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Abstract – As an extension of our project aimed at the search for new chemotherapeutic 

agents against Chagas disease and toxoplasmosis, several 1,1-bisphosphonates were 

designed, synthesized and biologically evaluated against Trypanosoma cruzi and 

Toxoplasma gondii, the etiologic agents of these diseases, respectively. In particular, 

and based on the antiparasitic activity exhibited by 2-alkylaminoethyl-1,1-

bisphosphonates targeting farnesyl diphosphate synthase, a series of linear 2-

alkylaminomethyl-1,1-bisphosphonic acids (compounds 21−33), that is, the position of 

the amino group was one carbon closer to the gem-phosphonate moiety, were evaluated 

as growth inhibitors against the clinically more relevant dividing form (amastigotes) of 

T. cruzi. Although all of these compounds resulted to be devoid of antiparasitic activity, 

these results were valuable for a rigorous SAR study. In addition, unexpectedly, the 

synthetic designed 2-cycloalkylaminoethyl-1,1-bisphosphonic acids 47−49 were free of 

antiparasitic activity. Moreover, long chain sulfur-containing 1,1-bisphosphonic acids, 

such as compounds 54−56, 59, turned out to be nanomolar growth inhibitors of 

tachyzoites of T. gondii. As many bisphosphonate-containing molecules are FDA-

approved drugs for the treatment of bone resorption disorders, their potential 

nontoxicity makes them good candidates to control American trypanosomiasis and 

toxoplasmosis.



  

Introduction

American Trypanosomiasis (Chagas disease) is a chronic zoonosis produced by 

the kinetoplastid parasite Trypanosoma cruzi, is the major parasitic disease burden of 

the American continent, and can be considered as one of the most important diseases in 

the world together with malaria and schistosomiasis.1 The commonly affected organ is 

the heart with myocarditis and the central nervous system is also commonly attacked.2–4 

In addition, the second most common symptoms are the so-called megavisceras; 

therefore, the most commonly affected system is the digestive tract. The current 

chemotherapy is still deficient and based on two empirically-discovered drugs: 

nifurtimox (Lampit®, Bayer - El Salvador), which is available under a CDC 

investigational protocols5 and benznidazole (Abarax®, Elea - Argentina), which was a 

recently FDA-approved drug but for pediatric use only.5 

(https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm573942.htm ). In 

most of endemic countries benznidazole is a drug of choice to treat the acute phase of 

the infection and is indicated to treat the chronic phase even with low efficiency.6 As 

both of these drugs are associated to long term treatment and severe side effects there is 

a serious necessity to develop new safe drugs based on the knowledge of the 

biochemistry and physiology of these microorganisms. In AIDS-infected patients, 

chronic suppressive therapy is required and this is associated with neurotoxicity due to 

the drugs.

On the other hand, T. gondii is an opportunistic protozoan parasite that is 

responsible for toxoplasmosis.7 T. gondii is able to infect a wide range of hosts, 

particularly humans and warm-blooded animals.8 Toxoplasmosis is positively one of the 

most prevalent parasitic diseases affecting close to one billion people worldwide.9 

Particularly, this parasite can cause mortality among immunocompromised individuals 

such as AIDS patients, organ transplant recipients, as well as congenitally infected 

children. Toxoplasmosis may lead to severe central nervous system disease. As occurs 

with Chagas disease treatment, the current chemotherapy for toxoplasmosis is still 

deficient as well.10

Several enzymes of the isoprenoid pathway, involved in the synthesis of sterols 

and farnesyl diphosphate, have been reported to be excellent drug targets against 

trypanosomatids.11,12 Regardless of their different structures and functional diversity, all 

https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm573942.htm


  

isoprenoids have a common precursor: isopentenyl diphosphate, and its isomer, 

dimethylallyl diphosphate. In T. cruzi, isopentenyl diphosphate is biosynthesized 

exclusively via the so-called mevalonate pathway, which has the 3-hydroxy-3-

methylglutaryl-CoA (HMG-CoA) reductase as the fundamental directing enzyme. 

Although T. cruzi takes up sterols from its mammalian host (largely cholesterol), it has 

an essential requirement for de novo sterol biosynthesis in all stages of its life cycle and 

is extremely susceptible to sterol biosynthesis inhibitors. On the other hand, T. gondii 

lacks the mevalonate pathway and employs an apicoplast localized biosynthesis, 

prokaryotic-type, 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway, instead.13,14 The 

DOXP pathway is not present in the host. In addition, as T. gondii does not synthesize 

cholesterol, which is taken from the host indicating that inhibitors of the host isoprenoid 

biosynthesis would be putative growth inhibitors of T. gondii.15 Certainly, mevalonate 

pathway inhibitors are able to control proliferation of a number of Apicomplexan 

parasites such as Babesia divergens,16 Plasmodium falciparum,17 Cryptosporidium 

parvum,18 and T. gondii,19 indicating that parasites lacking the mevalonate pathway are 

reliant on host precursors of isoprenoid biosynthesis. Interestingly, the synergistic effect 

of  host and parasite isoprenoid pathway inhibitors has been reported.20 For example, 

the used of two commonly used drugs, zoledronic acid and atorvastatin, exhibited a 

strong synergism in modulating T. gondii multiplication.20 It would be possible to take 

advantage the fact of T. cruzi and T. gondii proliferate intracellularly to be used as a 

model for two major groups of parasites: trypanosomatids (T. cruzi, African 

trypanosomes, Leishmania spp) and Apicomplexan (P. falciparum, C. parvum, etc.). T. 

gondii main proliferative stage in the mammalian host is the rapidly dividing or 

tachyzoite stage, which is the form used in this study. Sometimes they are described as 

cells because these are unicellular parasites. We now use tachyzoites all the time to 

avoid confusion.9 Scheme 1 illustrates ergosterol biosynthesis for trypanosomatids. 

Farnesyl diphosphate synthase (FPPS) is a key enzyme of the isoprenoid biosynthesis 

that catalyzes the consecutive condensation of isopentenyl diphosphate with 

dimethylallyl diphosphate and with geranyl diphosphate to form farnesyl diphosphate, 

which is the common substrate for enzymes to produce sterols, ubiquinones, dolichols, 

heme a, and prenylated proteins. Farnesyl diphosphate is able to be condensed with an 

additional molecule of isopentenyl diphosphate by the geranylgeranyl diphosphate 

synthase (GGPPS) to form the 20-carbon isoprenoid geranylgeranyl diphosphate.21
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Scheme 1. Ergosterol biosynthesis for trypanosomatids.

On the other hand, Scheme 2 shows the alternate pathway found in Apicomplexan 

parasites to biosynthesize isopentenyl and dimethylallyl diphosphate. It is well-

documented that FPPS is essential for trypanosomatids.22 TgFPPS can be considered a 

key enzyme only under certain circumstances, to be precise, when the isoprenoid 

biosynthesis of the host is inhibited, process known as genetic validation.20 The 

essentiality of FPPS was demonstrated in T. brucei rather than T. cruzi because of the 

availability of better genetic tools for work with T. brucei.22 
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Scheme 2. The 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway to biosynthesize 

isopentenyl diphosphate and dimethylallyl diphosphate in Apicomplexan parasites.

The recent report of the crystal structure of some complexes of lineal 1,1-

bisphosphonates, developed in our laboratory such as 2-alkylaminoethyl-1,1-

bisphosphonates, with the target enzyme T. cruzi farnesyl diphosphate synthase 

(TcFPPS) provided conclusive data in determining the precise mechanism of action of 

these antiparasitic agents.23 These results, together with previous findings by other 



  

groups24,25 indicated that these compounds behave as competitive inhibitors of the 

substrate by binding to the allylic site of the enzyme, with the phosphonic moieties 

coordinating three magnesium ions at the active site.23 It is worth mentioning that 

predictions of the inhibitors optimal chain length is not straightforward bearing in mind 

that small changes in the number of carbons of the alkyl chain brings about a dramatic 

influence on biological action.26 In addition, FPPS of T. gondii is a bifunctional enzyme 

that catalyzes the condensation of isopentenyl diphosphate with three allylic substrates: 

dimethylallyl diphosphate, geranyl diphosphate, and farnesyl disphosphate.27 

Interestingly, T. gondii FPPS has less than 50% identity of TcFPPS; therefore, it will be 

possible to access extremely selective inhibitors for both enzymes.9 

We were able to develop effective inhibitors against either TcFPPS or TgFPPS.21 

Until now all the FPPSs are homodimeric enzymes that involve Mg2+ or Mn2+ for 

activity.28 TcFPPS is localized to the cytosol.29 

Bisphosphonates (2) are diphosphate (1) analogues in which a substituted 

methylene group replaces the oxygen atom bridge between the two phosphorus atoms of 

the pyrophosphate moiety giving rise to a large family of compounds.30 Several 

bisphosphonates are potent inhibitors of bone resorption and are in clinical use for the 

treatment and prevention of osteoporosis, Paget’s disease, hypercalcemia, tumor bone 

metastases, and other bone diseases.30–32 Aminobisphosphonates became putative 

antiparasitic drugs when these molecules were first found to be effective inhibitors T. 

cruzi proliferation in in vitro and in vivo assays without toxicity to the host cells.33 In 

addition, this behavior was not limited exclusively to T. cruzi but was also observed in 

other trypanosomatids (T. brucei rhodesiense and Leishmania donovani) and 

Apicomplexan parasites, such as T. gondii and P. falciparum34–37, indicating that 

bisphosphonates are promising molecules to control parasitic infections. Selective 

action on bone is based on the binding of the bisphosphonate moiety to the bone 

mineral.30 Interestingly, the acidocalcisomes are equivalent in composition to the bone 

mineral and that accumulation of bisphosphonates in these organelles, as they do in 

bone mineral, aids their antiparasitic activity.4,38–41 The isoprenoid pathway is the target 

of bisphosphonates through the inhibition of the enzymatic activity of FPPS.21,42 
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Figure 1. Chemical structures of pyrophosphoric acid, general formula of 

bisphosphonic acids and representative FDA-approved bisphosphonates clinically 

employed for the treatment of different bone disorders.

