, *J* = 7.6 Hz, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 13.4 (C-12), 22.0 (C-11), 25.6 (C-5), 26.4 (C-4), 28.26 (C-6), 28.41 (C-10), 28.45 (C-9), 28.6 (C-8), 31.1 (C-7), 49.9 (t, *J* = 2.9 Hz, C-3), 58.5 (t, *J* = 115.6 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.44 ppm. HRMS (ESI) calcd. for (C₁₁H₂₇O₆NP₂Na) [M+Na]⁺ 354.1206; found

354.1208. *Anal.* calcd. for (C₁₁H₂₇O₆NP₂): C, 39.88; H, 8.21; N, 4.23. Found C, 39.51; H, 8.01; N, 3.98.

1-*n***-Undecylaminomethyl-1,1-bisphosphonic acid (29)**. White solid; 100% yield; mp = 203 °C; ¹H NMR (500.13 MHz, D₂O) δ 0.77 (m, 3H, H-13), 1.19 (m, 16H, -*CH*₂-), 1.64 (m, 2H, H-4), 3.11 (t, *J* = 15.7 Hz, 1H, H-1), 3.25 (m, 2H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 13.4 (C-13), 22.0 (C-12), 25.6 (C-5), 26.1 (C-4), 28.25 (C-6), 28.46 (C-10, C-11), 28.6 (C-9), 28.7 (C-8), 31.2 (C-7), 49.5 (t, *J* = 3.3 Hz, C-3), 55.5 (t, *J* = 111.8 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 8.33 ppm. HRMS (ESI) calcd. for (C₁₂H₂₉O₆NP₂Na) [M+Na]⁺ 368.1362; found 368.1361. *Anal.* calcd. for (C₁₂H₂₉O₆NP₂): C, 41.74; H, 8.46; N, 4.06. Found C, 41.21; H, 8.32; N, 3.93.

(Cyclopentylamino)methyl-1,1-bisphosphonic acid (30). White solid; 99% yield; mp 210 °C; ¹H NMR (500.13 MHz, CDCl₃) δ 1.62 (m, 6H, H4a, H-5), 2.05 (m, 2H, H-4b), 3.43 (t, *J* = 18.1 Hz, 1H, H-1), 3.98 (p, *J* = 7.2 Hz, 1H, H-3); ¹³C NMR (125.77 MHz, CDCl₃) δ 23.6 (C-5), 29.2 (C-4), 54.0 (t, *J* = 124.3 Hz, C-1), 61.3 (t, *J* = 3.2 Hz, C-3); ³¹P NMR (202.46 MHz, D₂O) δ 8.02 ppm. HRMS (ESI) calcd. for C₆H₁₆NO₆P₂ [M + H]⁺ 260.0447; found 260.0454. *Anal.* calcd. for (C₆H₁₅O₆NP₂): C, 27.81; H, 5.83; N, 5.41. Found C, 28.17; H, 5.72; N, 5.08.

(Cyclohexylamino)methyl-1,1-bisphosphonic acid (31). white solid; 94% yield; mp 213 °C; ¹H NMR (500.13 MHz, D₂O) δ 1.14 (m, 2H, H-6_{ax.}), 1.28 (sext, *J* = 11.5 Hz, 4H, H-5), 1.54 (m, 2H, H-6_{eq.}), 1.71 (m, 2H, H-4_{ax.}), 2.04 (m, 2H, H-4_{eq.}), 3.06 (t, *J* = 16.2 Hz, 1H, H-1), 3.46 (m, 1H, H-3); ¹³C NMR (125.77 MHz, CDCl₃) δ 23.7 (C-6), 24.6 (C-5), 29.5 (C-4), 54.9 (t, *J* = 124.3 Hz, C-1), 57.9 (C-3); ³¹P NMR (202.46 MHz, D₂O) δ 8.72 ppm. HRMS (ESI) calcd. for C₇H₁₈NO₆P₂ [M + H]⁺ 274.0604; found 274.0606. *Anal.* calcd. for (C₇H₁₇O₆NP₂): C, 30.78; H, 6.27; N, 5.13. Found C, 30.43; H, 6.18; N, 4.99.

(Cycloheptylamino)methyl-1,1-bisphosphonic acid (32). White solid; 83% yield; mp 225 °C; ¹H NMR (500.13 MHz, D₂O) δ 1.47 (m, 6H, -*CH*₂-), 1.62 (m, 6H, -*CH*₂-), 2.04 (p, *J* = 6.5 Hz, 2H, H-5_b), 3.12 (t, *J* = 16.3 Hz, 1H, H-1), 3.62 (sept, *J* = 4.4 Hz, 1H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 23.1 (C-6), 27.4 (C-5), 30.8 (C-4), 54.4 (t, *J* = 112.4 Hz, C-1), 61.0 (t, *J* = 3.1 Hz, C-3); ³¹P NMR (202.46 MHz, D₂O) δ 8.74 ppm. HRMS

(ESI) calcd. for $C_8H_{20}NO_6P_2$ [M+H]⁺ 288.0760; found 288.0758. *Anal.* calcd. for $(C_8H_{19}O_6NP_2)$: C, 33.46; H, 6.67; N, 4.88. Found C, 33.70; H, 6.58; N, 4.65.

