1,658 research outputs found
Global citizenhip education in CEPR Ángel Campano
La escuela constituye uno de los espacios y agentes esenciales, para el desarrollo de personas que sean capaces de tomar conciencia, reflexionen y se comprometan por lograr: la igualdad, la justicia, el desarrollo sostenible, la solidaridad... Educar ciudadanos globales, responsables de sus actos más allá de cualquier frontera, ha de ser un fin primordial en educación, necesario, para construir un mundo más humano. En nuestra escuela creemos y trabajamos en ello y por ello, a través de prácticas educativas cotidianas inmersas en la organización y funcionamiento del centro, así como programando planes, propuestas educativas, que se integran totalmente en el Proyecto de Centro (Acogida, Acción Tutorial, Atención a la Diversidad...), mostramos seguidamente algunas de estas prácticas
Chloroplast fructose-1,6-bisphosphatase: Modification of non-covalent interactions promote the activation by chimeric Escherichia coli thioredoxins
AbstractAlthough all thioredoxins contain a highly conserved amino acid sequence responsible for thiol/disulfide exchanges, only chloroplast thioredoxin-f is effective in the reductive stimulation of chloroplast fructose- 1,6-bisphosphatase. We set out to determine whether Escherichia coli thioredoxin becomes functional when selected modulators alter the conformation of the target enzyme. Wild type and chimeric Escherichia coli thioredoxins match the chloroplast counterpart when the activation of chloroplast fructose- 1,6-bssphosphatase is performed in the presence of fructose 1,6-bisphosphate, Ca2+, and either trichloroacetate or 2-propanol. These modulators of enzyme activity do change the conformation of chloroplast fructose-1,6-bisphosphatase whereas bacterial thioredoxins remain unaltered. Given that fructose 1,6-bisphosphate, Ca2+, and non-physiological perturbants modify non-covalent interactions of the protein but do not participate in redox reactions, these results strongly suggest that the conformation of the target enzyme regulates the rate of thiol/disulfide exchanges catalyzed by protein disulfide oxidoreductases
A Role for Pre-mRNA-PROCESSING PROTEIN 40C in the Control of Growth, Development, and Stress Tolerance in Arabidopsis thaliana
Because of their sessile nature, plants have adopted varied strategies for growing and reproducing in an ever-changing environment. Control of mRNA levels and pre-mRNA alternative splicing are key regulatory layers that contribute to adjust and synchronize plant growth and development with environmental changes. Transcription and alternative splicing are thought to be tightly linked and coordinated, at least in part, through a network of transcriptional and splicing regulatory factors that interact with the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. One of the proteins that has been shown to play such a role in yeast and mammals is pre-mRNA-PROCESSING PROTEIN 40 (PRP40, also known as CA150, or TCERG1). In plants, members of the PRP40 family have been identified and shown to interact with the CTD of RNA Pol II, but their biological functions remain unknown. Here, we studied the role of AtPRP40C, in Arabidopsis thaliana growth, development and stress tolerance, as well as its impact on the global regulation of gene expression programs. We found that the prp40c knockout mutants display a late-flowering phenotype under long day conditions, associated with minor alterations in red light signaling. An RNA-seq based transcriptome analysis revealed differentially expressed genes related to biotic stress responses and also differentially expressed as well as differentially spliced genes associated with abiotic stress responses. Indeed, the characterization of stress responses in prp40c mutants revealed an increased sensitivity to salt stress and an enhanced tolerance to Pseudomonas syringae pv. maculicola (Psm) infections. This constitutes the most thorough analysis of the transcriptome of a prp40 mutant in any organism, as well as the first characterization of the molecular and physiological roles of a member of the PRP40 protein family in plants. Our results suggest that PRP40C is an important factor linking the regulation of gene expression programs to the modulation of plant growth, development, and stress responses.Fil: Hernando, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: García Hourquet, Mariano. Fundación Instituto Leloir; ArgentinaFil: de Leone, María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Careno, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Mora Garcia, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
Fallopian Canal Meningocele Causing Cerebrospinal Fluid Rhinorrhoea
