56 research outputs found

    Targeting cyclic nucleotide phosphodiesterase 5 (PDE5) in brain: Toward the development of a PET radioligand labeled with fluorine-18

    Get PDF
    International audienceWith the aim to develop a specific radioligand for imaging the cyclic nucleotide phosphodiesterase 5 (PDE5) in brain by positron emission tomography (PET), seven new fluorinated inhibitors (3-9) were synthesized on the basis of a quinoline core. The inhibitory activity for PDE5 together with a panel of other PDEs was determined in vitro and two derivatives were selected for IC50 value determination. The most promising compound 7 (IC50 = 5.92 nM for PDE5A), containing a 3-fluoroazetidine moiety, was further radiolabeled by aliphatic nucleophilic substitution of two different leaving groups (nosylate and tosylate) using [18F]fluoride. The use of the nosylate precursor and tetra-n-butyl ammonium [18F]fluoride ([18F]TBAF) in 3-methyl-3-pentanol combined with the addition of a small amount of water proved to be the best radiolabeling conditions achieving a RCY of 4.9 ± 1.5% in an automated procedure. Preliminary biological investigations in vitro and in vivo were performed to characterize this new PDE5 radioligand. Metabolism studies of [18F]7 in mice revealed a fast metabolic degradation with the formation of radiometabolites which have been detected in the brain

    Stem Cell Res

    Get PDF
    Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of the liver metabolism due to functional deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in overproduction of oxalate which complexes with calcium to form insoluble calcium-oxalate salts in urinary tracts, ultimately leading to end-stage renal disease. Currently, the only curative treatment for PH1 is combined liver-kidney transplantation, which is limited by donor organ shortage and lifelong requirement for immunosuppression. Transplantation of genetically modified autologous hepatocytes is an attractive therapeutic option for PH1. However, the use of fresh primary hepatocytes suffers from limitations such as organ availability, insufficient cell proliferation, loss of function, and the risk of immune rejection. We developed patient-specific induced pluripotent stem cells (PH1-iPSCs) free of reprogramming factors as a source of renewable and genetically defined autologous PH1-hepatocytes. We then investigated additive gene therapy using a lentiviral vector encoding wild-type AGT under the control of the liver-specific transthyretin promoter. Genetically modified PH1-iPSCs successfully provided hepatocyte-like cells (HLCs) that exhibited significant AGT expression at both RNA and protein levels after liver-specific differentiation process. These results pave the way for cell-based therapy of PH1 by transplantation of genetically modified autologous HLCs derived from patient-specific iPSCs

    An Orthotopic Model of Glioblastoma Is Resistant to Radiodynamic Therapy with 5-AminoLevulinic Acid

    Get PDF
    Radiosensitization of glioblastoma is a major ambition to increase the survival of this incurable cancer. The 5-aminolevulinic acid (5-ALA) is metabolized by the heme biosynthesis pathway. 5-ALA overload leads to the accumulation of the intermediate fluorescent metabolite protoporphyrin IX (PpIX) with a radiosensitization potential, never tested in a relevant model of glioblastoma. We used a patient-derived tumor cell line grafted orthotopically to create a brain tumor model. We evaluated tumor growth and tumor burden after different regimens of encephalic multifractionated radiation therapy with or without 5-ALA. A fractionation scheme of 5 × 2 Gy three times a week resulted in intermediate survival [48-62 days] compared to 0 Gy (15-24 days), 3 × 2 Gy (41-47 days) and, 5 × 3 Gy (73-83 days). Survival was correlated to tumor growth. Tumor growth and survival were similar after 5 × 2 Gy irradiations, regardless of 5-ALA treatment (RT group (53-67 days), RT+5-ALA group (40-74 days), HR = 1.57, p = 0.24). Spheroid growth and survival were diminished by radiotherapy in vitro, unchanged by 5-ALA pre-treatment, confirming the in vivo results. The analysis of two additional stem-like patient-derived cell lines confirmed the absence of radiosensitization by 5-ALA. Our study shows for the first time that in a preclinical tumor model relevant to human glioblastoma, treated as in clinical routine, 5-ALA administration, although leading to important accumulation of PpIX, does not potentiate radiotherapy