(Piperidin-1-yl)methyl-1,1-bisphosphonic acid (33). White solid; 82% yield; mp 238 °C; ¹H NMR (500.13 MHz, D₂O) δ 1.69 (m, 2H, H-5), 1.87 (m, 4H, H-4), 3.15 (t, J = 17.6 Hz, 1H, H-1), 3.52 (m, 4H, H-3); ¹³C NMR (125.77 MHz, D₂O) δ 21.0 (C-5), 24.3 (C-4), 53.8 (C-3), 63.8 (t, J = 106.8 Hz, C-1); ³¹P NMR (202.46 MHz, D₂O) δ 6.77 ppm. HRMS (ESI) calcd. for C₆H₁₅NO₆P₂Na [M+Na]⁺ 282.0267; found 282.0258. *Anal.* calcd. for (C₆H₁₅O₆NP₂): C, 27.81; H, 5.83; N, 5.41. Found C, 27.44; H, 5.58; N, 5.06.

1-[(Cyclopentylamino)ethyl] 1,1-bisphosphonic acid (47). White solid; 88% yield; mp 228 °C; ¹H NMR (500.13 MHz, D₂O) δ 1.62 (m, 6H, H-5_a, H-6), 1.95 (m, 2H, H-5_b), 2.39 (tt, *J* = 21.5, 7.3 Hz, 1H, H-1), 3.35 (dt, *J* = 14.3, 7.3 Hz, 2H, H-2), 3.55 (m. 1H, H-4); ¹³C NMR (125.77 MHz, D₂O) δ 23.4 (C-6), 29.4 (C-5), 36.3 (t, *J* = 120.9 Hz, C-1), 43.6 (t, *J* = 2.4 Hz, C-2), 59.5 (C-4); ³¹P NMR (202.46 MHz, D₂O) δ 15.58 ppm. HRMS (ESI) calcd. for C₇H₁₈O₆NP₂ [M+H]⁺ 274.0604; found 274.0610.

1-[(Cycloheptylamino)ethyl] 1,1-bisphosphonic acid (**48).** 73% yield; white solid; mp 220 °C; ¹H NMR (500.13 MHz, D₂O) δ 1.45 (m, 6H, H-6_a, H-7), 1.60 (m, 4H, H-5_a, H-6_b), 1.97 (m, 2H, H-5_b), 2.37 (tt, *J* = 21.4, 7.3 Hz, 1H, H-1), 3.28 (hept, *J* = 4.4 Hz, 1H, H-4), 3.36 (dt, *J* = 14.3, 7.3 Hz, 2H, H-2); ¹³C NMR (125.77 MHz, D₂O) δ 23.0 (C-7), 27.3 (C-6), 30.6 (C-5), 36.2 (t, *J* = 120.8 Hz, C-1), 42.3 (t, *J* = 2.3 Hz, C-2), 59.4 (C-4); ³¹P NMR (202.46 MHz, D₂O) δ 15.59 ppm. HRMS (ESI) calcd. for C₉H₂₂O₆NP₂ [M+H]⁺ 302.0917; found 302.0905.

1-[(4-methylcyclohexylamino)ethyl] 1,1-bisphosphonic acid (49). 76% yield; white solid; mp = 175 °C; ¹H NMR (125.77 MHz, D₂O) δ 0.80 (d, *J* = 6.6 Hz, 6H, CH(C*H*₃)₂), 0.84 (d, *J* = 6.6 Hz, 6H, CH(C*H*'₃)₂), 2.41 (tt, *J* = 21.4, 7.3 Hz, 1H, H-1), 3.25 (m. 1H, H-4), 3.36 (dt, *J* = 14.0, 7.1 Hz, 2H, H-2); ¹³C NMR (125.77 MHz, D₂O) δ 19.9 21.0 (*C*H₃), 25.4 (C-5), 28.4 28.9 (C-5), 30.9 32.2 (C-6), 36.1 (t, *J* = 121.1 Hz, C-1), 36.2 (t, *J* = 120.8 Hz, C-1), 42.0 (t, *J* = 2.2 Hz, C-2), 42.5 (t, *J* = 2.6 Hz, C-2), 55.5 57.1 (C-4); ³¹P NMR (202.46 MHz, D₂O) δ 15.59 ppm. HRMS (ESI) calcd. for C₉H₂₂O₆NP₂ [M+H]⁺ 302.0917; found 302.0931.

Tetraethyl 1-[(*n*-Undec-1-ylthio)ethyl]-1,1-bisphosphonate (60). 74% yield, colorless oil; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H, H-14), 1.26 (m,16H, - CH₂-), 1.35 (t, J = 7.1 Hz, 12H, CH₂CH₃), 1.59 (p, J = 7.3 Hz, 2H, H-5), 2.56 (t, J = 7.4 Hz, 2H, H-4), 2.59 (tt, J = 23.6, 6.0 Hz, 1H, H-1), 3.04 (dt, J = 16.3, 5.9 Hz, 2H, H-2), 4.21 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-14), 16.3 (d, J = 6.4 Hz, CH₂CH₃), 22.6 (C-13), 27.7 (t, J = 5.2 Hz, C-2), 28.8 (C-12), 29.2 (C-11), 29.3 (C-10), 29.4 (C-9), 29.47 (C-8), 29.53 (C-6, C-7), 31.8 (C-5), 33.1 (C-4), 39.0 (t, J = 131.4 Hz, C-1), 62.8 (dd, J = 18.8, 6.8 Hz, CH₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 21.75.