A relevant achievement of our laboratory was the finding that linear 1,1-

bisphosphonates turned out to be efficient antiparasitic agents43–45 where, in most of 

them, the hydroxyl group at the C-1 position, usually found in those bisphosphonates 

currently employed in the treatment of bone disorders, was absent.42 Compounds 6−9 

were the first examples of linear bisphosphonates that exhibited antiparasitic activity 

against trypanosomatids and Apicomplexan parasites targeting parasitic FPPS.27,43–46 

For example, 6 was a moderate growth inhibitor of intracellular T. cruzi43 and also 

against tachyzoites of T. gondii,27,46 whereas 7 was effective against P. falciparum.27 8 

was practically devoid of activity,44 whereas 9 showed similar cellular activity against 

T. cruzi.45 In addition, -fluoro-1,1-bisphosphonates such as 10 and 11 were neither 

effective against amastigotes of T. cruzi nor the target enzyme TcFPPS; nevertheless, 

they were extremely effective inhibitors of the enzymatic activity of TgFPPS.47 Of 

paramount concern were the 2-alkyl(amino)ethyl-1,1-bisphosphonate derivatives, which 

were potent inhibitors of T. cruzi proliferation targeting TcFPPS with IC50 values in the 

low nanomolar concentrations.48,49 Unquestionable, compounds 12−14 emerge as 

pertinent members of this type of bisphosphonates. For example, 12 was significantly 

more potent than the well-known antiparasitic agent WC-9 against T. cruzi 

(amastigotes),48 under the same assays conditions;50 while 13 was a potent inhibitor of 

the enzymatic activities of TcFPPS.48 Moreover, 14, the bisphosphonate bearing a long 

aliphatic chain, was an effective growth inhibitor of T. cruzi.49 15 was a motivating 

example of a linear bisphosphonate that was designed and synthesized in order to 

optimize structures 12–14. 15 had been designed based on the fact that the presence of 

electron withdrawing group (HO-) at C-1 would enhance the ability to coordinate Mg2+, 

would increase pKa and also by the fact that most bisphosphonates clinically in use have 

this functionality at C-1.51 Unfortunately, 15 is devoid of activity against T. cruzi 



  

growth and TcFPPS, but exhibited a potent and selective inhibition of the enzymatic 

activity towards TgFPPS.51 Linear sulfur-containing bisphosphonates are interesting 

examples of selective anti-Toxoplasma agents as it is the case of 16 and 17.52 Certainly, 

16 is a potent inhibitor of T. gondii proliferation. This cellular activity was associated 

with a potent action against the target enzyme TgFPPS,52 whereas 17 is an unusually 

potent inhibitor towards TgFPPS.52 A strong synergistic effect is observed when the 

sulfur-containing 1,1-bisphosphonate 16 was used in combination with statins against 

the hypervirulent RH strain of T. gondii in in vivo assays.53 Statins, which block the 

mevalonate pathway within the mammalian cells, had exhibited a rather modest 

inhibitory effect against T. gondii cells when tested alone.53 Moreover, the sulfone-

containing derivative 18 exhibited a very potent in vitro activity against T. gondii (ED50 

= 0.1 µM).54 This compound also showed high activity in vivo (ED50 of 0.02 mg/kg) in 

a toxoplasmosis mouse model employing the hypervirulent RH strain of T. gondii.54 It is 

worth mentioning that 18 did not behave as an effective inhibitor of the enzymatic 

activity of TgFPPS (IC50 = 0.27 µM) indicating that TgFPPS was not the primary target 

of this molecule.55 The methylsulfonium derivative 19 has proven to be a moderate 

growth inhibitor against both T. cruzi and T. gondii cells, but a very potent inhibitor of 

the enzymatic activity towards the target enzymes TcFPPS and TgFPPS.52 Finally, -

fluoro-2-alkyl(amino)ethyl derivatives such as 20a20h were unpredictably free of 

cellular activity.55 The structures of these representative compounds are illustrated in 

Figure 2, whereas relevant already published antiparasitic data are listed in Table 1. 

C
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H2O3P PO3H2

Y

12, X = NH; Y = H; R = n-hexyl
13, X = NH; Y = H; R = n-heptyl
14, X = NH; Y = H; R = n-dodecyl
15, X = NH; Y = OH; R = n-octyl
16, X = S; Y = H; R = n-heptyl
17, X = S; Y = H; R = n-decyl
18, X = S(O)2; Y = H; R = n-decyl
19, X = S+(CH3); Y = H; R = n-octyl
20, X = NH; Y = F; R = alkyl

C
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10, n = 7; R = F
11, n = 8; R = F

20a, R = n-propyl; 20b, R = n-butyl; 20c, R = n-pentyl; 20d, R = n-hexyl;
20e, R = n-heptyl; 20f, R = n-octyl; 20g, R = n-nonyl; 20h, R = n-decyl;

Figure 2. Chemical structures of representative lineal bisphosphonic acids developed in 

our laboratory as putative antiparasitic agents targeting FPPS. 



  

Table 1. Biological activity of bisphosphonates previously prepared in our laboratory 

against T. cruzi (amastigotes), T. gondii (tachyzoites), TcFPPS, and TgFPPS. 
Compound T. cruzi growth 

ED50 (µM) TcFPPS IC50 (µM)
T. gondii growth 

ED50 (µM) TgFPPS IC50 (µM)
10 > 10.0 > 1.0 2.67 0.035

11 > 10.0 > 1.0 > 10.0 0.060

12 0.84 0.49 9.4 0.14

13 10.0 0.058 > 50.0 0.095

14 0.67 0.81 6.23 0.093

15 > 10.0 > 10.0 2.0 0.039

16 > 20.0 > 10.0 0.97 0.069

17 > 20.0 0.097 1.8 0.021

18 NT NT 0.11 0.27

19 >20.0 0.040 7.0 0.013

Rationale

The lack of antiparasitic activity found in the -fluoro-2-alkyl(amino)ethyl 

derivatives was rather unexpected. In fact we further evaluated compounds 20a20h as 

inhibitors of the enzymatic activity against the target enzymes TcFPPS and TgFPPS, 

respectively. 

On the other hand, in order to study the influence of the position of the nitrogen 

atom in our linear 1,1-bisphosphonates, 2-alkylaminomethyl-1,1-bisphosphonates such 

as 21−33 could be considered as very exciting structural variations taking into account 

the selective and potent antiparasitic activity exhibited by 2-alkylaminoethyl-1,1-

bisphosphonates such as 12−14 towards both T. cruzi cells and TcFPPS.23,48,49 Although 

some of the title compounds 21−33 had been previously described as growth inhibitors 

of Entamoeba histolytica and Plasmodium species in in vitro and in vivo studies, there 

were not spectroscopic data available for these compounds.56 Therefore, the influence of 

the position of the nitrogen atom (C-3 versus C-2) seemed to be relevant from the 

pharmacological point of view.

Taking into account that the 2-alkylaminoethyl-1,1-bisphosphonates of type 

1214 were extremely effective growth inhibitors either of T. cruzi cells or of the 

enzymatic activity of the target enzyme TcFPPS,23,48,49 based on the biological activity 

exhibited by the  cyclohexylamine-containing bisphosphonate,48 which showed an IC50 

value of 0.013 µM against TcFPPS but limited biological activity against intracellular T. 



  

cruzi, it was decided to prepare some 1,1-bisphosphonate derivatives bearing a 

cycloalkylamino group in their structure such as 4749. 

Results and discussion

Preparation of the respective 2-alkylaminomethyl-1,1-bisphosphonic acids 

21−33 was successfully carried out according to already published methods.57,58 Thus, 

following a slightly modified published protocol,59 a suitable alkyl or cycloalkyl amine 

treated with triethyl orthoformate and diethyl phosphite at 135 ºC for 2 hours gave rise 

to the corresponding tetraethyl ester derivatives 34−46 in a relatively modest but 

reproducible yields. Then, on treatment with concentrated hydrochloric acid at 100 ºC 

overnight the esters were converted into the title molecules 21−33 in very good yields 

as shown in Scheme 3. 

R = CH2CH2CH3 34, (16%) 21, (73%)
CH2(CH2)2CH3 35, (15%) 22, (100%)
CH2(CH2)3CH3 36, (11%) 23, (70%)
CH2(CH2)4CH3 37, (27%) 24, (81%)
CH2(CH2)5CH3 38, (11%) 25, (100%)
CH2(CH2)6CH3 39, (23%) 26, (97%)
CH2(CH2)7CH3 40, (22%) 27, (82%)
CH2(CH2)8CH3 41, (26%) 28, (100%)
CH2(CH2)9CH3 42, (19%) 29, (100%)
cyclopentyl 43, (28%) 30, (99%)
cyclohexyl 44, (11%) 31, (94%)
cycloheptyl 45, (15%) 32, (83%)
piperidyl 46, (37%) 33, (82%)

R-NH2

OEt

OEtEtO
HP

O

OEt
OEt

135 ºC

2 h N
H

PO3Et2

PO3OEt2
R HCl (conc.)

HN

PO3H2

PO3H2100 ºC, 24 h
R

Scheme 3. Synthetic approach for the preparation of 2-alkylaminomethyl-1,1-

bisphosphonic acids.

The 2-cycloalkylaminoethyl-1,1-bisphosphonates 4749 were easily synthesized 

starting from the corresponding cycloalkylamine and the well-known Michael-type 

acceptor 50.60–62 Then, conjugate addition of the cycloalkylamine to form the respective 

tetraethyl esters 4749 with excellent yields followed by hydrolysis by treatment with 

concentrated hydrochlroric acid yielded the desired molecules 4749 as presented in 

Scheme 4. 

