1,504 research outputs found

    Eliminación de contaminantes orgánicos emergentes mediante procesos electroquímicos de oxidación avanzada.

    Full text link
    [ES] La presente Tesis Doctoral se centra en el estudio del comportamiento electroquímico de nuevos electrodos cerámicos basados en SnO2 dopado con Sb2O3. El estudio está orientado a la posterior aplicación de estos electrodos en procesos electroquímicos de oxidación avanzada. Inicialmente, se consideraron diferentes temperaturas de sinterización (entre 1050°C y 1250°C) y se observó que un aumento en la temperatura de sinterización favorecía la deposición del Sb2O3 en la superficie anódica, disminuyendo así la resistividad del electrodo. Posteriormente, se estudió el comportamiento electroquímico de estos nuevos electrodos obteniendo el potencial de descarga del oxígeno mediante la técnica de voltametría de barrido lineal. Los resultados obtenidos revelaron que el valor del potencial de descarga del oxígeno disminuye con el aumento de la temperatura de sinterización. Además, estos electrodos presentaron un comportamiento intermedio entre el ánodo de Pt y el ánodo de BDD. Este último electrodo se emplea habitualmente en los procesos electroquímicos de oxidación avanzada debido a su elevada capacidad para generar radicales hidroxilo, los cuales son capaces de oxidar los compuestos orgánicos a dióxido de carbono y agua. A continuación, se llevaron a cabo ensayos de oxidación electroquímica con estos electrodos cerámicos para seleccionar la temperatura de sinterización. Los resultados mostraron que con el electrodo cerámico sinterizado a 1250°C se alcanza una menor degradación del compuesto orgánico, mientras que los electrodos sinterizados a menores temperaturas presentan un comportamiento similar entre ellos. Por tanto, se seleccionó el electrodo cerámico sinterizado a 1200°C ya que presenta una baja resistividad y un buen comportamiento electroquímico para ser utilizado como ánodo en los procesos electroquímicos de oxidación avanzada. Seguidamente se analizó la vida útil de estos electrodos cerámicos, y se comprobó que la matriz cerámica incrementa en gran medida la estabilidad a la polarización anódica de los electrodos basados en SnO2. Posteriormente, se llevaron a cabo procesos de electro-oxidación en modo galvanostático de distintos contaminantes difíciles de eliminar por las técnicas convencionales utilizando como ánodo los nuevos electrodos cerámicos y el electrodo de BDD, para así poder comparar los resultados obtenidos. Se observó que, aunque con los electrodos cerámicos se consigue degradar el 100% de los distintos contaminantes, el electrodo de BDD es el más eficiente ya que genera mayor cantidad de especies oxidantes activas en su superficie. Para un mismo electrodo, se observó que un aumento en la densidad de corriente aplicada mejora la velocidad de degradación y mineralización de cada contaminante, mientras que la eficiencia eléctrica disminuye. Por otro lado, se estudió el efecto de la presencia de una membrana de intercambio catiónico entre ánodo y cátodo. Los resultados mostraron que el uso de la membrana beneficia la degradación y la mineralización del contaminante, ya que mejora la cinética de reacción anódica y evita la reducción de las especies oxidantes electrogeneradas. A continuación, se analizó la influencia de la concentración del Na2SO4 como electrolito soporte. En este estudio se observó que un aumento en la concentración del Na2SO4 mejora la mineralización del contaminante para el electrodo de BDD y, por el contrario, empeora para el electrodo cerámico. Esto se debe a la capacidad de cada electrodo para oxidar los sulfatos a persulfatos. Por último, se llevaron a cabo ensayos de ecotoxicidad de las muestras tratadas, y se demostró que, en presencia de membrana, a mayor densidad de corriente y con el electrodo de BDD la toxicidad de la muestra es mayor debido a la mayor presencia en disolución de iones persulfato. Por tanto, con el electrodo cerámico, además de alcanzar un elevado grado de degradación del contamina[CAT] La present Tesi Doctoral es centra en l'estudi del comportament electroquímic de nous elèctrodes ceràmics basats en SnO2 dopat amb Sb2O3. L'estudi està orientat a la posterior aplicació d'aquests elèctrodes en processos electroquímics d'oxidació avançada. Inicialment, es van considerar diferents temperatures de sinterització (entre 1050°C i 1250°C) i es va observar que un augment en la temperatura de sinterització afavoria la deposició de Sb2O3 en la superfície anòdica, disminuint així la resistivitat de l'elèctrode. Posteriorment, es va estudiar el comportament electroquímic d'aquests nous elèctrodes obtenint el potencial de descàrrega de l'oxigen mitjançant la tècnica de voltametria de passada lineal. Els resultats obtinguts van revelar que el valor del potencial de descàrrega de l'oxigen disminueix amb l'augment de la temperatura de sinterització. A més, aquests elèctrodes ceràmics van presentar un comportament intermedi entre l'ànode de Pt y l'ànode de BDD. Aquest últim elèctrode s'utilitza habitualment en els processos electroquímics d'oxidació avançada a causa de la seua elevada capacitat per a generar radicals hidroxil, els quals són capaços d'oxidar els compostos orgànics a diòxid de carboni i aigua. A continuació, es van dur a terme assajos d'oxidació electroquímica amb aquests elèctrodes ceràmics per a seleccionar la temperatura de sinterització. Els resultats van mostrar que amb l'elèctrode ceràmic sinteritzat a 1250°C s'aconsegueix