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Dynamics of topological defects in a spiral: a scenario for the spin-glass phase of

cuprates
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We propose that the dissipative dynamics of topological defects in a spiral state is responsible for
the transport properties in the spin-glass phase of cuprates. Using the collective-coordinate method,
we show that topological defects are coupled to a bath of magnetic excitations. By integrating out
the bath degrees of freedom, we find that the dynamical properties of the topological defects are
dissipative. The calculated damping matrix is related to the in-plane resistivity, which exhibits an
anisotropy and linear temperature dependence in agreement with experimental data.

PACS numbers: 75.10.Nr, 74.25.Fy, 74.72.Dn

The discovery of four static incommensurate (IC)
charge and spin peaks by neutron scattering experiments
in Nd-doped La2−xSrxCuO4 (LSCO) [1] confirmed the
proposal that in these materials the holes form verti-
cal/horizontal charge stripes [2], breaking the paradigm
of homogeneous charge distribution. Moreover, the ob-
servation of IC dynamical spin correlations in supercon-
ducting LSCO (x > 0.05) at the same wave vectors as ob-
served in the Nd-doped compounds [3] placed the stripe
picture on a more solid footing and raised further ques-
tions concerning the coexistence of magnetism and super-
conductivity. Later, two IC elastic magnetic peaks have
been observed within the spin-glass (SG) phase of LSCO
(0.02 < x < 0.05) [4], and their interpretation in terms of
diagonal stripe formation appeared to be rather natural,
given that the value of the magnetic IC follows the same
linear dependence on doping as observed within the su-
perconducting regime [4]. However, no charge order has
ever been measured in the SG regime, and the picture of
well-ordered stripes, very far apart from each other due
to the very low doping concentration, seems quite im-
probable because disorder and frustration effects, which
act to destabilize the stripes, are expected to dominate
in this phase.

A different explanation of the two IC peaks in the SG
phase is that these may arise from the formation of a spi-
ral magnetic order which breaks the translational sym-
metry in the spin but not in the charge sector [5]. In
this model, the randomly distributed holes act as frustra-
tion centers for the underlying anti-ferromagnetic (AF)
background, generating a dipole moment. A fraction of
these dipoles may order ferromagnetically, while the oth-
ers may remain disordered. If the number of ordered
dipoles increases linearly with the doping concentration,
which would appear plausible, this model can describe
the linear variation of the IC magnetic wave vector with
doping [4], without invoking charge ordering [5].

Recently, transport properties along both diagonal-
directions in the Cu lattice have been investigated in
high-quality, detwinned LSCO samples, and a rather

strong anisotropy was detected [6]. However, this experi-
ment provides no definitive evidence in favor of the stripe
picture, because, as we will show, a similar anisotropic
behavior is expected for transport parallel or perpendic-
ular to the spiral axis.

In this Letter we investigate the formation of topolog-
ical defects in the spiral state that couple to excitations
of the magnetic environment and diffuse across the sys-
tem. We assume that the charge carriers are attached to
these defects and therefore the description of defect dy-
namics corresponds ultimately to the electrical transport
properties of cuprates in the SG phase. We evaluate the
damping matrix, which is related to the mobility of the
topological defect, and show that its behavior at high
temperatures follows the experimentally observed tem-
perature (T ) dependence of the in-plane resistivity. In
addition, we account for the anisotropy in the spin-wave
velocity in the directions parallel and perpendicular to
the spiral axis, and find that, in agreement with experi-
ments, it leads to an anisotropy in the resistivity.

The magnetic properties of charge transfer insulators,
such as undoped La2CuO4, are usually studied within
the quantum non-linear sigma model (NLσM), which
can correctly represent the long wavelength modes of the
Heisenberg model. This continuum model describes slow
fluctuations of the locally well defined staggered mag-
netization n (with n2 = 1). When holes are added to
the system, the magnetism becomes more complex be-
cause those act simultaneously as a source of disorder
and dipolarlike frustration. The dipolar frustration can
be described via a coupling of the dipoles to the gradient
of the order parameter n of the NLσM. By accounting for
the random distribution of dipolar centers, the resulting
Hamiltonian favors the formation of a spiral phase, with
a non-zero average twist ∂µn of the AF order parameter
and a concomitant alignment of some of the dipoles [5].