R = cyclopentyl 51, (95%) 47, (88%)
cycloheptyl 52, (99%) 48, (73%)
4-methylcyclohexyl 53, (94%) 49, (76%)

R-NH2

PO3Et2

PO3Et2
NHR

HCl (conc.)

100 ºC, 24 h

Et2O3P PO3Et2

50

CH2Cl2, rt,

24 h

PO3H2

PO3H2

NHR

Scheme 4. Synthetic approach for the synthesis of cycloalkyl 2-aminoethyl-1,1-



  

bisphosphonates.

Long chain sulfur-containing 1,1-bisphosphonates such as 5459 were 

synthesized according to our previous results.52 Therefore, the Michael-type acceptor 50 

was treated with undecylmercaptan and dodecylmercaptan to produce the respective 

tetraethyl esters 60 and 61, respectively. On treatment with bromotrimethylsilane in 

methylane chloride, which is the protocol developed by McKenna,63,64 followed by 

digestion with methanol, 60 and 61 were converted into the free bisphosphonic acids 54 

and 57. Sulfur-containing 1,1-bisphosphonate esters are quite sensitive to hydrolysis by 

treatment with concentrated hydrochlroric acid.52 Each compound, in independent 

experiments, was oxidized by treatment with hydrogen peroxide (one equivalent) to 

yield the corresponding sulfoxides 55 and 58, respectively or with two equivalents of 

hydrogen peroxide to produce the respective sulfones 56 and 59, respectively as shown 

in Scheme 5.
PO(OEt)2

PO(OEt)2
S

54

56, (58%)

PO(OEt)2

PO(OEt)2
S

PO(OH)2

PO(OH)2
S

O O

PO(OH)2

PO(OH)2
S
O

57

undecylmercaptan + 50
CH2Cl2, Et3N, rt PO(OH)2

PO(OH)2
S

i. BrSi(CH3)3,
CH2Cl2, rt
ii. methanol,
rt, 45%

55, (81%)

H2O2 (1 equiv.)

H2O2 (2 equiv.) from 54

dodecylmercaptan + 50

CH2Cl2, Et3N, rt
PO(OH)2

PO(OH)2
Si. BrSi(CH3)3,

CH2Cl2, rt
ii. methanol,
rt, 80%

H2O2 (1 equiv.)

PO(OH)2

PO(OH)2
S
OPO(OH)2

PO(OH)2
S

O O
H2O2 (2 equiv.)

59, (81%) 58, (67%)

60

61

Scheme 5. Synthetic approach for the preparation of long chain sulfur-containing-1,1-

bisphosphonates.

Biological data are shown in Table 2 and 3. As previously mentioned, the -

fluoro-2-alkyl(amino)ethyl derivatives 20a20h resulted to be almost free of 

antiparasitic activity. In spite of not having a significant cellular activity compounds 

20a20h were further evaluated against the main target of the linear bisphosphonates, 

FPPS. All of these fluorine-containing-1,1-bisphosphonates exhibited a potent 

inhibitory action towards the enzymatic activity of either TcFPPS or of TgFPPS. 

Certainly, most of these compounds showed to be nanomolar inhibitors of these key 

enzymes. Long chain derivatives such as 20f and 20g were representative examples of 

potent inhibitors showing IC50 values of 0.085 µM and 0.079 µM against TcFPPS and 

TgFPPS, respectively for 20f and 0.034 µM and 0.051 µM, respectively for 20g. 

Unfortunately, it is difficult to rationalize the lack of cellular activity of this family of 



  

compounds. Evidently, -fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates do not have 

the appropriate physicochemical parameters to cross two cell membranes (the 

mammalian one and the parasite cell membrane) to reach the target enzyme. Moreover, 

the long chain -fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates 20f20h were 

cytotoxic molecules making these derivatives of low interest in Medicinal Chemistry. 

This decrease in the antiparasitic activity by making small structural variations on 

nitrogen-containing bisphosphonates such as such 121448,49 to give 1551 has also been 

observed in other bisphosphonates acting on bone mineral affinity targeting the 

mevalonate pathway between -hydroxy- and -fluorobisphosphonates.65

Biological evaluation of 1-alkylaminomethyl-1,1-bisphosphonic acids 2129 

indicated that this structural variation was not beneficial for the biological activity. With 

the exception of compound 28, which resulted to be a fairly modest growth inhibitor of 

intracellular T. cruzi (ED50 5.3 µM), all the title compounds were devoid of cellular 

activity and, for that reasons, they were not further analyzed. 

Unexpectedly, the designed 2-cycloalkyl(amino)ethyl-1,1-bisphosphonates 

4749 were devoid of activity against T. cruzi cells and T. gondii cells. Interestingly, the 

long chain sulfur-containing-1,1-bisphosphonates were effective inhibitors of 

tachyzoites of T. gondii as anticipated according to our previous data in closely related 

sulfur-containing analogues.52–54 All of them 5456, 59 were nanomolar inhibitors of 

tachyzoites of T. gondii being 56 the most effective growth inhibitor with an ED50 value 

of 0.53 µM. In this regard, it is important to note that the reference structure 18 (Figure 

2), which behaved as a potent inhibitor of tachyzoites of T. gondii proliferation (ED50 = 

0.1 µM), did not have TgFPPS as a primary target exhibiting a modest a fairly modest 

inhibitory action towards this target enzyme (IC50 value of 0.8 M).54 Indeed, these long 

chain sulfur-containing -1,1-bisphosphonates will require further efforts to investigate 

their precise mode of action. 



  

Table 2. Biological activity of bisphosphonates against T. cruzi (amastigotes), T. gondii 

(tachyzoites), TcFPPS, TgFPPS, and Vero cells

Compound T. cruzi cells 
ED50 µM

T. gondii cells 
ED50 µM

TcFPPS IC50 
(µM)

TgFPPS IC50 
(µM)

Cytotoxicity
ED50 (µM)

20a > 10.055 0.060 ± 0.03 0.245 ± 0.081 NT
20b > 10.055 > 10.055 0.173 ± 0.04 0.286 ± 0.087 > 20055

20c > 10.055 > 10.055 0.611 ± 0.37 0.299 ± 0.028 NT
20d > 10.055 >10.055 0.915 ± 0.18 0.131 ± 0.017 NT
20e > 10.055 >10.055 0.071 ± 0.02 0.088 ± 0.005 NT
20f > 10.055 4.008 ± 1.19155 0.085 ± 0.03 0.079 ± 0.013 161.755

20g cytotoxic55 2.24 ± 0.31 0.034 ± 0.023 0.051 ± 0.006 15.0
20h cytotoxic55 2.26 ± 0.75 0.136 ± 0.047 0.080 ± 0.004 20.0

Table 3. Biological activity of bisphosphonates against T. cruzi (amastigotes), T. gondii 

(tachyzoites), and Vero cells

Compound T. cruzi cells 
ED50 µM

T. gondii cells 
ED50 µM

Cytotoxicity
ED50 (µM)

21 > 10.0
22 > 10.0
23 > 10.0
24 > 10.0
25 > 10.0
26 > 10.0
27 > 10.0
28 5.26 ± 0.45
29 cytotoxica 10.0
30 > 10.0
31 > 10.0
32 > 10.0
33 > 10.0
47 > 10.0 > 20.0
48 > 10.0 > 20.0
49 > 10.0 > 20.0
54 0.54 ± 0.10
55 0.53 ± 0.096
56 0.38 ± 0.082
59 0.93 ± 0.24

benznidazole 2.58 ± 0.50

a cytotoxic at 10 µM, 5 µM, no inhibition at 2.5 µM

In order to account for the lack of activity of compounds bearing the amino 

group at position 2, Molecular Dynamics (MD) and Quantum Mechanical (QM) 

optimizations were carried out. The protein ligand complex for the compound with the 



  

amino group at position 2 (compound 21) was generated from the crystal structure for 

compound 62 (pdb id 4DXJ). Although no specific interactions between the amino 

groups and the receptor were observed in the 10 ns MD simulations, the side chain is 

fixed in one orientation, directed towards the unsymmetrical magnesium ion (Figure 3). 

A plot for the dihedral angle P-C1-C2-N for 21 and P-C1-N-C3 for 62 (Figure 4) shows 

that this angle remains constant throughout the simulation.

Figure 3. The side chain is fixed in one orientation, directed towards the unsymmetrical 
magnesium ion present at the allylic site of the active site of TcFPPS.

Figure 4. Dihedral angle P-C1-C2-N for 21 (red) and P-C1-N-C3 for 62 (black) 

throughout the MD simulation



  

QM optimizations at the B3LYP/6-311+G(d,p) level were carried out for the 

main conformers of each model compound (63 and 64), simulating the aqueous solvent 

with the polarizable continuum method (PCM). Consistent with previous studies,51 the 

phosphate groups were considered to be doubly protonated, as it is expected for a 

physiological pH of 6.5. We have considered both protonation states for the amino 

group, yielding equivalent conclusions. The molecules were completed by the addition 

of one magnesium atom. The lowest energy conformations (Figure 5) show a strong 

intramolecular hydrogen bond between the phosphate groups for both compounds. 

However, compound 64 shows a weak H-bond between the amino and phosphate 

groups (bond length 2.32 Å and N-H...O angle 120º) while the equivalent H-bond is 

relatively strong for compound 63 (1.77 Å, 151º). The formation of this strong H-bond 

is expected to decrease the conformational entropy in solution, therefore decreasing the 

entropy penalty upon complex formation, and yielding a higher inhibition activity. It is 

worth mentioning that, consistently with our MD and QM studies, ITC measurements23 

found that bisphosphonate compounds bind to the active site due to a combination of a 

favorable entropic driving force and an unfavorable enthalpic energy.

Figure 5. A strong intramolecular hydrogen bond between the phosphate groups for 

both compounds.

In conclusion, the lack of antiparasitic activity shown by the regioisomers of the 

nitrogen-containing bisphosphonates 1214, that is, amino derivatives 2129 provided 

significant insights concerning chemical structure-biological activity relationship. The 

simple moving of the nitrogen atom in representative compounds 1214 had a marked 



  

outcome on the biological activity giving rise to inactive compounds. Efforts in 

optimizing linear bisphosphonates are currently being pursued in our laboratory.

