3,021 research outputs found

    Preditores de fibrilação atrial de novo em unidade de cuidados intensivos não cardíaca

    Get PDF
    OBJECTIVE: To assess the predictors of de novo atrial fibrillation in patients in a non-cardiac intensive care unit. METHODS: A total of 418 hospitalized patients were analyzed between January and September 2016 in a non-cardiac intensive care unit. Clinical characteristics, interventions, and biochemical markers were recorded during hospitalization. In-hospital mortality and length of hospital stay in the intensive care unit were also evaluated. RESULTS: A total of 310 patients were included. The mean age of the patients was 61.0 ± 18.3 years, 49.4% were male, and 23.5% presented de novo atrial fibrillation. The multivariate model identified previous stroke (OR = 10.09; p = 0.016) and elevated levels of pro-B type natriuretic peptide (proBNP, OR = 1.28 for each 1,000pg/mL increment; p = 0.004) as independent predictors of de novo atrial fibrillation. Analysis of the proBNP receiver operating characteristic curve for prediction of de novo atrial fibrillation revealed an area under the curve of 0.816 (p 5,666pg/mL. There were no differences in mortality (p = 0.370), but the lengths of hospital stay (p = 0.002) and stay in the intensive care unit (p = 0.031) were higher in patients with de novo atrial fibrillation. CONCLUSIONS: A history of previous stroke and elevated proBNP during hospitalization were independent predictors of de novo atrial fibrillation in the polyvalent intensive care unit. The proBNP is a useful and easy- and quick-access tool in the stratification of atrial fibrillation risk.Objetivo: Avaliar quais os preditores de fibrilação atrial de novo em doentes de uma unidade de cuidados intensivos não cardíaca. Métodos: Foram analisados 418 doentes internados entre janeiro e setembro de 2016 em uma unidade de cuidados intensivos não cardíaca. Registaram-se as características clínicas, as intervenções efetuadas e os marcadores bioquímicos durante a internação. Avaliaram-se ainda a mortalidade hospitalar e o tempo de internação hospitalar e na unidade de cuidados intensivos. Resultados: Foram incluídos 310 doentes, com média de idades de 61,0 ± 18,3 anos, 49,4% do sexo masculino, 23,5% com fibrilação atrial de novo. O modelo multivariável identificou acidente vascular cerebral prévio (OR de 10,09; p = 0,016) e valores aumentados de proBNP (OR de 1,28 por cada aumento em 1.000pg/mL; p = 0,004) como preditores independentes de fibrilação atrial de novo. A análise por curva Característica de Operação do Receptor do proBNP para predição de fibrilação atrial de novo revelou área sob a curva de 0,816 (p 5.666pg/mL. Não se verificaram diferenças na mortalidade (p = 0,370), porém a duração da internação hospitalar (p = 0,002) e na unidade de cuidados intensivos (p = 0,031) foi superior nos doentes com fibrilação atrial de novo. Conclusões: História de acidente vascular cerebral prévio e proBNP elevado em internação constituíram preditores independentes de fibrilação atrial de novo na unidade de cuidados intensivos polivalente. O proBNP pode constituir ferramenta útil, de fácil e rápido acesso na estratificação do risco de fibrilação atrial.info:eu-repo/semantics/publishedVersio

    Tuning edge state localization in graphene nanoribbons by in-plane bending

    Full text link
    The electronic properties of graphene are influenced by both geometric confinement and strain. We study the electronic structure of in-plane bent graphene nanoribbons, systems where confinement and strain are combined. To understand its electronic properties, we develop a tight-binding model that has a small computational cost and is based on exponentially decaying hopping and overlap parameters. Using this model, we show that the edge states in zigzag graphene nanoribbons are sensitive to bending and develop an effective dispersion that can be described by a one-dimensional atomic chain model. Because the velocity of the electrons at the edge is proportional to the slope of the dispersion, the edge states become gradually delocalized upon increasing the strength of bending.Comment: 11 pages, 8 figure

    Magnetic susceptibility anisotropies in a two-dimensional quantum Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions

    Full text link
    The magnetic and thermodynamic properties of the two-dimensional quantum Heisenberg antiferromagnet that incorporates both a Dzyaloshinskii-Moriya and pseudo-dipolar interactions are studied within the framework of a generalized nonlinear sigma model (NLSM). We calculate the static uniform susceptibility and sublattice magnetization as a function of temperature and we show that: i) the magnetic-response is anisotropic and differs qualitatively from the expected behavior of a conventional easy-axis QHAF; ii) the Neel second-order phase transition becomes a crossover, for a magnetic field B perpendicular to the CuO(2) layers. We provide a simple and clear explanation for all the recently reported unusual magnetic anisotropies in the low-field susceptibility of La(2)CuO(4), L. N. Lavrov et al., Phys. Rev. Lett. 87, 017007 (2001), and we demonstrate explicitly why La(2)CuO(4) can not be classified as an ordinary easy-axis antiferromagnet.Comment: 6 pages, 3 figures, Revtex4, accepted for publication in Phys. Rev.

    Dynamics of topological defects in a spiral: a scenario for the spin-glass phase of cuprates

    Get PDF
    We propose that the dissipative dynamics of topological defects in a spiral state is responsible for the transport properties in the spin-glass phase of cuprates. Using the collective-coordinate method, we show that topological defects are coupled to a bath of magnetic excitations. By integrating out the bath degrees of freedom, we find that the dynamical properties of the topological defects are dissipative. The calculated damping matrix is related to the in-plane resistivity, which exhibits an anisotropy and linear temperature dependence in agreement with experimental data.Comment: 4 pages, as publishe

    Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    Get PDF
    The behavior of the nonlinear susceptibility χ3\chi_3 and its relation to the spin-glass transition temperature TfT_f, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT\lambda_{\rm AT} (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature TfT_f can be traced by a divergence in the spin-glass susceptibility χSG\chi_{\rm SG}, which presents a term inversely proportional to the replicon λAT\lambda_{\rm AT}. As a result of a relation between χSG\chi_{\rm SG} and χ3\chi_3, the latter also presents a divergence at TfT_f, which comes as a direct consequence of λAT=0\lambda_{\rm AT}=0 at TfT_f. However, our results show that, in the presence of random fields, χ3\chi_3 presents a rounded maximum at a temperature T∗T^{*}, which does not coincide with the spin-glass transition temperature TfT_f (i.e., T∗>TfT^* > T_f for a given applied random field). Thus, the maximum value of χ3\chi_3 at T∗T^* reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3\chi_3 still maintains a dependence on the replicon λAT\lambda_{\rm AT}, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHox_xY1−x_{1-x}F4_4 compound.Comment: accepted for publication in PR

    Derivation of the generalized Non Linear Sigma Model in the presence of the Dzyaloshinskii-Moriya interaction

    Full text link
    We derive the long-wavelength non-linear sigma model for a two-dimensional Heisenberg system in the presence of the Dzyaloshinskii-Moriya and pseudodipolar interactions. We show that the system is a non-conventional easy-axis antiferromagnet, displaying an anomalous coupling between the magnetic field and the staggered order parameter. Our results are in good agreement with recent experimental data for undoped La2CuO4 compounds.Comment: Proceedings of SCES05, to appear on Physica

    Role of the transverse field in inverse freezing in the fermionic Ising spin-glass model

    Full text link
    We investigate the inverse freezing in the fermionic Ising spin-glass (FISG) model in a transverse field Γ\Gamma. The grand canonical potential is calculated in the static approximation, replica symmetry and one-step replica symmetry breaking Parisi scheme. It is argued that the average occupation per site nn is strongly affected by Γ\Gamma. As consequence, the boundary phase is modified and, therefore, the reentrance associated with the inverse freezing is modified too.Comment: 6 pages, 3 figures, accepted for publication in PR

    Finite-momentum Bose-Einstein condensates in shaken 2D square optical lattices

    Full text link
    We consider ultracold bosons in a 2D square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. It is therefore necessary to account for higher-order hopping terms, which are renormalized differently by the shaking, and introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentum condensates, with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott-insulator and the different superfluid phases, and present the time-of-flight images expected to be observed experimentally. Our results open up new possibilities for the realization of bosonic analogs of the FFLO phase describing inhomogeneous superconductivity.Comment: 7 pages, 7 figure
    • …
    corecore