The spiral ground-state breaks the O(3) spin sym-
metry completely. Its order parameter, which belongs
to the SO(3) group, is given in terms of an orthonor-
mal basis nk, with k = 1, 2, 3 and na

kn
a
q = δkq [7].
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The latter can be related to an element g of SU(2)
through na

k = (1/2)tr
(

σagσkg−1
)

, where σa are Pauli
matrices. It is also convenient to introduce the fields
Aa

µ = (1/2i)tr
(

σag−1∂µg
)

, which are related to the first

derivatives of nk through ∂µn
a
k = 2ǫijkA

i
µn

a
j [8]. Here

µ stands for one-time and two-spatial coordinates. The
Lagrangian describing the spiral state is given by

L = N
∫

dx‖dx⊥

(

A2
0 − c2⊥A

2
⊥ − c2‖A

2
‖

)

, (1)

where N = 2JS2/c‖c⊥, J is the AF exchange and c⊥, c‖
are the spin wave velocities perpendicular and parallel to
the spiral axis, with (c‖/c⊥)

2 = cos (Qa) [5]. Here a is
the lattice constant and Q is the IC magnetic wave vec-
tor observed by neutron scattering. Lagrangian (1) may
be mapped to an isotropic form by introducing the coor-
dinates r = (x, y) with x =

√

c‖/c⊥x⊥, y =
√

c⊥/c‖x‖.

We then find L = N
∫

d2r
(

A2
0 − c2A2

α

)

, where α = x, y
and c =

√
c⊥c‖ is the isotropic spin-wave velocity. This

rescaling leads to an anisotropic elementary cell, which
will be neglected in what follows. Further comments on
the anisotropy effects are included in the conclusions.
An appropriate treatment of the spiral state has to take

into account the existence of topological defects. In prin-
ciple, in (2+1) space-time dimensions two types of static
topological defects can exist: vortices and skyrmions.
Skyrmionlike excitations are classified according to the
second homotopy group of the order parameter space,
which in our case is trivial, π2(SO(3)) = 0. Thus, there
are no skyrmions in the spiral state and the only possible
defects are Z2-vortices, given by the first homotopy group
π1(SO(3)) = Z2 [9]. These defects originate from the chi-
ral degeneracy of the spiral, which can rotate clock- or
counter-clock-wise [10]. Their description is provided by
the elements g = gs(Ψ)gε(~ε) of the SU(2) group, with
gs = exp (imaσaΨ/2) and gε = exp (iσaεa/2). The pa-
rameters mΨ are related to the local spin, where m is a
constant unit vector and Ψ is a scalar field [11]. Our aim
is to determine the topological defect solutions Ψ2v of the
saddle point equations of the spiral, as well as the vec-
torial field ~ε describing fluctuations around this solution.
In terms of these fields, the Lagrangian becomes

L = N
∫

d2r (L0 + L1) , L0 =
1

4
(∂µΨ)2 (2)

L1 =
1

4
(∂µ~ε)

2
+

1

2

{

m ·
[

∂µ~ε+
1

2
(∂µ~ε× ~ε)

]}

∂µΨ,

with ∂µA∂µB = ∂tA∂tB − c2∇A∇B. This Lagrangian
can be treated perturbatively because |~ε| is small. We
begin by considering the static limit of L0, where the
corresponding equation of motion becomes the Laplace
equation ∇2Ψ(r) = 0. A nontrivial solution Ψ1v(r,R) =
arctan(y−Y )/(x−X) has the form of a vortex centered at
R = (X,Y ), and its energy E ∝ lnL/a diverges with the
system size L. Unbound, free topological defects cannot,

therefore, exist at low temperatures. However, the two-
vortices solution Ψ2v = Ψ1v(r,R1) − Ψ1v(r,R2), which
describes a bound pair of topological defects (vortex and
antivortex), centered respectively at R1 and R2, has a
finite energy E(Ψ2v) ∝ ln(d/a), where d = |R1 − R2|
is the modulus of the pair relative coordinate, which we
take as a constant. Up to an irrelevant constant, the two-
vortices solution can be expressed in terms of the center
of mass R = (R1 + R2)/2 and relative coordinate d,
yielding Ψ2v(r) = arctan{[(r−R)×d]z/[(r−R)2−d2/4]}.
We will apply the collective coordinate method [12] to

study the dynamics of a bound pair of topological defects
in a spiral. The first task is to determine the dynam-
ics of the fluctuations around the defect. By evaluating
L1(Ψ2v) and expressing the vectorial field in terms of po-
lar coordinates, ~ε = (ε̄ cos θ, ε̄ sin θ, εz), we find that the
εz component is free and that θ = Ψ2v/2. The remaining
equation of motion then reads