Experimental Section

The glassware used in air- and/or moisture-sensitive reactions was flame-dried and 

reactions were carried out under dry argon. Unless otherwise noted, chemicals were 

commercially available and used without further purification. Solvents were distilled 

before use. Dichloromethane was distilled from phosphorus pentoxide. Nuclear 

magnetic resonance spectra were performed with a Bruker AVANCE NEO 500 or with 

a Bruker Fourier 300 spectrometers. The 1H NMR spectra are referenced with respect to 

the residual CHCl3 proton of the solvent CDCl3 at δ = 7.26 ppm. Coupling constants are 

reported in Hz. 13C NMR spectra were fully decoupled and are referenced to the middle 

peak of the solvent CDCl3 at δ = 77.0 ppm. 31P NMR spectra are referenced with respect 

to the peak of 85% H3PO4 as external reference. For comparative purposes, all NMR 

spectra acquired in D2O for free bisphosphonic acids were recorded at the same 

conditions. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, 

quadruplet; dd, double doublet, etc. Melting points were determined with a Fisher–

Johns apparatus and are uncorrected. IR spectra were recorded with a Nicolet Magna 

550 spectrometer. Elemental analyses were performed with an Exeter CE-440 

Elemental Analyzer. Analytical TLC was performed on commercial 0.2 mm aluminum-

coated silica gel plates (F254) and visualized by 254 nm UV or immersion in an aqueous 

solution of (NH4)6Mo7O24·4H2O (0.04 M), Ce(SO4)2 (0.003 M) in concentrated H2SO4 

(10%).

As judged from the homogeneity of the 1H, 13C, 31P NMR spectra and HPLC 

analyses of the title compounds employing a Beckmann Ultrasphere ODS-2 column 5 

M, 250 × 10 mm eluting with water–acetonitrile (9:1) at 3.00 mL/min with a refractive 

index detector indicated a purity >97%.

General procedure for the preparation of tetraethyl 1-n-alkylaminomethyl-1,1-

bisphosphonates

A mixture of the corresponding alkyl or cycloalkyl amine (30 mmol, 4.14 g), triethyl 

orthoformate (30 mmol, 5.0 mL) and diethyl phosphite (60 mmol, 7.7 mL) was heated 

at 135 ºC for 2 h. Then, volatile components were evaporated and the respective 



  

residues were purified by column chromatography (silica gel) eluting with mixtures of 

hexaneacetone giving rise to the desired tetraethyl esters.

General procedure for hydrolysis of tetraethyl 1-n-alkylaminomethyl-1,1-

bisphosphonates

The solvent was evaporated and the residue was treated with a concentrated aqueous 

solution of hydrochloric acid (2 mL). The resulting mixture was heated to reflux for 24 

h. The solvent was evaporated and the residue was crystallized from ethanolwater.

Synthesis of tetraethyl 2-[(alkylthio)ethyl] 1,1-bisphosphonates. General procedure

To a solution of tetraethyl ethenylidenbisphosphonate (50; 300 mg, 1.0 mmol) in 

anhydrous dichloromethane (10 mL) was added triethylamine (1 mmol) and the 

corresponding alkylmercaptan (1 mmol). The reaction mixture was stirred at room 

temperature for 1 h. Water (20 mL) was added, and the mixture was extracted with 

dichloromethane (3  10 mL). The combined organic layers were washed with brine (20 

mL), dried (MgSO4), and the solvent was evaporated.

Synthesis of 2-(alkylthio)ethyl-1,1-bisphosphonic acids. General procedure. A 

solution of the corresponding tetraethyl 2-[(alkylthio)ethyl] 1,1-biphosphonate (1 mmol) 

in anhydrous methylene chloride (10 mL) was treated with trimethylsilyl bromide (10 

equiv.) under an argon atmosphere. The reaction mixture was stirred at room 

temperature for 48 h. Then, methanol (1.0 mL) was added and the solvent was 

evaporated. The residue was dissolved in methanol (8 mL) and the mixture was stirred 

at room temperature for 24 h. The solvent was evaporated and the residue 

redissolved/evaporated in methanol four times, to complete the hydrolysis of remaining 

trimethylsilyl bromide and eliminate the hydrobromic acid created. The residue was 

purified by column chromatography on reverse phase with a mixture of watermethanol 

as eluent and the pure compound was obtained after lyophilization. 

Tetraethyl 1-n-propylaminomethyl-1,1-bisphosphonate (34). Colorless oil; 16% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 0.92 (t, J = 7.4 Hz, 3H, H-5), 1.35 (dt, J = 7.1, 

0.9 Hz, 12H, CH2CH3), 1.49 (sext, J = 7.2 Hz, 2H, H-4), 2.80 (t, J = 7.2 Hz, 2H, H-3), 

3.25 (t, J = 21.7 Hz, 1H, H-1), 4.22 (m, 8H, CH2CH3); 13C NMR (125.77 MHz, CDCl3) 



  

δ 11.5 (C-5), 16.39 (t, J = 3.1 Hz, CH2CH3), 16.44 (t, J = 3.1 Hz, CH2C′H3), 23.1 (C-4), 

52.4 (t, J = 6.0 Hz, C-3), 54.3 (t, J = 145.5 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH2CH3), 63.2 

(t, J = 3.3 Hz, C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 19.74 ppm.

Tetraethyl 1-n-butylaminomethyl-1,1-bisphosphonate (35). Colorless oil; 15% yield;  
1H NMR (500.13 MHz, CDCl3) δ 0.90 (t, J = 7.3 Hz, 3H, H-6), 1.35 (dt, J = 7.1, 1.0 Hz, 

12H, CH2CH3), 1.37 (m, J = 7.2 Hz, 2H, H-4), 1.45 (m, J = 7.2 Hz, 2H, H-5), 2.83 (t, J 

= 7.1 Hz, 2H, H-3), 3.24 (t, J = 21.7 Hz, 1H, H-1), 4.21 (m, 8H, CH2CH3); 13C NMR 

(125.77 MHz, CDCl3) δ 13.9 (C-6), 16.4 (t, J = 3.0 Hz, CH2CH3), 16.5 (t, J = 3.1 Hz, 

CH2C′H3), 20.1 (C-5), 32.1 (C-4), 50.3 (t, J = 6.1 Hz, C-3), 54.4 (t, J = 97.4 Hz, C-1), 

62.8 (t, J = 3.4 Hz, CH2CH3), 63.3 (t, J = 3.2 Hz, C′H2CH3); 31P NMR (202.46 MHz, 

CDCl3) δ 19.77 ppm.

Tetraethyl 1-n-pentylaminomethyl-1,1-bisphosphonate (36). Colorless oil; 11% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 0.88 (t, J = 7.0 Hz, 3H, H-7), 1.30 (m, 4H, H-5, 

H-6), 1.35 (dt, J = 7.1, 1.0 Hz, 12H, CH2CH3), 1.47 (m, 2H, H-5), 2.82 (t, J = 7.2 Hz, 

2H, H-3), 3.25 (t, J = 21.8 Hz, 1H, H-1), 4.22 (m, 8H, CH2CH3); 13C NMR (125.77 

MHz, CDCl3) δ 14.0 (C-7), 16.39 (t, J = 3.1 Hz, CH2CH3), 16.44 (t, J = 3.1 Hz, 

CH2C′H3), 22.5 (C-6), 29.1 (C-5), 29.7 (C-4), 50.6 (t, J = 6.0 Hz, C-3), 54.3 (t, J = 

145.4 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH2CH3), 63.2 (t, J = 3.2 Hz, C′H2CH3); 31P NMR 

(202.46 MHz, CDCl3) δ 19.74 ppm.

Tetraethyl 1-n-hexylaminomethyl-1,1-bisphosphonate (37). Colorless oil; 27% yield; 
1H NMR (500.13 MHz, CDCl3) δ 0.88 (t, J = 7.0 Hz, 3H, H-8), 1.30 (m, 6H, H-5, H-6, 

H-7), 1.35 (dt, J = 7.1, 1.1 Hz, 12H, CH2CH3), 1.46 (p, J = 7.3 Hz, 2H, H-4), 2.82 (t, J = 

7.2 Hz, 2H, H-3), 3.25 (t, J = 21.7 Hz, 1H, H-1), 4.22 (m, 8H, CH2CH3); 13C NMR 

(125.77 MHz, CDCl3) δ 14.0 (C-8), 16.42 (t, J = 3.1 Hz, CH2CH3), 16.46 (t, J = 3.0 Hz, 

CH2C′H3), 22.6 (C-7), 26.7 (C-5), 30.0 (C-4), 31.5 (C-6), 50.6 (t, J = 6.0 Hz, C-3), 54.3 

(t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH2CH3), 63.2 (t, J = 3.0 Hz, C′H2CH3); 31P 

NMR (202.46 MHz, CDCl3) δ 19.76 ppm.

Tetraethyl 1-n-hepylaminomethyl-1,1-bisphosphonate (38). Colorless oil; 11% yield; 
1H NMR (500.13 MHz, CDCl3) δ 0.86 (t, J = 6.8 Hz, 3H, H-9), 1.26 (m, 8H, H-5, H-6, 

H-7, H-8), 1.33 (t, J = 7.1 Hz, 12H, CH2CH3), 1.44 (p, J = 7.1 Hz, 2H, H-4), 2.80 (t, J = 



  

7.1 Hz, 2H, H-3), 3.23 (t, J = 21.7 Hz, 1H, H-1), 4.22 (m, 8H, CH2CH3); 13C NMR 

(125.77 MHz, CDCl3) δ 14.0 (C-9), 16.40 (t, J = 3.1 Hz, CH2CH3), 16.44 (t, J = 3.0 Hz, 

CH2C′H3), 22.6 (C-8), 27.0 (C-5), 29.1 (C-6), 30.0 (C-4), 31.8 (C-7), 50.6 (t, J = 6.0 Hz, 

C-3), 54.3 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.2 Hz, CH2CH3), 63.2 (t, J = 3.2 Hz, 

C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 19.74 ppm.