Fallopian canal meningocele is an extremely rare cause of cerebrospinal fluid rhinorrhoea. Also, due to complex anatomical relations and a lack of experience, its management remains a challenge. Here we report a case focusing on its clinical course, radiological features, and management
Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots
Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.Fil: González García, Mary Paz. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Vilarrasa Blasi, Josep. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Zhiponova, Miroslava. Ghent University. Department of Plant Biotechnology and Genetics; Bélgica. Vlaams Instituut voor Biotechnologie; BélgicaFil: Divol, Fanchon. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Mora Garcia, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Russinova, Eugenia. Ghent University. Department of Plant Biotechnology and Genetics; Bélgica. Vlaams Instituut voor Biotechnologie; BélgicaFil: Caño Delgado, Ana I. Centre for Research in Agricultural Genomics. Molecular Genetics Department; Españ
Preparation of dipyrrins from F-BODIPYs by treatment with methanesulfonic acids
An alternative metal-free soft procedure for the preparation of dipyrrins from F-BODIPYs is reported. The new method makes possible to obtain certain dipyrrin derivatives that were unaccessible from F-BODIPYs to date. To demonstrate the ability of the new procedure, dipyrrins having highly reactive groups, such as chloro, cyano or acetoxyl, have been easily obtained from the corresponding F-BODIPY, which shows the synthetic utility of the reported methodology
In Vitro Evaluation of Laser-Induced Periodic Surface Structures on New Zirconia/Tantalum Biocermet for Hard-Tissue Replacement
This study investigates the biological response of zirconia/tantalum biocermet materials with laser-induced periodic surface structures (LIPSS) generated using a femtosecond laser working at 1030 nm wavelength. LIPSS were formed by laser radiation slightly above the applied threshold fluence. LIPSS features were characterized using techniques such as atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). LIPSS were generated in this study by applying femtosecond pulses with 500 fs pulse duration at a high-repetition rate to smooth-polished zirconia/tantalum biocermet surfaces, with an original roughness value of 3.8 ± 0.2 and 3.1 ± 0.2 nm, respectively. We have demonstrated in vitro that LIPSS are an efficient option to increase osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in ZrO2:Ta biocermets. LIPSS created increase cell metabolism statistically (best values in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) and decrease inflammatory response to the material (IL-6 and TNF-alpha values). Extracellular matrix production (ECM) is produced in more quantity and cells differentiate to osteoblast easily. These differences are seen from the beginning until the endpoint (day 20)
Electron injection and scaffold effects in perovskite solar cells
In spite of the impressive efficiencies reported for perovskite solar cells (PSCs), key aspects of their working principles, such as electron injection at the contacts or the suitability of the utilization of a specific scaffold layer, are not yet fully understood. Increasingly complex scaffolds attained by the sequential deposition of TiO2 and SiO2 mesoporous layers onto transparent conducting substrates are used to perform a systematic characterization of both the injection process at the electron selective contact and the scaffold effect in PSCs. By forcing multiple electron injection processes at a controlled sequence of perovskite–TiO2 interfaces before extraction, interfacial injection effects are magnified and hence characterized in detail. An anomalous injection behavior is observed, the fingerprint of which is the presence of significant inductive loops in the impedance spectra with a magnitude that correlates with the number of interfaces in the scaffold. Analysis of the resistive and capacitive behavior of the impedance spectra indicates that the scaffolds could hinder ion migration, with positive consequences such as lowering the recombination rate and implications for the current–potential curve hysteresis. Our results suggest that an appropriate balance between these advantageous effects and the unavoidable charge transport resistive losses introduced by the scaffolds will help in the optimization of PSC performance.Unión Europea 7PM / 2007-2013Unión Europea ERC 307081 (POLIGHT)Ministerio de Economía y Competitividad de España MAT2014-54852-RMinisterio de Economía y Competitividad de España MAT2015-70611-ER
- …