{

∂2
t − c2[∇2 + V (r)]

}

ε̄ =
0, with V (r) = (∇Ψ2v)

2/4. Its solution has the form
ε̄(r, t) =

∑

nm qnm(t)ηnm(r), where ηnm are the eigen-
functions of the operator

− c2[∇2 + V (r)]ηnm = ω2
nmηnm. (3)

The solutions of Eq. (3) have the form ηnm =
√

knm/8L[ H
(1)
n (knmr) + e−2iδnH

(2)
n (knmr)] einϑ, where

H
(1,2)
n are Hankel functions of the first and second kinds,

δn represents a phase shift for the mode n, and ϑ is a po-
lar angle. The excitation with frequency ωnm has the
dispersion ωnm = c|knm|. Equation (3) admits zero-
frequency modes associated with the continuous trans-
lational symmetry of the model. A consistent treat-
ment of them requires the use of collective coordinates.
Thus, the center of the pair R is promoted to a dy-
namical variable R(t), namely Ψ(r) → Ψ(r −R(t)) and
ε̄(r, t) → ε̄(r−R(t), t) =

∑

nm qnm(t)ηnm(r−R(t)).
A lengthy but straightforward procedure [13] leads to

the effective Hamiltonian (in units of 2JS2/c2) describing
the pair of topological defects interacting with the bath
of magnons,

H =
1

2M
(P−PE)

2
+

1

2

∑

nm

(

p2nm + ω2
nm q2nm

)

, (4)

where M =
∫

d2r(∇Ψ2v)
2 is the mass of the topological

defect, P and pnm are respectively the momentum con-
jugate to R and to the coordinate qnm of the excitation
with frequency ωnm, and PE =

∑

nm,kl pnm Gnm,kl qkl.
The constants Gnm,kl are related to the eigenfunctions η
by Gnm,kl =

∫

d2rηkl∇ηnm. The classical Hamiltonian
(4) is quantized by introducing the usual creation and an-
nihilation operators a†nm and anm. Restricting the anal-
ysis to the case of elastic scattering and retaining only
the terms at quadratic order in a†nm, anm we obtain

Ĥ =
P̂2

2M
− h̄P̂

M

∑

nm,kl

Dnm,klanma†kl + Ĥb, (5)
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where Ĥb =
∑

nm h̄ωnma†nmanm and Dnm,kl =
Gnm,kl(ωnm + ωkl)/2i

√
ωnmωkl.

Our aim is to investigate, in the low-energy sector,
the effective dynamics of the vortex-pair in the presence
of the excitation bath. We compute the reduced den-
sity matrix of the pair by integrating out the degrees
of freedom of the bath of magnons, for which we em-
ploy the Feynman-Vernon path-integral formalism. The
evolution of the density matrix for the full system is de-
scribed by ρ̂(t) = exp(−iĤt/h̄)ρ̂(0)exp(iĤt/h̄). For the
sake of simplicity, we use the factorisable initial condi-
tion ρ̂(0) = ρ̂v(0) ρ̂b(0), where ρv and ρ̂b represent, re-
spectively, the initial vortex-pair and bath density ma-
trices. This condition implies that the pair of topologi-
cal defects and the excitations do not interact at t = 0.
The bath degrees of freedom are supposed to be initially

in thermal equilibrium, ρ̂b(0) = e−βĤb/tr[e−βĤb ], where
β ≡ h̄/kBT . After evaluating the trace over these, we ob-
tain the reduced density-matrix operator for the vortex-
pair

ˆ̃ρ(x,y, t) =

∫ ∫

dx′dy′J(x,y, t;x′,y′, 0)ρ̂v(x
′,y′, 0),

where the super-propagator J has the form

J =

∫

x

x′

Dx

∫

y

y′

Dye
i

h̄
[S0[x]−S0[y]]F [x,y]. (6)

S0[x] =
∫ t

0 dt
′(M/2)ẋ2 is the action associated with the

free motion of the vortices and F [x,y] is the influence
functional, which describes the effect of the excitations
on the dynamics of the topological defect pair.

