50 research outputs found

    DaT-SPECT assessment depicts dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers

    Get PDF
    Identification of early changes in Dopamine-Transporter (DaT) SPECT imaging expected in the prodromal phase of Parkinson’s disease (PD), are usually overlooked. Carriers of the G2019S LRRK2 mutation are known to be at high risk for developing PD, compared to non-carriers. In this work we aimed to study early changes in Dopamine uptake in non-manifesting PD carriers (NMC) of the G2019S LRRK2 mutation using quantitative DaT-SPECT analysis and to examine the potential for early prediction of PD. Eighty Ashkenazi-Jewish subjects were included in this study: eighteen patients with PD; thirty-one NMC and thirty-one non-manifesting non-carriers (NMNC). All subjects underwent a through clinical assessment including evaluation of motor, olfactory, affective and non-motor symptoms and DaT-SPECT imaging. A population based DaT-SPECT template was created based on the NMNC cohort, and data driven volumes-of-interest (VOIs) were defined. Comparisons between groups were performed based on VOIs and voxel-wise analysis. The striatum area of all three cohorts was segmented into four VOIs, corresponding to the right/left dorsal and ventral striatum. Significant differences in clinical measures were found between patients with PD and non-manifesting subjects with no differences between NMC and NMNC. Significantly lower uptake (p<0.001) was detected in the right and left dorsal striatum in the PD group (2.2±0.3, 2.3±0.4) compared to the NMC (4.2±0.6, 4.3±0.5) and NMNC (4.5±0.6, 4.6±0.6), and significantly (p = 0.05) lower uptake in the right dorsal striatum in the NMC group compared to NMNC. Converging results were obtained using voxel-wise analysis. Two NMC participants, who later phenoconverted into PD, demonstrated reduced uptake mainly in the dorsal striatum. No significant correlations were found between the DaT-SPECT uptake in the different VOIs and clinical and behavioral assessments in the non-manifesting groups. This study shows the clinical value of quantitative assessment of DaT-SPECT imaging and the potential for predicting PD by detection of dopamine depletion, already at the pre-symptomatic stage

    Brain Diffusivity in Infants With Hypoxic-Ischemic Encephalopathy Following Whole Body Hypothermia: Preliminary Results

    Get PDF
    Abstract Hypoxic-ischemic encephalopathy is an important cause of neuropsychological deficits. Little is known about brain diffusivity in these infants following cooling and its potential in predicting outcome. Diffusion tensor imaging was applied to 3 groups: (1) three infants with hypoxic-ischemic encephalopathy: cooled; (2) three infants with hypoxic-ischemic encephalopathy: noncooled; and (3) four controls. Diffusivity values at the corticospinal tract, thalamus, and putamen were correlated with Apgar scores and early neurodevelopmental outcome. While cooled infants exhibited lower Apgar scores than noncooled infants, their developmental scores at a mean age of 8 months were higher. All groups differed in their diffusivity values with the cooled infants showing better values compared with the noncooled, correlating with early neurodevelopmental outcome. These preliminary results indicate that diffusion tensor imaging performed at an early age in infants with hypoxic-ischemic encephalopathy may forecast clinical outcome and support the neuroprotective effect of hypothermia treatment

    Niche construction and the transition to herbivory: Phenotype switching and the organization of new nutritional modes

    Get PDF
    Gut microbiota have played important roles in the evolutionary transition from carnivory to herbivory. In the evolution of ruminants, three modes of macrobe-microbe symbiosis have facilitated the phenotypic switch into a new nutritional mode. Mutualistic microbes acquired during birth enable the building of the rumen (developmental symbiosis), the digestion of plant fiber (nutritional symbiosis), and the detoxification of plant toxins (protective symbiosis). These symbioses created a new plant dietary niche through two types of niche construction: “perturbational niche construction,” a phenotypic process whereby gut microbes initiate the building of a mature rumen from the non-functional anlagen of this stomach region; and “mediational niche construction,” whereby microbe-induced changes alter how the animal experiences environmental resources without actual modification of the environment. Thanks to microbes, plants are now edible. We argue that the reciprocal niche construction of the host and its associated microbial organisms (i.e. the “holobiont”) scaffold each other’s developmental and phenotypic processes as well as organize a new selective environment of the holobiont as a whole