Tetraethyl 1-n-octylaminomethyl-1,1-bisphosphonate (39). Colorless oil; 23% yield; 
1H NMR (500.13 MHz, CDCl3) δ 0.88 (t, J = 7.0 Hz, 3H, H-10), 1.26 (m, 10H, -CH2-), 

1.35 (t, J = 7.1 Hz, 12H, CH2CH3), 1.46 (p, J = 7.21 Hz, 2H, H-4), 2.82 (dt, J = 7.1, 1.1 

Hz, 2H, H-3), 3.24 (t, J = 21.7 Hz, 1H, H-1), 4.21 (m, 8H, CH2CH3); 13C NMR (125.77 

MHz, CDCl3) δ 14.1 (C-10), 16.4 (t, J = 3.1 Hz, CH2CH3), 16.5 (t, J = 3.0 Hz, 

CH2C′H3), 22.6 (C-9), 27.0 (C-5), 29.2 (C-6), 29.4 (C-7), 30.0 (C-4), 31.8 (C-8), 50.6 (t, 

J = 6.0 Hz, C-3), 54.4 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3 Hz, CH2CH3), 63.2 (t, J = 

3.2 Hz, C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 19.76 ppm.

Tetraethyl 1-n-nonylaminomethyl-1,1-bisphosphonate (40). Colorless oil; 22% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 0.88 (t, J = 7.0 Hz, 3H, H-11), 1.25 (m, 12H, -

CH2-), 1.35 (dt, J = 7.0, 1.0 Hz, 12H, CH2CH3), 1.45 (p, J = 7.2 Hz, 2H, H-4), 2.81 (t, J 

= 7.2, 1.1 Hz, 2H, H-3), 3.25 (t, J = 21.7 Hz, 1H, H-1), 4.20 (m, 8H, CH2CH3); 13C 

NMR (125.77 MHz, CDCl3) δ 14.0 (C-11), 16.37 (t, J = 3.1 Hz, CH2CH3), 16.42 (t, J = 

3.1 Hz, CH2C′H3), 22.6 (C-10), 27.0 (C-5), 29.2 (C-6), 29.4 (C-7), 29.4 (C-8), 30.0 (C-

4), 31.8 (C-9), 50.8 (t, J = 5.7 Hz, C-3), 54.3 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3 Hz, 

CH2CH3), 63.2 (t, J = 2.9 Hz, C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 19.73 ppm.

Tetraethyl 1-n-decylaminomethyl-1,1-bisphosphonate (41). Colorless oil; 26% yield; 
1H NMR (500.13 MHz, CDCl3) δ 0.86 (t, J = 6.8 Hz, 3H, H-12), 1.26 (m, 14H, -CH2-), 

1.33 (t, J = 6.7 Hz, 12H, CH2CH3), 1.43 (p, J = 7.2 Hz, 2H, H-4), 2.79 (t, J = 7.0, 1.1 

Hz, 2H, H-3), 3.23 (t, J = 21.7 Hz, 1H, H-1), 4.19 (m, 8H, CH2CH3); 13C NMR (125.77 

MHz, CDCl3) δ 14.1 (C-12), 16.39 (t, J = 3.0 Hz, CH2CH3), 16.44 (t, J = 3.1 Hz, 

CH2C′H3), 22.6 (C-11), 27.0 (C-5), 29.3 (C-6), 29.4 (C-7), 29.5 (C-8), 29.6 (C-9), 30.0 

(C-4), 31.8 (C-10), 50.6 (t, J = 6.0 Hz, C-3), 54.3 (t, J = 145.4 Hz, C-1), 62.8 (t, J = 3.3 

Hz, CH2CH3), 63.2 (t, J = 3.0 Hz, C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 19.74 

ppm.



  

Tetraethyl 1-n-Undecylaminomethyl-1,1-bisphosphonate (42). Colorless oil; 19% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 0.86 (t, J = 6.8 Hz, 3H, H-13), 1.23 (m, 16H, -

CH2-), 1.33 (t, J = 6.7 Hz, 12H, CH2CH3), 1.43 (p, J = 7.2 Hz, 2H, H-4), 2.79 (t, J = 7.0 

Hz, 2H, H-3), 3.22 (t, J = 21.7 Hz, 1H, H-1), 4.19 (m, 8H, CH2CH3); 13C NMR (125.77 

MHz, CDCl3) δ 14.1 (C-13), 16.39 (t, J = 3.0 Hz, CH2CH3), 16.44 (t, J = 3.1 Hz, 

CH2C′H3), 22.6 (C-12), 27.0 (C-5), 29.3 (C-6), 29.47 (C-7), 29.57 (C-8), 29.59 (C-9, C-

10), 30.0 (C-4), 31.9 (C-11), 50.6 (t, J = 6.1 Hz, C-3), 54.3 (t, J = 145.6 Hz, C-1), 62.8 

(t, J = 3.3 Hz, CH2CH3), 63.3 (t, J = 3.2 Hz, C′H2CH3); 31P NMR (202.46 MHz, CDCl3) 

δ 19.75 ppm.

Tetraethyl (Cyclopentylamino)methyl-1,1-bisphosphonate (43). Colorless oil; 28% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 1.35 (dt, J = 7.1, 1.6 Hz, 12H, CH2CH3), 1.52 

(m, 4H, -CH2-), 1.72 (m, 4H, -CH2-), 3.32 (t, J = 22.0 Hz, 1H, H-1), 3.48 (t, J = 5.8 Hz, 

2H, H-3), 4.19 (m, 8H, CH2CH3); 13C NMR (125.77 MHz, CDCl3) δ 16.4 (t, J = 3.1 Hz, 

CH2CH3), 16.5 (t, J = 3.1 Hz, CH2C′H3), 23.9 (C-5), 32.8 (C-4), 52.6 (t, J = 145.4 Hz, 

C-1), 59.2 (t, J = 5.9 Hz, C-3), 62.8 (t, J = 3.4 Hz, CH2CH3), 63.4 (t, J = 3.4 Hz, 

C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 19.93 ppm.

Tetraethyl (Cyclohexylamino)methyl-1,1-bisphosphonate (44). Colorless oil; 11% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 1.061.25 (m, 5H, -CH2-), 1.35 (dt, J = 7.1, 1.3 

Hz, 12H, CH2CH3), 1.49 (m, 1H, -CH2-), 1.59 (m, 1H, -CH2-), 1.72 (m, 2H, -CH2-), 

1.83 (m, 3H, -CH2-), 2.76 (tt, J = 9.9, 3.7 Hz, 2H, H-3), 3.42 (t, J = 22.0 Hz, 1H, H-1), 

4.19 (m, 8H, CH2CH3); 13C NMR (125.77 MHz, CDCl3) δ 16.4 (t, J = 3.1 Hz, CH2CH3), 

16.5 (t, J = 2.9 Hz, CH2C′H3), 24.7 (C-5), 26.0 (C-6), 33.1 (C-4), 51.0 (t, J = 145.4 Hz, 

C-1), 56.2 (t, J = 5.8 Hz, C-3), 62.8 (t, J = 3.3 Hz, CH2CH3), 63.3 (t, J = 3.2 Hz, 

C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 19.94 ppm.

Tetraethyl (Cycloheptylamino)methyl-1,1-bisphosphonate (45). Colorless oil; 15% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 1.34 (dt, J = 7.1, 1.2 Hz, 12H, CH2CH3), 1.39 

(m, 2H, -CH2-), 1.52 (m, 4H, -CH2-), 1.64 (m, 2H, -CH2-), 1.78 (m, 4H, -CH2-), 2.98 (p, 

J = 4.1 Hz, 2H, H-3), 3.36 (t, J = 22.1 Hz, 1H, H-1), 4.21 (m, 8H, CH2CH3); 13C NMR 

(125.77 MHz, CDCl3) δ 16.4 (t, J = 2.9 Hz, CH2CH3), 16.5 (t, J = 3.3 Hz, CH2C′H3), 

24.0 (C-5), 28.4 (C-6), 34.3 (C-4), 51.7 (t, J = 145.3 Hz, C-1), 58.4 (t, J = 5.7 Hz, C-3), 



  

62.7 (t, J = 3.3 Hz, CH2CH3), 63.4 (t, J = 3.2 Hz, C′H2CH3); 31P NMR (202.46 MHz, 

CDCl3) δ 19.99 ppm.

Tetraethyl (Piperidin-1-yl)methyl-1,1-bisphosphonate (46). Colorless oil; 37% yield; 
1H NMR (500.13 MHz, CDCl3) δ 1.35 (dt, J = 7.1, 1.2 Hz, 12H, CH2CH3), 1.42 (m, 2H, 

-CH2-), 1.54 (p, J = 5.4 Hz, 4H, -CH2-), 1.64 (m, 2H, -CH2-), 1.78 (m, 4H, -CH2-), 2.96 

(m, 4H, H-3), 3.34 (t, J = 25.0 Hz, 1H, H-1), 4.20 (m, 8H, CH2CH3); 13C NMR (125.77 

MHz, CDCl3) δ 16.4 (t, J = 2.9 Hz, CH2CH3), 16.5 (t, J = 3.1 Hz, CH2C′H3), 23.9 (C-5), 

26.8 (C-4), 53.0 (t, J = 4.5 Hz, C-3), 62.4 (t, J = 140.8 Hz, C-1), 62.7 (t, J = 3.3 Hz, 

CH2CH3), 63.4 (t, J = 3.2 Hz, C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 18.56 ppm.

