6 research outputs found

    Segmentación de instancias para detección automática de malezas y cultivos en campos de cultivo

    Get PDF
    Con base en las recientes aplicaciones exitosas de técnicas de Aprendizaje Profundo en la clasificación, detección y segmentación de plantas, proponemos un enfoque de segmentación de instancias utilizando un modelo Mask R-CNN para la detección de malezas y cultivos en tierras de cultivo. Evaluamos el rendimiento de nuestro modelo con la métrica de precisión promedio de MSCOCO, contrastando el uso de técnicas de aumento de datos. Los resultados obtenidos muestran cómo el modelo se adapta muy bien en este contexto, abriendo nuevas oportunidades para soluciones automatizadas de control de malezas a gran escala

    Segmentación de instancias para detección automática de malezas y cultivos en campos de cultivo

    No full text
    Based on recent successful applications of Deep Learning techniques in classification, detection and segmentation of plants, we propose an instance segmentation approach that uses a Mask R-CNN model for weeds and crops detection on farmlands. We evaluated our model performance with the MSCOCO average precision metric, contrasting the use of data augmentation techniques. Results obtained show how the model fits very well in this context, opening new opportunities to automated weed control solutions, at larger scalesCon base en las recientes aplicaciones exitosas de técnicas de Aprendizaje Profundo en la clasificación, detección y segmentación de plantas, proponemos un enfoque de segmentación de instancias utilizando un modelo Mask R-CNN para la detección de malezas y cultivos en tierras de cultivo. Evaluamos el rendimiento de nuestro modelo con la métrica de precisión promedio de MSCOCO, contrastando el uso de técnicas de aumento de datos. Los resultados obtenidos muestran cómo el modelo se adapta muy bien en este contexto, abriendo nuevas oportunidades para soluciones automatizadas de control de malezas a gran escal

    Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots

    Get PDF
    International audiencePremise Weed removal in agriculture is typically achieved using herbicides. The use of autonomous robots to reduce weeds is a promising alternative solution, although their implementation requires the precise detection and identification of crops and weeds to allow an efficient action. Methods We trained and evaluated an instance segmentation convolutional neural network aimed at segmenting and identifying each plant specimen visible in images produced by agricultural robots. The resulting data set comprised field images on which the outlines of 2489 specimens from two crop species and four weed species were manually drawn. We adjusted the hyperparameters of a mask region-based convolutional neural network (R-CNN) to this specific task and evaluated the resulting trained model. Results The probability of detection using the model was quite good but varied significantly depending on the species and size of the plants. In practice, between 10% and 60% of weeds could be removed without too high of a risk of confusion with crop plants. Furthermore, we show that the segmentation of each plant enabled the determination of precise action points such as the barycenter of the plant surface. Discussion Instance segmentation opens many possibilities for optimized weed removal actions. Weed electrification, for instance, could benefit from the targeted adjustment of the voltage, frequency, and location of the electrode to the plant. The results of this work will enable the evaluation of this type of weeding approach in the coming months

    Accelerating the Automated Detection, Counting and Measurements of Reproductive Organs in Herbarium Collections in the Era of Deep Learning

    Get PDF
    Millions of herbarium records provide an invaluable legacy and knowledge of the spatial and temporal distributions of plants over centuries across all continents (Soltis et al. 2018). Due to recent efforts to digitize and to make publicly accessible most major natural collections, investigations of ecological and evolutionary patterns at unprecedented geographic scales are now possible (Carranza-Rojas et al. 2017, Lorieul et al. 2019). Nevertheless, biologists are now facing the problem of extracting from a huge number of herbarium sheets basic information such as textual descriptions, the numbers of organs, and measurements of various morphological traits. Deep learning technologies can dramatically accelerate the extraction of such basic information by automating the routines of organ identification, counts and measurements, thereby allowing biologists to spend more time on investigations such as phenological or geographic distribution studies. Recent progress on instance segmentation demonstrated by the Mask-RCNN method is very promising in the context of herbarium sheets, in particular for detecting with high precision different organs of interest on each specimen, including leaves, flowers, and fruits. However, like any deep learning approach, this method requires a significant number of labeled examples with fairly detailed outlines of individual organs. Creating such a training dataset can be very time-consuming and may be discouraging for researchers. We propose in this work to integrate the Mask-RCNN approach within a global system enabling an active learning mechanism (Sener and Savarese 2018) in order to minimize the number of outlines of organs that researchers must manually annotate. The principle is to alternate cycles of manual annotations and training updates of the deep learning model and predictions on the entire collection to process. Then, the challenge of the active learning mechanism is to estimate automatically at each cycle which are the most useful objects that must be manually extracted in the next manual annotation cycle in order to learn, in as few cycles as possible, an accurate model. We discuss experiments addressing the effectiveness, the limits and the time required of our approach for annotation, in the context of a phenological study of more than 10,000 reproductive organs (buds, flowers, fruits and immature fruits) of Streptanthus tortuosus, a species known to be highly variable in appearance and therefore very difficult to be processed by an instance segmentation deep learning model

    A new fine‐grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction

    Get PDF
    International audienceHerbarium specimens represent an outstanding source of material with which to study plant phenological changes in response to climate change. The fine‐scale phenological annotation of such specimens is nevertheless highly time consuming and requires substantial human investment and expertise, which are difficult to rapidly mobilize.Methods: We trained and evaluated new deep learning models to automate the detection, segmentation, and classification of four reproductive structures of Streptanthus tortuosus (flower buds, flowers, immature fruits, and mature fruits). We used a training data set of 21 digitized herbarium sheets for which the position and outlines of 1036 reproductive structures were annotated manually. We adjusted the hyperparameters of a mask R‐CNN (regional convolutional neural network) to this specific task and evaluated the resulting trained models for their ability to count reproductive structures and estimate their size.Results: The main outcome of our study is that the performance of detection and segmentation can vary significantly with: (i) the type of annotations used for training, (ii) the type of reproductive structures, and (iii) the size of the reproductive structures. In the case of Streptanthus tortuosus , the method can provide quite accurate estimates (77.9% of cases) of the number of reproductive structures, which is better estimated for flowers than for immature fruits and buds. The size estimation results are also encouraging, showing a difference of only a few millimeters between the predicted and actual sizes of buds and flowers.Discussion: This method has great potential for automating the analysis of reproductive structures in high‐resolution images of herbarium sheets. Deeper investigations regarding the taxonomic scalability of this approach and its potential improvement will be conducted in future work
    corecore