Tetraethyl 1-[(n-Dodec-1-ylthio)ethyl]-1,1-bisphosphonate (61). Colorless oil; 55% yield; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H, H-15), 1.26 (m,16H, - CH₂-), 1.35 (t, J = 7.1 Hz,12H, CH₂CH₃), 1.59 (p, J = 7.5 Hz, 2H, H-5), 2.56 (t, J = 7.5 Hz, 2H, H-4), 2.59 (tt, J = 23.9, 5.9 Hz, 1H, H-1), 3.04 (dt, J = 16.3, 5.9 Hz, 2H, H-2), 4.21 (m, 8H, CH₂CH₃); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-15), 16.4 (d, J = 6.3 Hz, CH₂CH₃), 22.7 (C-14), 27.7 (t, J = 4.9 Hz, C-2), 28.9 (C-13), 29.2 (C-12), 29.3 C-11), 29.4 (C-10), 29.51 (C-9), 29.57 (C-8), 29.59 (C-7), 29.62 (C-6), 31.9 (C-5), 33.1 (C-4), 39.1 (t, J = 131.4 Hz, C-1), 62.8 (dd, J = 18.7, 6.6 Hz, CH₂CH₃); ³¹P NMR (202.46 MHz, CDCl₃) δ 21.76.

1-[(*n*-Undecylthio)ethyl]-1,1-bisphosphonic acid (54). 45% yield; white solid; mp = 95 °C; ¹H NMR (500.13 MHz, DMSO-d₆) δ 0.84 (t, *J* = 6.9 Hz, 3H, H-14), 1.23 (m, 14H, -CH₂-), 1.31 (m, 2H, H-6), 1.49 (p, *J* = 7.3 Hz, 2H, H-5), 2.10 (tt, *J* = 22.5, 6.0 Hz, 1H, H-1), 2.84 (t, *J* =15.5, 6.1 Hz, 2H, H-2); ³¹P NMR (202.46 MHz, DMSO-d₆) δ 18.80 ppm. HRMS (ESI) Calcd. for C₁₃H₃₁O₆P₂S [M+H]⁺ 377.1311; found 377.1324.

1-[(*n*-Dodecylthio)ethyl]-1,1-bisphosphonic acid (57). 80% yield; white solid; mp = 110 °C; ¹H NMR (500.13 MHz, DMSO-d₆) δ 0.84 (t, *J* = 7.0 Hz, 3H, H-15), 1.23 (m, 16H, -CH₂-), 1.30 (p, *J* = 7.6 Hz, 2H, H-6), 1.49 (p, *J* = 7.3 Hz, 2H, H-5), 2.10 (tt, *J* = 22.5, 6.0 Hz, 1H, H-1), 2.84 (t, *J* =15.5, 6.1 Hz, 2H, H-2); ³¹P NMR (202.46 MHz, DMSO-d₆) δ 18.97 ppm. HRMS (ESI) Calcd. for C₁₄H₃₃O₆P₂S [M+H]⁺ 391.1468; found 391.1453

1-[(*n*-Undecylsulfinyl)ethyl]-1,1-bisphosphonic acid (55). 81% yield; white solid; mp = 97 °C; ¹H NMR (500.13 MHz, D₂O) δ 0.87 (t, *J* = 7.0 Hz, 3H, H-14), 1.20 (m, 12H, - CH₂-), 1.28 (p, *J* = 5.9 Hz, 2H, H-7), 1.39 (m, 2H, H-6), 1.69 (m, 2H, H-5), 2.39 (m, 1H, H-1), 2.76 (ddd, *J* = 13.9, 8.5, 6.0 Hz, 1H, H-4_a), 2.89 (ddd, *J* = 13.5, 8.4, 7.5 Hz, 1H, H-4_b), 3.15 (m, 2H, H-2); ³¹P NMR (202.46 MHz, D₂O) δ 16.09 m_{AB}. HRMS (ESI) Calcd. for C₁₃H₃₀O₇P₂SNa [M+Na]⁺ 415.1080; found 415.0797.

1-[(*n***-Dodecylsulfinyl)ethyl]-1,1-bisphosphonic acid (58).** White solid, 67%; mp = 94 °C; ¹H NMR (500.13 MHz, DMSO-d₆) δ 0.84 (t, *J* = 7.0 Hz, 3H, H-15), 1.23 (m, 14H, - *CH*₂-), 1.38 (p, *J* = 6.9 Hz, 2H, H-6), 1.61 (p, *J* = 7.4 Hz, 2H, H-5), 2.57 (dt, *J* = 13.7, 6.9 Hz, 1H, H-4_a), 2.81 (dt, *J* = 13.1, 8.0 Hz, 1H, H-4_b), 3.05 (m, 2H, H-2); ³¹P NMR (202.46 MHz, DMSO-d₆) δ 17.31 m_{AB}.