Tetraethyl 1-[(Cyclopentylamino)ethyl] 1,1-bisphosphonate (51). Colorless oil; 95% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 1.32 (t, J = 7.1 Hz, 12H, CH2CH3), 1.36 (m, 

1H, -CH2-), 1.51 (m, 2H, -CH2-), 1.66 (m, 2H, -CH2-), 1.80 (m, 2H, -CH2-), 2.70 (tt, J = 

23.5, 5.7 Hz, 1H, H-1), 3.12 (dt, J = 16.7, 6.0 Hz, 2H, H-2), 3.06 (q, J = 6.9 Hz, 1H, H-

4), 4.16 (m, 8H, CH2CH3); 13C NMR (125.77 MHz, CDCl3) δ 16.3 (t, J = 3.2 Hz, 

CH2CH3), 16.4 (t, J = 3.1 Hz, CH2C′H3), 24.0 (C-5), 32.6 (C-4), 37.2 (t, J = 132.9 Hz, 

C-1), 44.2 (t, J = 4.2 Hz, C-2), 58.9 (C-4), 62.5 (t, J = 6.8 Hz, CH2CH3), 62.8 (t, J = 6.8 

Hz, C′H2CH3); 31P NMR (202.46 MHz, CDCl3) δ 22.60 ppm.

Tetraethyl 1-[(Cycloheptylamino)ethyl] 1,1-bisphosphonate (52). Colorless oil; 99% 

yield; 1H NMR (500.13 MHz, CDCl3) δ 1.35 (t, J = 7.1 Hz, 12H, CH2CH3), 2.63 (tt, J = 

23.6, 5.8 Hz, 1H, H-1), 3.15 (dt, J = 16.7, 5.9 Hz, 2H, H-2), 4.18 (m, 8H, CH2CH3); 13C 

NMR (125.77 MHz, CDCl3) δ 16.39 (t, J = 2.9 Hz, CH2CH3), 16.43 (t, J = 3.1 Hz, 

CH2C′H3), 24.3 (C-6), 28.3 (C-7), 34.5 (C-5), 37.4 (t, J = 132.2 Hz, C-1), 43.2 (t, J = 

4.3 Hz, C-2), 57.9 (C-4), 62.5 (t, J = 6.6 Hz, CH2CH3), 62.8 (t, J = 6.8 Hz, C′H2CH3); 
31P NMR (202.46 MHz, CDCl3) δ 22.87 ppm. 

Tetraethyl  1-[(4-methylcyclohexylamino)ethyl] 1,1-bisphosphonic acid (53). 

Colorless oil, 94% yield; 1H NMR (500.13 MHz, CDCl3) δ 0.87, 0.90 (d, J = 6.5 Hz, 3H 

CH3), 1.342, 1.347 (t, J = 7.0 Hz, 12H, CH2CH3), 2.63 (tt, J = 22.9, 5.6 Hz, 1H, H-1), 

3.15, 3.19 (dt, J = 16.5, 5.6 Hz, 2H, H-2), 4.19 (m, 8H, CH2CH3); 31P NMR (202.46 

MHz, CDCl3) δ 22.78, 22.90 ppm.



  

1-n-Propylaminomethyl-1,1-bisphosphonic acid (21). White solid, 73% yield; mp 

207 ºC; 1H NMR (500.13 MHz, D2O) δ 0.91 (t, J = 7.5 Hz, 3H, H-5), 1.64 (sext, J = 7.5 

Hz, 2H, H-4), 2.90 (t, J = 16.4 Hz, 1H, H-1), 3.22 (t, J = 7.5 Hz, 2H, H-3); 13C NMR 

(125.77 MHz, D2O) δ 10.1 (C-5), 19.8 (C-4), 51.1 (t, J = 2.8 Hz, C-3), 58.3 (t, J = 115.8 

Hz, C-1); 31P NMR (202.46 MHz, D2O) δ 8.40 ppm. HRMS (ESI) calcd. for 

(C4H13O6NP2Na) [M+Na]+ 256.0110; found 256.0110. Anal. calcd. for 

(C4H13O6NP2.½H2O): C, 19.84; H, 5.83; N, 5.79. Found C, 19.34; H, 6.08; N, 5.62. 

1-n-Butylaminomethyl-1,1-bisphosphonic acid (22). White solid; 100% yield; mp 

215 ºC; 1H NMR (500.13 MHz, D2O) δ 0.85 (t, J = 7.4 Hz, 3H, H-6), 1.32 (sext, J = 7.5 

Hz, 2H, H-5), 1.61 (q, J = 7.6 Hz, 2H, H-4), 2.90 (t, J = 16.4 Hz, 1H, H-1), 3.25 (t, J = 

7.5 Hz, 2H, H-3); 13C NMR (125.77 MHz, D2O) δ 12.9 (C-6), 19.0 (C-5), 28.3 (C-4), 

49.5 (t, J = 2.9 Hz, C-3), 58.4 (t, J = 115.2 Hz, C-1); 31P NMR (202.46 MHz, D2O) δ 

8.39 ppm. HRMS (ESI) calcd. for (C5H15O6NP2Na) [M + Na]+ 270.0267; found 

270.0262. Anal. calcd. for (C5H15O6NP2): C, 24.30; H, 6.12; N, 5.67. Found C, 24.69; H, 

6.60; N, 5.39. 

1-n-Pentylaminomethyl-1,1-bisphosphonic acid (23). white solid; 70% yield; mp = 

201 ºC; 1H NMR (500.13 MHz, D2O) δ 0.79 (t, J = 7.1 Hz, 3H, H-7), 1.25 (m, 4H, H-5, 

H-6), 1.62 (q, J = 7.5 Hz, 2H, H-4), 2.88 (t, J = 16.3 Hz, 1H, H-1), 3.24 (t, J = 7.8 Hz, 

2H, H-3); 13C NMR (125.77 MHz, D2O) δ 13.1 (C-7), 21.6 (C-6), 26.0 (C-5), 27.7 (C-

4), 49.8 (t, J = 2.6 Hz, C-3), 58.5 (t, J = 115.4 Hz, C-1); 31P NMR (202.46 MHz, D2O) δ 

8.45 ppm. HRMS (ESI) calcd. for (C6H18O6NP2) [M+H]+ 262.0604; found 262.0606.

1-n-Hexylaminomethyl-1,1-bisphosphonic acid (24). White solid, 81% yield; mp = 

210 ºC; 1H NMR (500.13 MHz, D2O) δ 0.77 (t, J = 7.1 Hz, 3H, H-8), 1.23 (m, 4H, H-6, 

H-7), 1.31 (m, 2H, H-5), 1.61 (q, J = 7.6 Hz, 2H, H-4), 2.87 (t, J = 16.3 Hz, 1H, H-1), 

3.23 (t, J = 7.6 Hz, 2H, H-3); 13C NMR (125.77 MHz, D2O) δ 13.3 (C-8), 21.7 (C-7), 

25.2 (C-5), 26.3 (C-4), 30.3 (C-6), 49.8 (t, J = 3.2 Hz, C-3), 58.5 (t, J = 116.3 Hz, C-1); 
31P NMR (202.46 MHz, D2O) δ 8.46 ppm.  HRMS (ESI) calcd. for (C7H20O6NP2) [M + 

H]+ 276.0760; found 277.0767. Anal. calcd. for (C7H19O6NP2): C, 30.55; H, 6.96; N, 

5.09. Found C, 30.17; H, 7.06; N, 4.97. 



  

1-n-Heptylaminomethyl-1,1-bisphosphonic acid (25). White solid; mp 198 ºC. 1H 

NMR (500.13 MHz, D2O) δ 0.78 (t, J = 6.9 Hz, 3H, H-9), 1.21 (m, 4H, H-7, H-8), 1.29 

(m, 2H, H-5, H-6), 1.63 (p, J = 7.7 Hz, 2H, H-4), 2.90 (t, J = 16.4 Hz, 1H, H-1), 3.25 (t, 

J = 7.6 Hz, 2H, H-3); 13C NMR (125.77 MHz, D2O) δ 13.3 (C-9), 21.9 (C-8), 25.5 (C-

5), 26.3 (C-4), 28.0 (C-6), 30.8 (C-7), 49.8 (t, J = 3.1 Hz, C-3), 58.4 (t, J = 116.0 Hz, C-

1); 31P NMR (202.46 MHz, D2O) δ 8.36 ppm. HRMS (ESI) calcd. for (C8H21O6NP2Na) 

[M + Na]+ 312.0736; found 312.0735. Anal. calcd. for (C8H21O6NP2): C, 33.22; H, 7.32; 

N, 4.84. Found C, 33.65; H, 7.01; N, 5.11. 

1-n-Octylaminomethyl-1,1-bisphosphonic acid (26). White solid; 97% yield; mp = 

201 ºC. 1H NMR (500.13 MHz, D2O) δ 0.75 (m, 3H, H-10), 1.17 (m, 6H, -CH2-), 1.28 

(m, 4H, -CH2-), 1.61 (m, 2H, H-4), 2.87 (t, J = 16.2 Hz, 1H, H-1), 3.22 (t, J = 7.0 Hz, 

2H, H-3); 13C NMR (125.77 MHz, D2O) δ 13.4 (C-10), 22.0 (C-9), 25.6 (C-5), 26.3 (C-

4), 28.1 (C-6), 28.2 (C-8), 31.0 (C-7), 49.8 (t, J = 2.8 Hz, C-3), 58.5 (t, J = 115.5 Hz, C-

1); 31P NMR (202.46 MHz, D2O) δ 8.51 ppm. HRMS (ESI) calcd. for (C9H23O6NP2Na) 

[M+Na]+ 326.0893; found 326.0850. Anal. calcd. for (C9H23O6NP2): C, 35.65; H, 7.65; 

N, 4.62. Found C, 35.48; H, 8.01; N, 3.86. 

