5,094 research outputs found

    Automated Simulation Updates based on Flight Data

    Get PDF
    A statistically-based method for using flight data to update aerodynamic data tables used in flight simulators is explained and demonstrated. A simplified wind-tunnel aerodynamic database for the F/A-18 aircraft is used as a starting point. Flight data from the NASA F-18 High Alpha Research Vehicle (HARV) is then used to update the data tables so that the resulting aerodynamic model characterizes the aerodynamics of the F-18 HARV. Prediction cases are used to show the effectiveness of the automated method, which requires no ad hoc adjustments by the analyst

    Influence of Inflammatory Mediators and Cytokines on Human Melanocyte Function

    Get PDF
    The fully differentiated human melanocyte functions as a necessary and integral part of the epidermis, synthesizing melanin in intracellular organelles and transferring these pigment-containing organelles to surrounding keratino-cytes. The epidermal environment contains multiple inflammatory mediators, cytokines, and growth factors that may alter constitutive melanocyte function. Constitutive melanocyte function can also be markedly altered by release of such mediators in inflammatory dermatoses. Many of the same factors can also be released by ultraviolet radiation and psoralen + ultraviolet A treatment. These inflammatory mediators and cytokines affect not only melanocyte pigment production, but also proliferation, differentiation, immunologic susceptibility and cytotoxicity, inflammatory mediator, cytokine and matrix protein production, and cell movement. The effect of inflammatory mediators and cytokines on melanocytes and the regulation of these effects are an active area of investigation. J Invest Dermatol 100:191S–195S, 199

    Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions

    Full text link
    Cell movement and intercellular signaling occur simultaneously during the development of tissues, but little is known about how movement affects signaling. Previous theoretical studies have shown that faster moving cells favor synchronization across a population of locally coupled genetic oscillators. An important assumption in these studies is that cells can immediately interact with their new neighbors after arriving at a new location. However, intercellular interactions in cellular systems may need some time to become fully established. How movement affects synchronization in this situation has not been examined. Here we develop a coupled phase oscillator model in which we consider cell movement and the gradual recovery of intercellular coupling experienced by a cell after movement, characterized by a moving rate and a coupling recovery rate respectively. We find (1) an optimal moving rate for synchronization, and (2) a critical moving rate above which achieving synchronization is not possible. These results indicate that the extent to which movement enhances synchrony is limited by a gradual recovery of coupling. These findings suggest that the ratio of time scales of movement and signaling recovery is critical for information transfer between moving cells.Comment: 18 single column pages + 1 table + 5 figures + Supporting Informatio

    Polarization retention loss in PbTiO3 ferroelectric films due to leakage currents

    Get PDF
    The relationship between retention loss in single crystal PbTiO3 ferroelectric thin films and leakage currents is demonstrated by piezoresponse and conductive atomic force microscopy measurements. It was found that the polarization reversal in the absence of an electric field followed a stretched exponential behavior 1−exp[−(t/k)^d] with exponent d>1, which is distinct from a dispersive random walk process with d<1. The latter has been observed in polycrystalline films for which retention loss was associated with grain boundaries. The leakage current indicates power law scaling at short length scales, which strongly depends on the applied electric field. Additional information of the microstructure, which contributes to an explanation of the presence of leakage currents, is presented with high resolution transmission electron microscopy analysis.

    Frame Synchronization for FSO Links with Unknown Signal Amplitude and Noise Power

    Get PDF
    In this letter, we investigate the problem of frame synchronization in a free-space optical (FSO) communications link, where a known synch pattern is periodically embedded in the transmitted bitstream. The modulation format is on-off keying (OOK) and the electrical signal provided by the photo-detector is plagued by a mixture of thermal and shot noise with signal-dependent power. Due to atmospheric turbulence, channel attenuation can exhibit large random fluctuations, so that no prior knowledge of the signal level and noise variances is assumed. These parameters, together with the start-of-frame, are jointly estimated using a simplified maximum likelihood (ML) approach. Numerical simulations indicate that the proposed scheme is able to effectively exploit the presence of shot noise to improve its detection capability, and outperforms the standard frame synchronization method tailored for an AWGN channel with signal-independent noise power

    Timing Synchronization and Channel Estimation in Free-Space Optical OOK Communication Systems

    Get PDF
    Fast and reliable synchronization in free-space optical (FSO) communications is a crucial task that has received little attention so far. Since in these applications the data rate is much higher than in traditional radio-frequency (RF) systems, novel technological constraints may arise in the design of the synchronization algorithms, as for example the need to operate at symbol rate instead with an oversampled data stream. In this work, we consider an FSO link and investigate the problem of channel estimation, symbol timing recovery and frame detection using a known synch pattern. The modulation format is on-off keying (OOK) and the received signal is plagued by a mixture of thermal and shot noise. By applying the least-squares criterion, we derive a novel synchronization scheme that can jointly retrieve all the unknown parameters using symbol-spaced samples. Although designed without taking the noise statistics into account, the estimator performance is assessed in a realistic scenario where shot noise is present. Comparisons are made with the relevant Cramér-Rao bound for the joint estimation of the synchronization parameters and signal-dependent noise variances. Numerical simulations and complexity analysis indicate that the resulting scheme performs satisfactorily with an affordable processing load. Hence, it represents a promising solution for fast synchronization in high-speed FSO communications

    Self-propelled particles with fluctuating speed and direction of motion

    Get PDF
    We study general aspects of active motion with fluctuations in the speed and the direction of motion in two dimensions. We consider the case in which fluctuations in the speed are not correlated to fluctuations in the direction of motion, and assume that both processes can be described by independent characteristic time-scales. We show the occurrence of a complex transient that can exhibit a series of alternating regimes of motion, for two different angular dynamics which correspond to persistent and directed random walks. We also show additive corrections to the diffusion coefficient. The characteristic time-scales are also exposed in the velocity autocorrelation, which is a sum of exponential forms.Comment: to appear in Phys. Rev. Let

    Flight-Test Techniques for Quantifying Pitch Rate and Angle-of-Attack Rate Dependencies

    Get PDF
    Three different types of maneuvers were designed to separately quantify the pitch rate and angle-of-attack rate contributions to the nondimensional aerodynamic pitching moment coefficient. These maneuvers combined pilot inputs and automatic multisine excitations, and they were demonstrated with the subscale T-2 and Bat-4 airplanes using the NASA Airborne Subscale Transport Aircraft Research flight-test facility. Stability and control derivatives (in particular, Cmq and Cm) were accurately estimated from the flight-test data. These maneuvers can be performed with many types of aircraft, and the results can be used to improve physical insight into the flight dynamics, facilitate more accurate comparisons with wind-tunnel experiments or numerical investigations, and increase simulation prediction fidelity
    • …
    corecore