1-[(*n*-Undecylsulfonyl)ethyl]-1,1-biphosphonic acid (56). 58% yield; white solid; mp = 128 °C; ¹H NMR (500.13 MHz, DMSO-d₆) δ 0.84 (t, J = 6.9 Hz, 3H, H-14), 1.22 (m, 14H, CH2), 1.33 (p, J = 7.3 Hz, 2H, H-6), 1.65 (p, J = 7.7 Hz, 2H, H-5), 3.26 (m, 2H, H-4), 3.37 (t, J = 16.3, 5.2 Hz, 2H, H-2); ³¹P NMR (202.46 MHz, DMSO-d₆) δ 17.13 ppm. HRMS (ESI) Calcd. for C₁₃H₃₁O₈P₂S [M+H]⁺ 409.1209; found 409.1198.

1-[(*n*-Dodecylsulfonyl)ethyl]-1,1-biphosphonic acid (59). 65% yield; white solid; mp 125 °C; ¹H NMR (500.13 MHz, DMSO-d₆) δ 0.84 (t, J = 6.9 Hz, 3H, H-15), 1.23 (m, 14H, -*CH*₂-),1.33 (p, J = 7.0 Hz, 2H, H-6), 1.64 (p, J = 7.6 Hz, 2H, H-5), 3.21 (m, 2H, H-4) 3.38 (dt, J = 16.1, 4.7 Hz, 1H, H-2); ¹³C NMR (125.77 MHz, DMSO-d₆) δ 14.0 (C-15), 21.5 (C-14), 22.1 (C-5), 27.8 (C-6), 28.6 (C-7), 28.76 (C-8), 28.84 (C-9), 29.0 (C-12), 29.06 (C-10), 29.08 (C-11), 31.3 (C-13), 34.1 (t, J = 122.3 Hz, C-1), 49.7 (t, J = 4.0 Hz, C-2), 52.5 (C-4); ³¹P NMR (202.46 MHz, DMSO-d₆) δ 17.04 ppm. HRMS (ESI) Calcd. for C₁₄H₃₂O₈P₂SNa [M+Na]⁺ 445.1185; found 445.1201.

Drug Screening

T. cruzi amastigote assays

These experiments were done as reported using tdTomato labeled trypomastigotes with the modifications described by Recher et al., 2013.⁵² ED₅₀ values were determined

by non-linear regression analysis using SigmaPlot.

T. gondii tachyzoites assays

Experiments on *T. gondii* tachyzoites were carried out as described previously using *T. gondii* tachyzoites expressing red fluorescent protein with the modifications described by Recher et al., $2013.^{52}$ Plates were read with covered lids, and both excitation (544 nm) and emission (590 nm) were read from the bottom.

Cytotoxicity for Vero cells. The cytotoxicity was tested using the Alamar BlueTM assay as described by Recher et al., 2013.⁵²

*Tc*FPPS and *Tg*FPPS assays and product analysis. The enzymatic activity of the target enzymes was performed according to our previous studies as described for Szajnman et al., 2008.⁴⁸

Supplementary Data: Copies of the ¹H NMR, ¹³C NMR and ³¹P NMR spectra of the target molecules and the corresponding intermediates are included as supporting information.

Acknowledgments: We thank Melissa Storey for help with *T. cruzi* in vitro testing. This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 112-201501-00631 CO), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015 1349), and the Universidad de Buenos Aires (20020170100067BA) to J.B.R., and the U.S. National Institutes of Health to R.D. (AI-107663) and S.N.J.M. (AI-102254).

References

- Liñares, G. E. G.; Ravaschino, E. L.; Rodriguez, J. B. Progresses in the Field of Drug Design to combat Tropical Protozoan Parasitic Diseases. *Curr. Med. Chem.* 2006, 13, 335–360.
- (2) Menna-Barreto, R. F.; De Castro, S. L. Clear Shot at Primary Aim: Susceptibility of *Trypanosoma cruzi* Organelles, Structures and Molecular Targets to Drug Treatment. *Curr. Top. Med. Chem.* **2017**, *17* (10), 1212–1234.