1-n-Nonylaminomethyl-1,1-bisphosphonic acid (27). White solid; 82% yield; mp = 

195 ºC. 1H NMR (500.13 MHz, D2O) δ 0.77 (t, J = 6.8 Hz, 3H, H-11), 1.20 (m, 8H, -

CH2-), 1.28 (m, 4H, -CH2-), 1.64 (p, J = 7.5 Hz, 2H, H-4), 3.00 (t, J = 16.3 Hz, 1H, H-

1), 3.25 (t, J = 7.6 Hz, 2H, H-3); 13C NMR (125.77 MHz, D2O) δ 13.4 (C-11), 22.0 (C-

10), 25.6 (C-5), 26.2 (C-4), 28.26 (C-6), 28.31 (C-9), 28.4 (C-8), 31.1 (C-7), 49.7 (t, J = 

3.1 Hz, C-3), 57.0 (t, J = 113.3 Hz, C-1); 31P NMR (202.46 MHz, D2O) δ 8.34 ppm. 

HRMS (ESI) calcd. for (C10H26O6NP2) [M+H]+ 318.1230; found 318.1220. Anal. calcd. 

for (C10H25O6NP2): C, 37.85; H, 7.94; N, 4.41. Found C, 37.82; H, 8.07; N, 4.44. 

1-n-Decylaminomethyl-1,1-bisphosphonic acid (28). White solid; 100% yield; mp = 

197 ºC; 1H NMR (500.13 MHz, D2O) δ 0.76 (t, J = 6.9 Hz, 3H, H-12), 1.18 (m, 10H, -

CH2-), 1.28 (m, 4H, -CH2-), 1.62 (p, J = 7.4 Hz, 2H, H-4), 2.88 (t, J = 16.8 Hz, 1H, H-

1), 3.23 (t, J = 7.6 Hz, 2H, H-3); 13C NMR (125.77 MHz, D2O) δ 13.4 (C-12), 22.0 (C-

11), 25.6 (C-5), 26.4 (C-4), 28.26 (C-6), 28.41 (C-10), 28.45 (C-9), 28.6 (C-8), 31.1 (C-

7), 49.9 (t, J = 2.9 Hz, C-3), 58.5 (t, J = 115.6 Hz, C-1); 31P NMR (202.46 MHz, D2O) δ 

8.44 ppm. HRMS (ESI) calcd. for (C11H27O6NP2Na) [M+Na]+ 354.1206; found 



  

354.1208. Anal. calcd. for (C11H27O6NP2): C, 39.88; H, 8.21; N, 4.23. Found C, 39.51; 

H, 8.01; N, 3.98. 

1-n-Undecylaminomethyl-1,1-bisphosphonic acid (29). White solid; 100% yield; mp 

= 203 ºC; 1H NMR (500.13 MHz, D2O) δ 0.77 (m, 3H, H-13), 1.19 (m, 16H, -CH2-), 

1.64 (m, 2H, H-4), 3.11 (t, J = 15.7 Hz, 1H, H-1), 3.25 (m, 2H, H-3); 13C NMR (125.77 

MHz, D2O) δ 13.4 (C-13), 22.0 (C-12), 25.6 (C-5), 26.1 (C-4), 28.25 (C-6), 28.46 (C-

10, C-11), 28.6 (C-9), 28.7 (C-8), 31.2 (C-7), 49.5 (t, J = 3.3 Hz, C-3), 55.5 (t, J = 111.8 

Hz, C-1); 31P NMR (202.46 MHz, D2O) δ 8.33 ppm. HRMS (ESI) calcd. for 

(C12H29O6NP2Na) [M+Na]+ 368.1362; found 368.1361. Anal. calcd. for (C12H29O6NP2): 

C, 41.74; H, 8.46; N, 4.06. Found C, 41.21; H, 8.32; N, 3.93. 

(Cyclopentylamino)methyl-1,1-bisphosphonic acid (30). White solid; 99% yield; mp 

210 ºC; 1H NMR (500.13 MHz, CDCl3) δ 1.62 (m, 6H, H4a, H-5), 2.05 (m, 2H, H-4b), 

3.43 (t, J = 18.1 Hz, 1H, H-1), 3.98 (p, J = 7.2 Hz, 1H, H-3); 13C NMR (125.77 MHz, 

CDCl3) δ 23.6 (C-5), 29.2 (C-4), 54.0 (t, J = 124.3 Hz, C-1), 61.3 (t, J = 3.2 Hz, C-3); 
31P NMR (202.46 MHz, D2O) δ 8.02 ppm. HRMS (ESI) calcd. for C6H16NO6P2 [M + 

H]+ 260.0447; found 260.0454. Anal. calcd. for (C6H15O6NP2): C, 27.81; H, 5.83; N, 

5.41. Found C, 28.17; H, 5.72; N, 5.08.

(Cyclohexylamino)methyl-1,1-bisphosphonic acid (31). white solid; 94% yield; mp 

213 ºC; 1H NMR (500.13 MHz, D2O) δ 1.14 (m, 2H, H-6ax.), 1.28 (sext, J = 11.5 Hz, 

4H, H-5), 1.54 (m, 2H, H-6eq.), 1.71 (m, 2H, H-4ax.), 2.04 (m, 2H, H-4eq.), 3.06 (t, J = 

16.2 Hz, 1H, H-1), 3.46 (m, 1H, H-3); 13C NMR (125.77 MHz, CDCl3) δ 23.7 (C-6), 

24.6 (C-5), 29.5 (C-4), 54.9 (t, J = 124.3 Hz, C-1), 57.9 (C-3); 31P NMR (202.46 MHz, 

D2O) δ 8.72 ppm. HRMS (ESI) calcd. for C7H18NO6P2 [M + H]+ 274.0604; found 

274.0606. Anal. calcd. for (C7H17O6NP2): C, 30.78; H, 6.27; N, 5.13. Found C, 30.43; 

H, 6.18; N, 4.99.

(Cycloheptylamino)methyl-1,1-bisphosphonic acid (32). White solid; 83% yield; mp 

225 ºC; 1H NMR (500.13 MHz, D2O) δ 1.47 (m, 6H, -CH2-), 1.62 (m, 6H, -CH2-), 2.04 

(p, J = 6.5 Hz, 2H, H-5b), 3.12 (t, J = 16.3 Hz, 1H, H-1), 3.62 (sept, J = 4.4 Hz, 1H, H-

3); 13C NMR (125.77 MHz, D2O) δ 23.1 (C-6), 27.4 (C-5), 30.8 (C-4), 54.4 (t, J = 112.4 

Hz, C-1), 61.0 (t, J = 3.1 Hz, C-3); 31P NMR (202.46 MHz, D2O) δ 8.74 ppm. HRMS 



  

(ESI) calcd. for C8H20NO6P2 [M+H]+ 288.0760; found 288.0758. Anal. calcd. for 

(C8H19O6NP2): C, 33.46; H, 6.67; N, 4.88. Found C, 33.70; H, 6.58; N, 4.65.

(Piperidin-1-yl)methyl-1,1-bisphosphonic acid (33). White solid; 82% yield; mp 238 

ºC; 1H NMR (500.13 MHz, D2O) δ 1.69 (m, 2H, H-5), 1.87 (m, 4H, H-4), 3.15 (t, J = 

17.6 Hz, 1H, H-1), 3.52 (m, 4H, H-3); 13C NMR (125.77 MHz, D2O) δ 21.0 (C-5), 24.3 

(C-4), 53.8 (C-3), 63.8 (t, J = 106.8 Hz, C-1); 31P NMR (202.46 MHz, D2O) δ 6.77 

ppm.  HRMS (ESI) calcd. for C6H15NO6P2Na [M+Na]+ 282.0267; found 282.0258. 

Anal. calcd. for (C6H15O6NP2): C, 27.81; H, 5.83; N, 5.41. Found C, 27.44; H, 5.58; N, 

5.06.

1-[(Cyclopentylamino)ethyl] 1,1-bisphosphonic acid (47). White solid; 88% yield; 

mp 228 ºC; 1H NMR (500.13 MHz, D2O) δ 1.62 (m, 6H, H-5a, H-6), 1.95 (m, 2H, H-

5b), 2.39 (tt, J = 21.5, 7.3 Hz, 1H, H-1), 3.35 (dt, J = 14.3, 7.3 Hz, 2H, H-2), 3.55 (m. 

1H, H-4); 13C NMR (125.77 MHz, D2O) δ 23.4 (C-6), 29.4 (C-5), 36.3 (t, J = 120.9 Hz, 

C-1), 43.6 (t, J = 2.4 Hz, C-2), 59.5 (C-4); 31P NMR (202.46 MHz, D2O) δ 15.58 ppm. 

HRMS (ESI) calcd. for C7H18O6NP2 [M+H]+ 274.0604; found 274.0610.

1-[(Cycloheptylamino)ethyl] 1,1-bisphosphonic acid (48). 73% yield; white solid;  

mp 220 ºC; 1H NMR (500.13 MHz, D2O) δ 1.45 (m, 6H, H-6a, H-7), 1.60 (m, 4H, H-5a, 

H-6b), 1.97 (m, 2H, H-5b), 2.37 (tt, J = 21.4, 7.3 Hz, 1H, H-1), 3.28 (hept, J = 4.4 Hz, 

1H, H-4), 3.36 (dt, J = 14.3, 7.3 Hz, 2H, H-2); 13C NMR (125.77 MHz, D2O) δ 23.0 (C-

7), 27.3 (C-6), 30.6 (C-5), 36.2 (t, J = 120.8 Hz, C-1), 42.3 (t, J = 2.3 Hz, C-2), 59.4 (C-

4); 31P NMR (202.46 MHz, D2O) δ 15.59 ppm. HRMS (ESI) calcd. for C9H22O6NP2 

[M+H]+ 302.0917; found 302.0905.

