Cell movement and intercellular signaling occur simultaneously during the
development of tissues, but little is known about how movement affects
signaling. Previous theoretical studies have shown that faster moving cells
favor synchronization across a population of locally coupled genetic
oscillators. An important assumption in these studies is that cells can
immediately interact with their new neighbors after arriving at a new location.
However, intercellular interactions in cellular systems may need some time to
become fully established. How movement affects synchronization in this
situation has not been examined. Here we develop a coupled phase oscillator
model in which we consider cell movement and the gradual recovery of
intercellular coupling experienced by a cell after movement, characterized by a
moving rate and a coupling recovery rate respectively. We find (1) an optimal
moving rate for synchronization, and (2) a critical moving rate above which
achieving synchronization is not possible. These results indicate that the
extent to which movement enhances synchrony is limited by a gradual recovery of
coupling. These findings suggest that the ratio of time scales of movement and
signaling recovery is critical for information transfer between moving cells.Comment: 18 single column pages + 1 table + 5 figures + Supporting Informatio