- (3) Urbina, J. A. Recent Clinical Trials for the Etiological Treatment of chronic Chagas Disease : Advances, Challenges and Perspectives. J. Eukaryot. Microbiol. 2015, 62, 149–156.
- (4) Moreno, S. N. J.; Docampo, R. Polyphosphate and its Diverse Functions in Host Cells and Pathogens. *PLoS Pathog.* **2013**, *9*, e1003230.
- (5) Rodriguez, J. B.; Falcone, B. N.; Szajnman, S. H. Detection and Treatment of *Trypanosoma cruzi*: A Patent Review (2011-2015). *Expert Opin. Ther. Pat.* 2016, 26, 993–1015.
- (6) Molina, I.; Gómez i Prat, J.; Salvador, F.; Treviño, B.; Sulleiro, E.; Serre, N.; Pou, D.; Roure, S.; Cabezos, J.; Valerio, L.; Blanco-Grau, A.; Sánchez-Montalvá, A.; Vidal, X.; Pahissa, A. Randomized Trial of Posaconazole and Benznidazole for Chronic Chagas' Disease. *N. Engl. J. Med.* **2014**, *370*, 1899–1908.
- (7) Lüder, C. G. K.; Bohne, W.; Soldati, D. Toxoplasmosis: A Persisting Challenge. *Trends Parasitol.* **2001**, *17*, 460–463.
- (8) Innes, E. A. A Brief History and Overview of *Toxoplasma gondii*. Zoonoses *Public Health* **2010**, *57* (1), 1–7.
- (9) Rodriguez, J. B.; Szajnman, S. H. New Antibacterials for the Treatment of Toxoplasmosis; a Patent Review. *Expert Opin. Ther Patents*. **2012**, *22*, 311–333.
- (10) Chellan, P.; Sadler, P. J.; Land, K. M. Recent Developments in Drug Discovery against the Protozoal Parasites Crystosporidium and Toxoplasma. *Bioorg. Med. Chem. Lett.* **2017**, *27*, 1491–1501.
- (11) Buckner, F. S.; Urbina, J. A. Recent Developments in Sterol 14-Demethylase Inhibitors for Chagas Disease. *Int. J. Parasitol. Drugs Drug Resist.* 2012, 2, 236– 242.
- (12) Lepesheva, G. I.; Villalta, F.; Waterman, M. R. Targeting *Trypanosoma cruzi* Sterol 14α-Demethylase (CYP51). *Adv. Parasitol.* 2011, 75, 66–87.
- (13) Nair, S. C.; Brooks, C. F.; Goodman, C. D.; Strurm, A.; McFadden, G. I.; Sundriyal, S.; Anglin, J. L.; Song, Y.; Moreno, S. N. J.; Striepen, B. Apicoplast Isoprenoid Precursor Synthesis and the Molecular Basis of Fosmidomycin Resistance in *Toxoplasma gondii*. J. Exp. Med. **2011**, 208, 1547–1559.
- (14) Moreno, S. N. J.; Li, Z. Targeting the Isoprenoid Pathway of *Toxoplasma gondii*. *Expert Opin. Ther. Targets* **2008**, *12*, 253–264.
- (15) Coppens, I.; Sinai, A. P.; Joiner, K. A. *Toxoplasma gondii* Exploits Host Low-Density Lipoprotein Receptor- Mediated Endocytosis for Cholesterol Acquisition. J. Cell Biol. 2000, 149, 167–180.
- (16) Grellier, P.; Valentin, a.; Millerioux, V.; Schrevel, J.; Rigomier, D. 3-Hydroxy 3-Methylglutaryl Coenzyme A Reductase Inhibitors Lovastatin and Simvastatin Inhibit in vitro Development of *Plasmodium falciparum* and *Babesia divergens* in Human Erythrocytes. *Antimicrob. Agents Chemother.* 1994, 38, 1144–1148.
- (17) Pradines, B.; Torrentino-Madamet, M.; Fontaine, A.; Henry, M.; Baret, E.; Mosnier, J.; Briolant, S.; Fusai, T.; Rogier, C. Atorvastatin is 10-fold more active in vitro than Other Statins against *Plasmodium falciparum*. *Antimicrob. Agents Chemother.* 2007, *51*, 2654–2655.
- (18) Bessoff, K.; Sateriale, A.; Lee, K. K.; Huston, C. D. Drug Repurposing Screen Reveals FDA-Approved Inhibitors of Human HMG-CoA Reductase and Isoprenoid Synthesis that block *Cryptosporidium parvum* Growth. *Antimicrob. Agents Chemother.* **2013**, *57*, 1804–1814.
- (19) Cortez, E.; Stumbo, A. C.; Olieveira, M.; Barbosa, H. S.; Carvalho, L. Statins inhibit *Toxoplasma gondii* Multiplication in Macrophages in vitro. *Int. J. Antimicrob. Agents* **2009**, *33*, 184–185.