    CD63-GPC1-Positive Exosomes Coupled with CA19-9 Offer Good Diagnostic Potential for Resectable Pancreatic Ductal Adenocarcinoma

    Get PDF
    Tumor-released extracellular vesicles (EVs) contain tumor-specific cargo distinguishing them from healthy EVs, and making them eligible as circulating biomarkers. Glypican 1 (GPC1)-positive exosome relevance as liquid biopsy elements is still debated. We carried out a prospective study to quantify GPC1-positive exosomes in sera from pancreatic ductal adenocarcinoma (PDAC) patients undergoing up-front surgery, as compared to controls including patients without cancer history and patients displaying pancreatic preneoplasic lesions. Sera were enriched in EVs, and exosomes were pulled down with anti-CD63 coupled magnetic beads. GPC1-positive bead percentages determined by flow cytometry were significantly higher in PDAC than in the control group. Diagnosis accuracy reached 78% (sensitivity 64% and specificity 90%), when results from peripheral and portal blood were combined. In association with echo-guided-ultrasound-fine-needle-aspiration (EUS-FNA) negative predictive value was 80% as compared to 33% for EUS-FNA only. This approach is clinically relevant as a companion test to the already available diagnostic tools, since patients with GPC1-positive exosomes in peripheral blood showed decreased tumor free survival

    Covichem: A biochemical severity risk score of COVID-19 upon hospital admission

    Get PDF
    Clinical and laboratory predictors of COVID-19 severity are now well described and combined to propose mortality or severity scores. However, they all necessitate saturable equipment such as scanners, or procedures difficult to implement such as blood gas measures. To provide an easy and fast COVID-19 severity risk score upon hospital admission, and keeping in mind the above limits, we sought for a scoring system needing limited invasive data such as a simple blood test and co-morbidity assessment by anamnesis. A retrospective study of 303 patients (203 from Bordeaux University hospital and an external independent cohort of 100 patients from Paris Pitié-Salpêtrière hospital) collected clinical and biochemical parameters at admission. Using stepwise model selection by Akaike Information Criterion (AIC), we built the severity score Covichem. Among 26 tested variables, 7: obesity, cardiovascular conditions, plasma sodium, albumin, ferritin, LDH and CK were the independent predictors of severity used in Covichem (accuracy 0.87, AUROC 0.91). Accuracy was 0.92 in the external validation cohort (89% sensitivity and 95% specificity). Covichem score could be useful as a rapid, costless and easy to implement severity assessment tool during acute COVID-19 pandemic waves

    JAMA Neurol

    Get PDF
    Importance: Moderately effective therapies (METs) have been the main treatment in pediatric-onset multiple sclerosis (POMS) for years. Despite the expanding use of highly effective therapies (HETs), treatment strategies for POMS still lack consensus.Objective: To assess the real-world association of HET as an index treatment compared with MET with disease activity.Design, setting, and participants: This was a retrospective cohort study conducted from January 1, 2010, to December 8, 2022, until the last recorded visit. The median follow-up was 5.8 years. A total of 36 French MS centers participated in the Observatoire Français de la Sclérose en Plaques (OFSEP) cohort. Of the total participants in OFSEP, only treatment-naive children with relapsing-remitting POMS who received a first HET or MET before adulthood and at least 1 follow-up clinical visit were included in the study. All eligible participants were included in the study, and none declined to participate.Exposure: HET or MET at treatment initiation.Main outcomes and measures: The primary outcome was the time to first relapse after treatment. Secondary outcomes were annualized relapse rate (ARR), magnetic resonance imaging (MRI) activity, time to Expanded Disability Status Scale (EDSS) progression, tertiary education attainment, and treatment safety/tolerability. An adapted statistical method was used to model the logarithm of event rate by penalized splines of time, allowing adjustment for effects of covariates that is sensitive to nonlinearity and interactions.Results: Of the 3841 children (5.2% of 74 367 total participants in OFSEP), 530 patients (mean [SD] age, 16.0 [1.8] years; 364 female [68.7%]) were included in the study. In study patients, both treatment strategies were associated with a reduced risk of first relapse within the first 2 years. HET dampened disease activity with a 54% reduction in first relapse risk (adjusted hazard ratio [HR], 0.46; 95% CI, 0.31-0.67; P < .001) sustained over 5 years, confirmed on MRI activity (adjusted odds ratio [OR], 0.34; 95% CI, 0.18-0.66; P = .001), and with a better tolerability pattern than MET. The risk of discontinuation at 2 years was 6 times higher with MET (HR, 5.97; 95% CI, 2.92-12.20). The primary reasons for treatment discontinuation were lack of efficacy and intolerance. Index treatment was not associated with EDSS progression or tertiary education attainment (adjusted OR, 0.51; 95% CI, 0.24-1.10; P = .09).Conclusions and relevance: Results of this cohort study suggest that compared with MET, initial HET in POMS was associated with a reduction in the risk of first relapse with an optimal outcome within the first 2 years and was associated with a lower rate of treatment switching and a better midterm tolerance in children. These findings suggest prioritizing initial HET in POMS, although long-term safety studies are needed.Observatoire Français de la Sclérose en Plaque