1-[(4-methylcyclohexylamino)ethyl] 1,1-bisphosphonic acid (49). 76% yield; white 

solid; mp = 175 ºC; 1H NMR (125.77 MHz, D2O) δ 0.80 (d, J = 6.6 Hz, 6H, CH(CH3)2), 

0.84 (d, J = 6.6 Hz, 6H, CH(CH′3)2), 2.41 (tt, J = 21.4, 7.3 Hz, 1H, H-1), 3.25 (m. 1H, 

H-4), 3.36 (dt, J = 14.0, 7.1 Hz, 2H, H-2); 13C NMR (125.77 MHz, D2O) δ 19.9 21.0 

(CH3), 25.4 (C-5), 28.4 28.9 (C-5), 30.9 32.2 (C-6), 36.1 (t, J = 121.1 Hz, C-1), 36.2 (t, 

J = 120.8 Hz, C-1), 42.0 (t, J = 2.2 Hz, C-2), 42.5 (t, J = 2.6 Hz, C-2), 55.5 57.1 (C-4); 
31P NMR (202.46 MHz, D2O) δ 15.59 ppm. HRMS (ESI) calcd. for C9H22O6NP2 

[M+H]+ 302.0917; found 302.0931.



  

Tetraethyl 1-[(n-Undec-1-ylthio)ethyl]-1,1-bisphosphonate (60). 74% yield, colorless 

oil; 1H NMR (500.13 MHz, CDCl3)  0.88 (t, J = 7.0 Hz, 3H, H-14), 1.26 (m,16H, -

CH2-), 1.35 (t, J = 7.1 Hz, 12H, CH2CH3), 1.59 (p, J = 7.3 Hz, 2H, H-5), 2.56 (t, J = 7.4 

Hz, 2H, H-4), 2.59 (tt, J = 23.6, 6.0 Hz, 1H, H-1), 3.04 (dt, J = 16.3, 5.9 Hz, 2H, H-2), 

4.21 (m, 8H, CH2CH3); 13C NMR (125.77 MHz, CDCl3)  14.1 (C-14), 16.3 (d, J = 6.4 

Hz, CH2CH3), 22.6 (C-13), 27.7 (t, J = 5.2 Hz, C-2), 28.8 (C-12), 29.2 (C-11), 29.3 (C-

10), 29.4 (C-9), 29.47 (C-8), 29.53 (C-6, C-7), 31.8 (C-5), 33.1 (C-4), 39.0 (t, J = 131.4 

Hz, C-1), 62.8 (dd, J = 18.8, 6.8 Hz, CH2CH3); 31P NMR (202.46 MHz, CDCl3)  

21.75.

Tetraethyl 1-[(n-Dodec-1-ylthio)ethyl]-1,1-bisphosphonate (61). Colorless oil; 55% 

yield; 1H NMR (500.13 MHz, CDCl3)  0.88 (t, J = 7.0 Hz, 3H, H-15), 1.26 (m,16H, -

CH2-), 1.35 (t, J = 7.1 Hz,12H, CH2CH3), 1.59 (p, J = 7.5 Hz, 2H, H-5), 2.56 (t, J = 7.5 

Hz, 2H, H-4), 2.59 (tt, J = 23.9, 5.9 Hz, 1H, H-1), 3.04 (dt, J = 16.3, 5.9 Hz, 2H, H-2), 

4.21 (m, 8H, CH2CH3); 13C NMR (125.77 MHz, CDCl3)  14.1 (C-15), 16.4 (d, J = 6.3 

Hz, CH2CH3), 22.7 (C-14), 27.7 (t, J = 4.9 Hz, C-2), 28.9 (C-13), 29.2 (C-12), 29.3 C-

11), 29.4 (C-10), 29.51 (C-9), 29.57 (C-8), 29.59 (C-7), 29.62 (C-6), 31.9 (C-5), 33.1 

(C-4), 39.1 (t, J = 131.4 Hz, C-1), 62.8 (dd, J = 18.7, 6.6 Hz, CH2CH3); 31P NMR 

(202.46 MHz, CDCl3)  21.76.

1-[(n-Undecylthio)ethyl]-1,1-bisphosphonic acid (54). 45% yield; white solid; mp = 

95 ºC; 1H NMR (500.13 MHz, DMSO-d6) δ 0.84 (t, J = 6.9 Hz, 3H, H-14), 1.23 (m, 

14H, -CH2-), 1.31 (m, 2H, H-6), 1.49 (p, J = 7.3 Hz, 2H, H-5), 2.10 (tt, J = 22.5, 6.0 Hz, 

1H, H-1), 2.84 (t, J =15.5, 6.1 Hz, 2H, H-2); 31P NMR (202.46 MHz, DMSO-d6) δ 

18.80 ppm. HRMS (ESI) Calcd. for C13H31O6P2S [M+H]+ 377.1311; found 377.1324.

1-[(n-Dodecylthio)ethyl]-1,1-bisphosphonic acid (57). 80% yield; white solid; mp = 

110 ºC; 1H NMR (500.13 MHz, DMSO-d6) δ 0.84 (t, J = 7.0 Hz, 3H, H-15), 1.23 (m, 

16H, -CH2-), 1.30 (p, J = 7.6 Hz, 2H, H-6), 1.49 (p, J = 7.3 Hz, 2H, H-5), 2.10 (tt, J = 

22.5, 6.0 Hz, 1H, H-1), 2.84 (t, J =15.5, 6.1 Hz, 2H, H-2); 31P NMR (202.46 MHz, 

DMSO-d6) δ 18.97 ppm. HRMS (ESI) Calcd. for C14H33O6P2S [M+H]+ 391.1468; 

found 391.1453



  

1-[(n-Undecylsulfinyl)ethyl]-1,1-bisphosphonic acid (55). 81% yield; white solid; mp 

= 97 ºC; 1H NMR (500.13 MHz, D2O)  0.87 (t, J = 7.0 Hz, 3H, H-14), 1.20 (m, 12H, -

CH2-), 1.28 (p, J = 5.9 Hz, 2H, H-7), 1.39 (m, 2H, H-6), 1.69 (m, 2H, H-5), 2.39 (m, 

1H, H-1), 2.76 (ddd, J = 13.9, 8.5, 6.0 Hz, 1H, H-4a), 2.89 (ddd, J = 13.5, 8.4, 7.5 Hz, 

1H, H-4b), 3.15 (m, 2H, H-2); 31P NMR (202.46 MHz, D2O)  16.09 mAB. HRMS (ESI) 

Calcd. for C13H30O7P2SNa [M+Na]+ 415.1080; found 415.0797.

1-[(n-Dodecylsulfinyl)ethyl]-1,1-bisphosphonic acid (58). White solid, 67%; mp = 94 

ºC; 1H NMR (500.13 MHz, DMSO-d6)  0.84 (t, J = 7.0 Hz, 3H, H-15), 1.23 (m, 14H, -

CH2-), 1.38 (p, J = 6.9 Hz, 2H, H-6), 1.61 (p, J = 7.4 Hz, 2H, H-5), 2.57 (dt, J = 13.7, 

6.9 Hz, 1H, H-4a), 2.81 (dt, J = 13.1, 8.0 Hz, 1H, H-4b), 3.05 (m, 2H, H-2); 31P NMR 

(202.46 MHz, DMSO-d6)  17.31 mAB.

1-[(n-Undecylsulfonyl)ethyl]-1,1-biphosphonic acid (56). 58% yield; white solid; mp 

= 128 ºC; 1H NMR (500.13 MHz, DMSO-d6) δ 0.84 (t, J = 6.9 Hz, 3H, H-14), 1.22 (m, 

14H, CH2), 1.33 (p, J = 7.3 Hz, 2H, H-6), 1.65 (p, J = 7.7 Hz, 2H, H-5), 3.26 (m, 2H, 

H-4), 3.37 (t, J =16.3, 5.2 Hz, 2H, H-2); 31P NMR (202.46 MHz, DMSO-d6) δ 17.13 

ppm. HRMS (ESI) Calcd. for C13H31O8P2S [M+H]+ 409.1209; found 409.1198.

1-[(n-Dodecylsulfonyl)ethyl]-1,1-biphosphonic acid (59). 65% yield; white solid; mp 

125 ºC; 1H NMR (500.13 MHz, DMSO-d6) δ 0.84 (t, J = 6.9 Hz, 3H, H-15), 1.23 (m, 

14H, -CH2-),1.33 (p, J = 7.0 Hz, 2H, H-6), 1.64 (p, J = 7.6 Hz, 2H, H-5), 3.21 (m, 2H, 

H-4) 3.38 (dt, J = 16.1, 4.7 Hz, 1H, H-2); 13C NMR (125.77 MHz, DMSO-d6) δ 14.0 

(C-15), 21.5 (C-14), 22.1 (C-5), 27.8 (C-6), 28.6 (C-7), 28.76 (C-8), 28.84 (C-9), 29.0 

(C-12), 29.06 (C-10), 29.08 (C-11), 31.3 (C-13), 34.1 (t, J = 122.3 Hz, C-1), 49.7 (t, J = 

4.0 Hz, C-2), 52.5 (C-4); 31P NMR (202.46 MHz, DMSO-d6) δ 17.04 ppm. HRMS 

(ESI) Calcd. for C14H32O8P2SNa [M+Na]+ 445.1185; found 445.1201.

Drug Screening

T. cruzi amastigote assays

These experiments were done as reported using tdTomato labeled trypomastigotes 

with the modifications described by Recher et al., 2013.52 ED50 values were determined 



  

by non-linear regression analysis using SigmaPlot. 

T. gondii tachyzoites assays

Experiments on T. gondii tachyzoites were carried out as described previously 

using T. gondii tachyzoites expressing red fluorescent protein with the modifications 

described by Recher et al., 2013.52 Plates were read with covered lids, and both 

excitation (544 nm) and emission (590 nm) were read from the bottom. 

Cytotoxicity for Vero cells. The cytotoxicity was tested using the Alamar BlueTM assay 

as described by Recher et al., 2013.52 

TcFPPS and TgFPPS assays and product analysis. The enzymatic activity of the 

target enzymes was performed according to our previous studies as described for 

Szajnman et al., 2008.48 

Supplementary Data: Copies of the 1H NMR, 13C NMR and 31P NMR spectra of the 

target molecules and the corresponding intermediates are included as supporting 

information. 
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