- (20) Li, Z. H.; Ramakrishnan, S.; Striepen, B.; Moreno, S. N. J. *Toxoplasma gondii* Relies on both Host and Parasite Isoprenoids and can be rendered Sensitive to Atorvastatin. *PLoS Pathog.* **2013**, *9*, e1003665.
- (21) Rodriguez, J. B.; Falcone, B. N.; Szajnman, S. H. Approaches for Designing New Potent Inhibitors of Farnesyl Pyrophosphate Synthase. *Expert Opin. Drug Discov.* 2016, 11, 307–320.
- (22) Montalvetti, A.; Fernandez, A.; Sanders, J. M.; Ghosh, S.; Van Brussel, E.; Oldfield, E.; Docampo, R. Farnesyl Pyrophosphate Synthase is an Essential Enzyme in *Trypanosoma brucei*: In vitro RNA Interference and in vivo Inhibition Studies. *J. Biol. Chem.* **2003**, *278*, 17075–17083.
- (23) Aripirala, S.; Szajnman, S. H.; Jakoncic, J.; Rodriguez, J. B.; Docampo, R.; Gabelli, S. B.; Amzel, L. M. Design, Synthesis, Calorimetry, and Crystallographic Analysis of 2-Alkylaminoethyl-1,1-Bisphosphonates as Inhibitors of *Trypanosoma cruzi* Farnesyl Diphosphate Synthase. *J. Med. Chem.* 2012, *55*, 6445–6454.
- (24) Gabelli, S. B.; McLellan, J. S.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L. M. Structure and Mechanism of the Farnesyl Diphosphate Synthase from *Trypanosoma cruzi*: Implications for Drug Design. *Proteins* 2006, *62*, 80– 88.
- (25) Jarstfer, M. B.; Zhang, D. L.; Poulter, C. D. Recombinant Squalene Synthase. Synthesis of Non-Head-to-Tail Isoprenoids in the Absence of NADPH. J. Am. Chem. Soc. 2002, 124, 8834–8845.
- (26) Rodriguez, J. B.; Gallo-Rodriguez, C. The Role of the Phosphorus Atom in Drug Design. *ChemMedChem* **2019**, *14*, 190–216.
- (27) Ling, Y.; Li, Z. H.; Miranda, K.; Oldfield, E.; Moreno, S. N. J. The Farnesyl-Diphosphate/Geranylgeranyl-Diphosphate Synthase of *Toxoplasma gondii* is a Bifunctional Enzyme and a Molecular Target of Bisphosphonates. *J. Biol. Chem.* 2007, 282, 30804–30816.
- (28) Ogura, K.; Koyama, T. Enzymatic Aspects of Isoprenoid Chain Elongation. *Chem. Rev.* **1998**, *98*, 1263–1276.
- (29) Ferella, M.; Li, Z.-H.; Andersson, B.; Docampo, R. Farnesyl Diphosphate Synthase Localizes to the Cytoplasm of *Trypanosoma cruzi* and *T. brucei. Exp. Parasitol.* 2008, *119* (2), 308–312.
- (30) Rodan, G. A. Mechanisms of Action of Bisphosphonates. *Annu. Rev. Pharmacol. Toxicol.* **1998**, *38*, 375–388.
- (31) Russell, R. G. G. Bisphosphonates: The First 40 Years. *Bone* 2011, 49, 2–19.
- (32) Russell, R. G. G.; Rogers, M. J. Bisphosphonates: From the Laboratory to the Clinic and Back Again. *Bone* **1999**, *25* (1), 97–106.
- Urbina, J. A.; Moreno, B.; Vierkotter, S.; Oldfield, E.; Payares, G.; Sanoja, C.; Bailey, B. N.; Yan, W.; Scott, D. A.; Moreno, S. N. J.; Docampo, R. *Trypanosoma cruzi* contains major Pyrophosphate Stores, and its Growth in vitro and in vivo is blocked by Pyrophosphate Analogs. *J. Biol. Chem.* 1999, 274, 33609–33615.
- (34) Garzoni, L. R.; Waghabi, M. C.; Baptista, M. M.; de Castro, S. L.; Meirelles, M. D. N. L.; Britto, C. C.; Docampo, R.; Oldfield, E.; Urbina, J. A. Antiparasitic Activity of Risedronate in a Murine Model of Acute Chagas' Disease. *Int. J. Antimicrob. Agents* 2004, 23, 286–290.
- (35) Bouzahzah, B.; Jelicks, L. A.; Morris, S. A.; Weiss, L. M.; Tanowitz, H. B. Risedronate in the Treatment of Murine Chagas' Disease. *Parasitol. Res.* 2005, 96, 184–187.