    Neurology

    Get PDF
    The question of the long-term safety of pregnancy is a major concern in patients with multiple sclerosis (MS), but its study is biased by reverse causation (women with higher disability are less likely to experience pregnancy). Using a causal inference approach, we aimed to estimate the unbiased long-term effects of pregnancy on disability and relapse risk in patients with MS and secondarily the short-term effects (during the perpartum and postpartum years) and delayed effects (occurring beyond 1 year after delivery). We conducted an observational cohort study with data from patients with MS followed in the Observatoire Français de la Sclérose en Plaques registry between 1990 and 2020. We included female patients with MS aged 18-45 years at MS onset, clinically followed up for more than 2 years, and with ≥3 Expanded Disease Status Scale (EDSS) measurements. Outcomes were the mean EDSS score at the end of follow-up and the annual probability of relapse during follow-up. Counterfactual outcomes were predicted using the longitudinal targeted maximum likelihood estimator in the entire study population. The patients exposed to at least 1 pregnancy during their follow-up were compared with the counterfactual situation in which, contrary to what was observed, they would not have been exposed to any pregnancy. Short-term and delayed effects were analyzed from the first pregnancy of early-exposed patients (who experienced it during their first 3 years of follow-up). We included 9,100 patients, with a median follow-up duration of 7.8 years, of whom 2,125 (23.4%) patients were exposed to at least 1 pregnancy. Pregnancy had no significant long-term causal effect on the mean EDSS score at 9 years (causal mean difference [95% CI] = 0.00 [-0.16 to 0.15]) or on the annual probability of relapse (causal risk ratio [95% CI] = 0.95 [0.93-1.38]). For the 1,253 early-exposed patients, pregnancy significantly decreased the probability of relapse during the perpartum year and significantly increased it during the postpartum year, but no significant delayed effect was found on the EDSS and relapse rate. Using a causal inference approach, we found no evidence of significantly deleterious or beneficial long-term effects of pregnancy on disability. The beneficial effects found in other studies were probably related to a reverse causation bias.Observatoire Français de la Sclérose en Plaque

    Human autologous tolerogenic dendritic cells impair T-cell proliferation through contact-independent mechanisms

    No full text
    International audienceAutologous tolerogenic dendritic cells (ATDC) have been demonstrated to be able to increase heart, skin and pancreatic islet allograft survivals in murine models and to be safe in non human primates. Due to their efficacy and their safety, ATDC therapy has been moved to clinic in a first phase I/II clinical trial in kidney transplantation in the context of the ONE study project. Human ATDC are generated from elutriated monocytes cultured 6 days in AIMV medium supplemented with low dose of GM-CSF. After differentiation ATDC display a tolerogenic dendritic cell profile (i.e. they display an immature phenotype, they express immunomodulatory cytokines such as IL-10 and TGF-β, they are resistant to maturation and they have suppressive activity toward T-cells). This project aims to determine the suppressive mechanisms of human ATDC toward T-cells
    corecore