    DUSTER: dynamic contrast enhance up-sampled temporal resolution analysis method

    No full text
    Dynamic contrast enhanced (DCE) MRI using Tofts\u27 model for estimating vascular permeability is widely accepted, yet inter-tissue differences in bolus arrival time (BAT) are generally ignored. In this work we propose a method, incorporating the BAT in the analysis, demonstrating its applicability and advantages in healthy subjects and patients. A method for DCE Up Sampled TEmporal Resolution (DUSTER) analysis is proposed which includes: baseline T1 map using DESPOT1 analyzed with flip angle (FA) correction; preprocessing; raw-signal-to-T1-to-concentration time curves (CTC) conversion; automatic arterial input function (AIF) extraction at temporal super-resolution; model fitting with model selection while incorporating BAT in the pharmacokinetic (PK) model, and fits contrast agent CTC while using exhaustive search in the BAT dimension in super-resolution. The method was applied to simulated data and to human data from 17 healthy subjects, six patients with glioblastoma, and two patients following stroke. BAT values were compared to time-to-peak (TTP) values extracted from dynamic susceptibility contrast imaging. Results show that the method improved the AIF estimation and allowed extraction of the BAT with a resolution of 0.8 s. In simulations, lower mean relative errors were detected for all PK parameters extracted using DUSTER compared to analysis without BAT correction (vp:5% vs. 20%, Ktrans: 9% vs. 24% and Kep: 8% vs. 17%, respectively), and BAT estimates demonstrated high correlations (r = 0.94, p \u3c 1e− 10) with true values. In real data, high correlations between BAT values were detected when extracted from data acquired with high temporal resolution (2 s) and sub-sampled standard resolution data (6 s) (mean r = 0.85,p \u3c 1e− 10). BAT and TTP values were significantly correlated in the different brain regions in healthy subjects (mean r = 0.72,p = \u3c 1e− 3), as were voxel-wise comparisons in patients (mean r = 0.89, p \u3c 1e− 10). In conclusion, incorporating BAT in DCE analysis improves estimation accuracy for the AIF and the PK parameters while providing an additional clinically important parameter

    DaT-SPECT assessment depicts dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers.

    No full text
    Identification of early changes in Dopamine-Transporter (DaT) SPECT imaging expected in the prodromal phase of Parkinson's disease (PD), are usually overlooked. Carriers of the G2019S LRRK2 mutation are known to be at high risk for developing PD, compared to non-carriers. In this work we aimed to study early changes in Dopamine uptake in non-manifesting PD carriers (NMC) of the G2019S LRRK2 mutation using quantitative DaT-SPECT analysis and to examine the potential for early prediction of PD. Eighty Ashkenazi-Jewish subjects were included in this study: eighteen patients with PD; thirty-one NMC and thirty-one non-manifesting non-carriers (NMNC). All subjects underwent a through clinical assessment including evaluation of motor, olfactory, affective and non-motor symptoms and DaT-SPECT imaging. A population based DaT-SPECT template was created based on the NMNC cohort, and data driven volumes-of-interest (VOIs) were defined. Comparisons between groups were performed based on VOIs and voxel-wise analysis. The striatum area of all three cohorts was segmented into four VOIs, corresponding to the right/left dorsal and ventral striatum. Significant differences in clinical measures were found between patients with PD and non-manifesting subjects with no differences between NMC and NMNC. Significantly lower uptake (p<0.001) was detected in the right and left dorsal striatum in the PD group (2.2±0.3, 2.3±0.4) compared to the NMC (4.2±0.6, 4.3±0.5) and NMNC (4.5±0.6, 4.6±0.6), and significantly (p = 0.05) lower uptake in the right dorsal striatum in the NMC group compared to NMNC. Converging results were obtained using voxel-wise analysis. Two NMC participants, who later phenoconverted into PD, demonstrated reduced uptake mainly in the dorsal striatum. No significant correlations were found between the DaT-SPECT uptake in the different VOIs and clinical and behavioral assessments in the non-manifesting groups. This study shows the clinical value of quantitative assessment of DaT-SPECT imaging and the potential for predicting PD by detection of dopamine depletion, already at the pre-symptomatic stage. Clinical registration numbers: NCT01089270 and NCT01089283

    Cognitive state following stroke: the predominant role of preexisting white matter lesions.

    No full text
    Stroke is a major cause of cognitive impairment and dementia in adults, however the role of the ischemic lesions themselves, on top of other risk factors known in the elderly, remains controversial. This study used structural equation modeling to determine the respective impact of the new ischemic lesions' volume, preexisting white matter lesions and white matter integrity on post stroke cognitive state.Consecutive first ever mild to moderate stroke or transient ischemic attack patients recruited into the ongoing prospective TABASCO study underwent magnetic resonance imaging scans within seven days of stroke onset and were cognitively assessed one year after the event using a computerized neuropsychological battery. The volumes of both ischemic lesions and preexisting white matter lesions and the integrity of the normal appearing white matter tissue were measured and their contribution to cognitive state was assessed using structural equation modeling path analysis taking into account demographic parameters. Two models were hypothesized, differing by the role of ischemic lesions' volume.Structural equation modeling analysis of 142 patients confirmed the predominant role of white matter lesion volume (standardized path coefficient β =  -0.231) and normal appearing white matter integrity (β =  -0.176) on the global cognitive score, while ischemic lesions' volume showed no such effect (β = 0.038). The model excluding the ischemic lesion presented better fit to the data (comparative fit index 0.9 versus 0.092).Mild to moderate stroke patients with preexisting white matter lesions are more vulnerable to cognitive impairment regardless of their new ischemic lesions. Thus, these patients can serve as a target group for studies on cognitive rehabilitation and neuro-protective therapies which may, in turn, slow their cognitive deterioration
    corecore