- (36) Martin, M. B.; Burzynska, A.; Kafarski, P.; Croft, S. L.; Oldfield, E.; Sanders, J. M.; Kendrick, H.; De Luca-Fradley, K.; Lewis, J. C.; Grimley, J. S.; Van Brussel, E. M.; Olsen, J. R.; Meints, G. A. Activity of Bisphosphonates against *Trypanosoma brucei rhodesiense. J. Med. Chem.* 2002, *45*, 2904–2914.
- (37) Martin, M. B.; Grimley, J. S.; Lewis, J. C.; Heath, H. T.; Bailey, B. N.; Kendrick, H.; Yardley, V.; Caldera, A.; Lira, R.; Urbina, J. A.; Moreno, S. N. J.; Docampo, R.; Croft, S. L.; Oldfield, E. Bisphosphonates Inhibit the Growth of *Trypanosoma brucei*, *Trypanosoma cruzi*, *Leishmania donovani*, *Toxoplasma gondii*, and *Plasmodium falciparum*: A Potential Route to Chemotherapy. *J. Med. Chem.* 2001, *44*, 909–916.
- (38) Docampo, R.; Moreno, S. N. Bisphosphonates as Chemotherapeutic Agents Against Trypanosomatid and Apicomplexan Parasites. *Curr. Drug Target -Infectious Disord.* 2001, *1*, 51–61.
- (39) Docampo, R.; Moreno, S. N. J. Acidocalcisomes. *Cell Calcium* **2011**, *50*, 113–119.
- (40) Docampo, R.; Moreno, S. N. J. The Acidocalcisome as a Target for Chemotherapeutic Agents in Protozoan Parasites. *Curr. Pharm. Des.* 2008, 14, 882–888.
- (41) Docampo, R.; Souza, W. de; Miranda, K.; Rohloff, P.; Moreno, S. N. J. Acidocalcisomes - Conserved from Bacteria to Man. *Nat. Rev. Microbiol.* 2005, 3, 251–261.
- (42) Sun, S. T.; McKenna, C. E. Farnesyl Pyrophosphate Synthase Modulators: A Patent Review (2006-2010). *Expert Opin. Ther. Pat.* **2011**, *21*, 1433–1451.
- (43) Szajnman, S. H.; Bailey, B. N.; Docampo, R.; Rodriguez, J. B. Bisphosphonates derived from Fatty Acids are Potent Growth Inhibitors of *Trypanosoma cruzi*. *Bioorg. Med. Chem. Lett.* 2001, 11, 789–792.
- (44) Szajnman, S. H.; Montalvetti, A.; Wang, Y.; Docampo, R.; Rodriguez, J. B. Bisphosphonates derived from Fatty Acids are Potent Inhibitors of *Trypanosoma cruzi* Farnesyl Pyrophosphate Synthase. *Bioorg. Med. Chem. Lett.* 2003, 13, 3231–3235.
- (45) Szajnman, S. H.; Ravaschino, E. L.; Docampo, R.; Rodriguez, J. B. Synthesis and Biological Evaluation of 1-Amino-1,1-Bisphosphonates Derived from Fatty Acids against *Trypanosoma cruzi* Targeting Farnesyl Pyrophosphate Synthase. *Bioorg. Med. Chem. Lett.* 2005, 15, 4685–4690.
- (46) Ling, Y.; Sahota, G.; Odeh, S.; Chan, J. M. W.; Araujo, F. G.; Moreno, S. N. J.; Oldfield, E. Bisphosphonate Inhibitors of *Toxoplasma gondii* Growth: In vitro, QSAR, and in vivo Investigations. *J. Med. Chem.* **2005**, *48*, 3130–3140.
- (47) Szajnman, S. H.; Rosso, V. S.; Malayil, L.; Smith, A.; Moreno, S. N. J.; Docampo, R.; Rodriguez, J. B. 1-(Fluoroalkylidene)-1,1-Bisphosphonic Acids are Potent and Selective Inhibitors of the Enzymatic Activity of *Toxoplasma gondii* Farnesyl Pyrophosphate Synthase. *Org. Biomol. Chem.* 2012, *10*, 1424– 1433.
- (48) Szajnman, S. H.; García Liñares, G. E.; Li, Z. H.; Jiang, C.; Galizzi, M.; Bontempi, E. J.; Ferella, M.; Moreno, S. N. J.; Docampo, R.; Rodriguez, J. B. Synthesis and Biological Evaluation of 2-Alkylaminoethyl-1,1-Bisphosphonic Acids against *Trypanosoma cruzi* and *Toxoplasma gondii* Targeting Farnesyl Diphosphate Synthase. *Bioorg. Med. Chem.* 2008, *16*, 3283–3290.
- (49) Rosso, Valeria S.; Szajnman, Sergio H.; Malayil, Leena; Galizzi, Melina; Moreno, Silvia N. J.; Docampo, Roberto; Rodriguez, J. B. Synthesis and Biological Evaluation of New 2-Alkylaminoethyl-1,1-Bisphosphonic Acids

against *Trypanosoma cruzi* and *Toxoplasma gondii* targeting Farnesyl Diphosphate Synthase. *Bioorg. Med. Chem.* **2011**, *19*, 2211–2217.

