27 research outputs found

    Antibody binding modulates conformational exchange in domain III of dengue virus E protein

    Get PDF
    Domain III of dengue virus E protein (DIII) participates in the recognition of cell receptors and in structural rearrangements required for membrane fusion and ultimately viral infection; furthermore, it contains epitopes for neutralizing antibodies and has been considered a potential vaccination agent. In this work, we addressed various structural aspects of DIII and their relevance for both the dengue virus infection mechanism and antibody recognition. We provided a dynamic description of DIII at physiological and endosomal pHs and in complex with the neutralizing human antibody DV32.6. We observed conformational exchange in the isolated DIII, in regions important for the packing of E protein dimers on the virus surface. This conformational diversity is likely to facilitate the partial detachment of DIII from the other E protein domains, which is required to achieve fusion to the host cellular membranes and to expose the epitopes of many anti-DIII antibodies. A comparison of DIII of two dengue virus serotypes revealed many common features but also some possibly unexpected differences. Antibody binding to DIII of dengue virus serotype 4 attenuated the conformational exchange in the epitope region but, surprisingly, generated exchange in other parts of DIII through allosteric effects

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Conformational dynamics and kinetics of protein interactions by nuclear magnetic resonance

    No full text
    Structural information of protein complexes is fundamental for the rational drug design and improvement of vaccines and biosensors. Also, protein misassembly can have severe biological consequences. Here we discuss the challenges of studying protein complexes and show examples of systems characterized using NMR

    Conformational dynamics of Tetracenomycin aromatase/cyclase regulate polyketide binding and enzyme aggregation propensity

    No full text
    Background: The N-terminal domain of Tetracenomycin aromatase/cyclase (TcmN), an enzyme derived from Streptomyces glaucescens, is involved in polyketide cyclization, aromatization, and folding. Polyketides are a diverse class of secondary metabolites produced by certain groups of bacteria, fungi, and plants with various pharmaceutical applications. Examples include antibiotics, such as tetracycline, and anticancer drugs, such as doxorubicin. Because TcmN is a promising enzyme for in vitro production of polyketides, it is important to identify conditions that enhance its thermal resistance and optimize its function. Methods: TcmN unfolding, stability, and dynamics were evaluated by fluorescence spectroscopy, circular dichroism, nuclear magnetic resonance 15N relaxation experiments, and microsecond molecular dynamics (MD) simulations. Results: TcmN thermal resistance was enhanced at low protein and high salt concentrations, was pH-dependent, and denaturation was irreversible. Conformational dynamics on the μs-ms timescale were detected for residues in the substrate-binding cavity, and two predominant conformers representing opened and closed cavity states were observed in the MD simulations. Conclusion: Based on the results, a mechanism was proposed in which the thermodynamics and kinetics of the TcmN conformational equilibrium modulate enzyme function by favoring ligand binding and avoiding aggregation. General significance: Understanding the principles underlying TcmN stability and dynamics may help in designing mutants with optimal properties for biotechnological applications.Fil: Valadares, Veronica S.. Universidad Federal de Minas Gerais; BrasilFil: Martins, Luan C.. Universidade Federal de Minas Gerais; BrasilFil: Roman, Ernesto Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Valente, Ana Paula. Universidade Federal do Rio de Janeiro; BrasilFil: Cino, Elio A.. Universidade Federal de Minas Gerais; BrasilFil: Moraes, Adolfo H.. Institut Max Planck Fuer Gesellschaft; Alemania. Universidade Federal de Minas Gerais; Brasi

    Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core

    No full text
    Parkinson’s disease is a neurological disease in which aggregated forms of the α-synuclein (α-syn) protein are found. We used high hydrostatic pressure (HHP) coupled with NMR spectroscopy to study the dissociation of α-syn fibril into monomers and evaluate their structural and dynamic properties. Different dynamic properties in the non-amyloid-β component (NAC), which constitutes the Greek-key hydrophobic core, and in the acidic C-terminal region of the protein were identified by HHP NMR spectroscopy. In addition, solid-state NMR revealed subtle differences in the HHP-disturbed fibril core, providing clues to how these species contribute to seeding α-syn aggregation. These findings show how pressure can populate so far undetected α-syn species, and they lay out a roadmap for fibril dissociation via pathways not previously observed using other approaches. Pressure perturbs the cavity-prone hydrophobic core of the fibrils by pushing water inward, thereby inducing the dissociation into monomers. Our study offers the molecular details of how hydrophobic interaction and the formation of water-excluded cavities jointly contribute to the assembly and stabilization of the fibrils. Understanding the molecular forces behind the formation of pathogenic fibrils uncovered by pressure perturbation will aid in the development of new therapeutics against Parkinson’s disease

    PLOS One / A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope

    No full text
    Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients sera to all three -parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.(VLID)492531

    Monitoring the progress of biopanning by polyclonal phage ELISA

    No full text
    <p>. (A) The polyclonal phage mixture from each round of biopanning was tested for recognition of Gad m 1, Cyp c 1 and Onc m 1. (B) Monoclonal phage ELISA: Ten single phage clones randomly selected from each third round of biopanning were tested for binding to Gad m 1, Cyp c 1 and Onc m 1.</p
    corecore