Defining the center of mass and relative coordinates
v = (x+y)/2,u = x−y and using the Born approxima-
tion, one finds, after a lengthy calculation [13], that

F [x,y] = exp [iΦ] exp [Φ̃], (7)

where

Φ = 2

2
∑

µ,ν=1

∫ t

0

dt′
∫ t′

0

dt′′ǫµν(t′ − t′′)u̇µ(t′)v̇ν(t′′), Φ̃ =

2
∑

µ,ν=1

∫ t

0

dt′
∫ t′

0

dt′′ǫ̃µν(t′ − t′′)u̇µ(t′)u̇ν(t′′),

ǫµν(t) =
∑

nm,kl 6=0

NnmDµ
nm,klD

ν
nm,kl sin (ωnm − ωkl)t, ǫ̃µν(t) =

∑

nm,kl 6=0

NnmDµ
nm,klD

ν
nm,kl cos (ωnm − ωkl)t.

The boson occupation number is Nnm = (eβωnm − 1)−1.
The effective action that describes the motion of the vor-
tex pair in the presence of excitations may then be ob-
tained by inserting Eq. (7) into the superpropagator (6).
We find that Seff = S0[x] − S0[y] + h̄Φ and the corre-
sponding equations of motion indicate that the dynamics
of the defects is damped,

v̈µ(τ) +
∑

ν

∫ τ

0

dt′γµν(τ − t′) v̇ν(t′) = 0,

üµ(τ) −
∑

ν

∫ t

τ

dt′γµν(t′ − τ)u̇ν(t′) = 0, (8)

where the matrix γµν(t) = (2h̄/M)ǫ̇µν(t) is a general-
ization of the damping coefficient. The decaying part
exp[Φ̃] of the influence functional is related to the diffu-
sive properties of the defect, with the diffusion matrix
Dµν(t) = h̄¨̃ǫ

µν
(t). The evaluation of the diffusion is

analogous to that of the damping matrix, and at low
T the two parameters are related by the fluctuation-
dissipation theorem. Here we will concentrate on γ only.
We first introduce the scattering function Sµν(ω, ω′) =

∑

Gµ
nm,klG

ν
nm,klδ(ω−ωnm)δ(ω′ −ωkl), which allows the

description of the problem in terms of continuous fre-
quencies. Because the model we study is isotropic, the
damping matrix is diagonal γµν(t) = γ(t)δµν , and γ(t)
is obtained directly from the first derivative ǫ̇(t). After
introducing the substitution ξ = (ω + ω′)/2, ζ = ω − ω′,
and considering only processes for which ζ << 1, we find
that γ(t) = γ̄(T )δ(t) with

γ̄(T ) = −2πh̄

M

∫ ∞

0

dξϕ(ξ)
∂N(ξ)

∂ξ
, (9)

ϕ(ξ) =
ξ2

2c2

∞
∑

n=1

sin2(δn+1 − δn).

The phase shifts δn of the eigenfunctions ηnm can be
calculated using the Fredholm method [12, 13]. Their
evaluation requires the computation of the matrix ele-
ments An = 〈n|V |n〉, because δn = arctan[πAn/(1 +
An)]. Here |n〉 are the eigenstates of the unperturbed
operator in Eq. (3). In the limit of a small vortex-
antivortex separation, d ≪ r, the potential reads V (r) =
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d2/[4(r2 + d2/4)2]. One then obtains

An(ξ) = −πξ∂ξ [In(ξd/2c)Kn(ξd/2c)] ,

where In,Kn are the modified Bessel functions of the
first and the second kinds, respectively. Using the Drude
model and assuming that the charge carriers are attached
to the defects, we can relate γ̄ to the inverse of the mo-
bility, µ−1 = Mγ̄/e. We then find

µ−1 =
πh̄β

ec2

∞
∑

n=1

∫ ∞

0

dξ
ξ2eβξ

(eβξ − 1)2
B2
n(ξ)

[1 + B2
n(ξ)]

, (10)

Bn =
π(An+1 −An)

1 +An +An+1 + (1 + π2)AnAn+1
.