- (50) Cinque, G. M.; Szajnman, S. H.; Zhong, L.; Docampo, R.; Schvartzapel, A. J.; Rodriguez, J. B.; Gros, E. G. Structure-Activity Relationship of New Growth Inhibitors of *Trypanosoma cruzi*. J. Med. Chem. **1998**, 41, 1540–1554.
- (51) Ferrer-Casal, M.; Li, C.; Galizzi, M.; Stortz, C. A.; Szajnman, S. H.; Docampo, R.; Moreno, S. N. J.; Rodriguez, J. B. New Insights into Molecular Recognition of 1,1-Bisphosphonic Acids by Farnesyl Diphosphate Synthase. *Bioorg. Med. Chem.* 2014, 22, 398–405.
- (52) Recher, M.; Barboza, A. P.; Li, Z.-H.; Galizzi, M.; Ferrer-Casal, M.; Szajnman, S. H.; Docampo, R.; Moreno, S. N. J.; Rodriguez, J. B. Design, Synthesis and Biological Evaluation of Sulfur-Containing 1,1-Bisphosphonic Acids as Antiparasitic Agents. *Eur. J. Med. Chem.* **2013**, *60*, 431–440.
- (53) Li, Z.-H.; Li, C.; Szajnman, S. H.; Rodriguez, J. B.; Moreno, S. N. J. Synergistic Activity between Statins and Bisphosphonates against Acute Experimental Toxoplasmosis. *Antimicrob. Agents Chemother.* **2017**, *61*, e02628–16.
- (54) Szajnman, S. H.; Galaka, T.; Li, Z.-H.; Li, C.; Howell, N. M.; Chao, M. N.; Striepen, B.; Muralidharan, V.; Moreno, S. N. J.; Rodriguez, J. B. In vitro and in vivo Activities of Sulfur-Containing Linear Bisphosphonates against Apicomplexan Parasites. *Antimicrob. Agents Chemother.* 2017, *61*, e01590–16.
- (55) Galaka, T.; Ferrer Casal, M.; Storey, M.; Li, C.; Chao, M.; Szajnman, S.; Docampo, R.; Moreno, S.; Rodriguez, J. Antiparasitic Activity of Sulfur- and Fluorine-Containing Bisphosphonates against Trypanosomatids and Apicomplexan Parasites. *Molecules* 2017, 22, 82.
- (56) Ghosh, S.; Chan, J. M. W.; Lea, C. R.; Meints, G. A.; Lewis, J. C.; Tovian, Z. S.; Flessner, R. M.; Loftus, T. C.; Bruchhaus, I.; Kendrick, H.; Croft, S. L.; Kemp, R. G.; Kobayashi, S.; Nozaki, T.; Oldfield, E. Effects of Bisphosphonates on the growth of *Entamoeba histolytica* and *Plasmodium* Species in vitro and in vivo. *J. Med. Chem.* 2004, 47, 175–187.
- (57) Bálint, E.; Tajti, Á.; Dzielak, A.; Hägele, G.; Keglevich, G. Microwave-assisted synthesis of (aminomethylene)bisphosphine oxides and (aminomethylene)bisphosphonates by a three-component condensation. *Beisltein J. Org. Chem.* 2016, *12*, 1493–1502.
- (58) Takeuchi, M.; Sakamoto, S.; Yoshida, M.; Abe, T.; Isomura, Y. Studies on Novel Bone Resorption Inhibitors. I. Synthesis and Pharmacological Activities of Aminomethylenebisphosphonate Derivatives. *Chem. Pharm. Bull.* 1993, *41*, 688– 693.
- (59) Dąbrowska, E.; Burzynska, A.; Mucha, A.; Sawka-Dobrowolska, W.; Burzyn, A.; Berlicki, Ł.; Kafarski, P. Insight into the Mechanism of three Component Condensation Leading to Aminomethylenebisphosphonates. *J. Organomet. Chem.* 2009, *694*, 3806–3813.
- (60) Lolli, M. L.; Lazzarato, L.; Di Stilo, A.; Fruttero, R.; Gasco, A. Michael Addition of Grignard Reagents to Tetraethyl Ethenylidenebisphosphonate. J. Organomet. Chem. 2002, 650 (1–2), 77–83.
- (61) Szajnman, S. H.; Liñares, G. G.; Moro, P.; Rodriguez, J. B. New Insights into the Chemistry of *gem*-bis(phosphonates): Unexpected Rearrangement of Michael-Type Acceptors. *European J. Org. Chem.* 2005, 3687–3696.
- (62) Rodriguez, J. B. Tetraethyl Vinylidenebisphosphonate: A Versatile Synthon for the Preparation of Bisphosphonates. *Synthesis* **2014**, *46*, 1129–1142.
- (63) McKenna, C. E.; Schmidhuser, J. Functional Selectivity in Phosphonate Ester

Dealkylation with Bromotrimethylsilane. J. Chem. Soc. Chem. Commun. 1979, No. 17, 739.

(64) McKenna, C. E.; Shed, P. Fluorination of Methanediphosphanate Esters by Perchloryl Fluoride. Synthesis of Fluoromethanediphosphonic Acids and Difluoromethanediphosphonic Acid. J. Org. Chem. **1981**, *46*, 4573–4576.

(65) Marma, M. S.; Xia, Z.; Stewart, C.; Coxon, F.; Dunford, J. E.; Baron, R.; Kashemirov, B. a; Ebetino, F. H.; Triffitt, J. T.; Russell, R. G. G.; McKenna, C. E. Synthesis and Biological Evaluation of Alpha-Halogenated Bisphosphonate and Phosphonocarboxylate Analogues of Risedronate. *J. Med. Chem.* 2007, *50*, 5967–5975.

H₂O₃P_C C F CH₂ H-NCH(CH₃)₈CH₃

20f, ED₅₀ > 10.0 µM against *T. cruzi* ED₅₀ = 4.0 µM against *T. gondii* $IC_{50} = 0.085 \ \mu M$ against *Tc*FPPS IC₅₀ = 0.079 µM against TgFPPS

H₂O₃P C H H-NCH(CH₂)₈CH₃

28, ED₅₀ = 5.3 µM against *T. cruzi*

C. PO₃H₂ $H_2O_3P_3$ F ٠ŃR H-

47, R = cypentyl, ED₅₀ > 10.0 µM against *T. cruzi* ED₅₀ > 20.0 µM against T. gondii 49, R = cycloheptyl, ED₅₀ > 10.0 µM against T. cruzi ED₅₀ > 20.0 µM against T. gondii

 $H_{2}O_{3}P \sim PO_{3}H_{2}$ I H CH_{2} $I CH_{2}(CH_{3})_{9}CH_{3}$ **54,** Y = S, $ED_{50} = 0.54 \mu M$ against *T. gondii* **55,** Y = S(O), $ED_{50} = 0.53 \mu M$ against *T. gondii* 56, Y = S(O₂), ED₅₀ = 0.38 µM against *T. gondii*