This expression leads to a vanishing µ−1 as T → 0
because in this limit there are no magnons to scatter the
topological defects and the latter behave as free particles.
However, this limit will never be reached in systems like
LSCO because at Tf ∼ 30K the dipoles freeze and the
charge becomes localized, leading to an upturn of the
resistivity. At high T we obtain

µ−1(T ) =
πkBT

ec2

∑

n

∫ ∞

0

dξ
B2
n(ξ)

1 + B2
n(ξ)

, (11)

which indicates that the resistivity ρ = (µnhe)
−1 varies

linearly with T , as observed experimentally [6, 14]. Here
nh denotes the charge carriers concentration. This be-
havior is expected to hold for T < TKT , where TKT is
the Kosterlitz-Thouless temperature, at which the vortex
anti-vortex pairs will eventually unbind. An attempt to
roughly estimate TKT has provided TKT ∼ JS2 [5]. Us-
ing that J ∼ 0.1eV and S = 1/2, we find TKT ∼ 300K.
Despite of the crudeness of the estimates, this result com-
pares quite well with the experimental data [14], which
shows deviations from linearity at T ∼ 400K. Given that
TKT represents the temperature at which few pairs start
to unbind, it is not surprising that the linear behavior
can hold up to higher T.
The order of magnitude of the resistivity can also

be promptly evaluated from our calculations. Although
the exact microscopic values of the parameters d and c
are not available, we nevertheless provide an estimate
of these. Taking h̄c/akB ∼ TKT and d ∼ a, we find
µ−1 ∼ 0.1Vs/cm2 for T = 200K, in good agreement with
Fig. 2 of Ref. [6].
In order to provide also a comparison with the exper-

imental data concerning the anisotropy in dc transport,
we should include the spin-wave anisotropy in the spiral
state. The analytical calculations which led to Eqs. (9)
- (11) cannot be performed for an anisotropic magnon
bath. Nevertheless, we provide a rough estimate of this
effect by considering the dependence of the inverse mo-
bility in Eq. (11) on the spin-wave velocity c. Recalling
that Bn is a function of ξd/2c, we find that µ−1 ∝ c−1.

One could then expect that in the original anisotropic
system µ−1

⊥ ∝ c−1
⊥ and µ−1

‖ ∝ c−1
‖ . This result can also

be understood on physical grounds: since dissipation is
provided by the excitations of the magnon bath, spin-
waves with higher velocity are less effective in scatter-
ing the defects. As a consequence, the resistivity in the
spiral direction is larger than that in the direction per-
pendicular to it, γ⊥/γ‖ = ρ⊥/ρ‖ = c‖/c⊥ =

√

cos (Qa).

For x = 0.04, we find
√

cos (Qa) = 0.98, in agreement
with transport measurements by Ando et al. [6], which
found that for 100K< T < 200K the resistivity along
the a-axis in LSCO is slightly smaller than along the b-
axis (in orthorhombic coordinates). We note that the IC
peaks observed in neutron scattering correspond to the
b-direction, which coincides with the spiral axis because
the breaking of translational symmetry within the spiral
picture has its origin in the spiral chirality (which can ro-
tate clock- or counter-clockwise). Thus, ρ⊥ ≡ ρa, ρ‖ ≡ ρb
and ρa < ρb, as experimentally observed. This result in-
dicates that the anisotropy measured in the SG phase
does not provide evidence for the existence of diagonal
stripes, but instead, is also the result expected within a
more realistic, albeit more complex, model which does
not need to appeal to charge order at such small doping
concentrations.

In conclusion, we propose a description of the trans-
port properties in the SG phase of cuprates based on
the dissipative dynamics of topological defects in a spiral
state. Using the collective-coordinate method, we derive
the effective action of the topological defects, which are
coupled to a bath of magnons. The scattering of magnons
by the potential provided by the topological defects leads
to a dissipative motion for these defects. Under the as-
sumption that the holes are attached to the defects, the
corresponding damping matrix is calculated, and is re-
lated to the in-plane resistivity. Its T dependence and
anisotropic behavior are in agreement with the available
experimental data, indicating that further investigations
are required to distinguish between spiral spin states and
diagonal stripes in the SG phase of cuprates.
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