una menor degradació del compost orgànic, mentre que els elèctrodes sinteritzats a menors temperatures presenten un comportament similar entre ells. Per tant, es va seleccionar l'elèctrode ceràmic sinteritzat a 1200 °C ja que presenta una baixa resistivitat i un bon comportament electroquímic per a ser utilitzat com a ànode en els processos electroquímics d'oxidació avançada. Seguidament, es va analitzar la vida útil d'aquests elèctrodes ceràmics, i es va comprovar que la matriu ceràmica incrementa en gran mesura l'estabilitat a la polarització anòdica dels elèctrodes basats en SnO2. Posteriorment es van dur a terme processos d'electro-oxidació en mode galvanostàtic de diferents contaminants difícils d'eliminar per les tècniques convencionals utilitzant com a ànode els nous elèctrodes ceràmics i l'elèctrode de BDD, per a així poder comparar els resultats obtinguts. Es va observar que, encara que amb els elèctrodes ceràmics s'aconsegueix degradar el 100% dels diferents contaminants, l'elèctrode de BDD és el més eficient ja que genera una major quantitat d'espècies oxidants actives en la seua superfície. Per a un mateix elèctrode, es va observar que un augment en la densitat de corrent aplicada millora la velocitat de degradació i mineralització de cada contaminant, mentre que l'eficiència elèctrica disminueix. D'altra banda, es va estudiar l'efecte de la presència d'una membrana d'intercanvi catiònic entre ànode i càtode. Els resultats van mostrar que l'ús de la membrana beneficia la degradació i la mineralització del contaminant, ja que millora la cinètica de reacció anòdica i evita la reducció de les espècies oxidants electrogenerades. A continuació, es va analitzar la influència de la concentració del Na2SO4 com a electròlit suport. En aquest estudi es va observar que un augment en la concentració del Na2SO4 millora la mineralització del contaminant per a l'elèctrode de BDD i, per contra, empitjora per a l'elèctrode ceràmic. Això es deu a la capacitat de cada elèctrode per a oxidar els sulfats a persulfats. Finalment, es van dur a terme assajos d'ecotoxicitat de les mostres tractades, i es va demostrar que, en presència de membrana, a major densitat de corrent i amb l'elèctrode de BDD la toxicitat de la mostra és major a causa de la major presència en dissolució d'ions persulfat. Per tant, amb l'elèctrode ceràmic, a més d'aconseguir un elevat grau de degradació del con[EN] The present Doctoral Thesis focuses on the study of the electrochemical behaviour of new ceramic electrodes based on SnO2 doped with Sb2O3. The study is oriented at the subsequent application of these electrodes in electrochemical advanced oxidation processes. Initially, different sintering temperatures were considered (between 1050°C and 1250°C) and it was observed that an increase in the sintering temperature favoured the deposition of Sb2O3 on the anodic surface, thus decreasing the resistivity of the electrode. Later, the electrochemical behaviour of these new electrodes was studied by means of the oxygen discharge potential using the linear sweep voltammetry technique. The results obtained revealed that the value of the oxygen discharge potential decreases with increasing the sintering temperature. Furthermore, these electrodes showed an intermediate behaviour between the Pt anode and the BDD one. This last electrode is commonly used in advanced electrochemical oxidation processes due to its high capacity to generate hydroxyl radicals, which are capable of oxidizing the organic compounds to carbon dioxide and water. Then, electrochemical oxidation tests were carried out with these ceramic electrodes to select the sintering temperature. The results showed that with the ceramic electrode sintered at 1250°C, a lower degradation and mineralization of the organic compound is achieved, while the electrodes sintered at lower temperatures showed a similar behaviour. Therefore, the ceramic electrode sintered at 1200°C was selected as it presents low resistivity good electrochemical behaviour to be used as anode in electrochemical advanced oxidation processes. Next, the service life of these ceramic electrodes was analyzed, and it was found that the ceramic matrix greatly increases the anodic polarization stability of the electrodes based on SnO2. Subsequently, electro-oxidation processes were carried out in galvanostatic mode for different contaminants that are difficult to remove by conventional techniques, using the new ceramic electrodes and the BDD electrode as anodes, in order to compare the results obtained. It was observed that ceramic electrodes can be used as anodes for electrochemical oxidation, since for high current densities it is possible to degrade a 100% of the different contaminants. However, the BDD electrode is the most efficient one since it generates more active oxidant species on its surface. For a given electrode, an increase in the current density improves the degradation and mineralization of each contaminant, while the electrical efficiency decreases. On the other hand, the effect of the presence of a cation-exchange membrane between anode and cathode was studied. The results showed that its use benefits the degradation and mineralization of the contaminants, since it improves the kinetics of the anodic reaction and avoids the reduction of the electrogenated oxidant species. Next, the influence of the concentration of Na2SO4 as supporting electrolyte was analyzed. In this study it was observed that an increase in the Na2SO4 concentration improves the mineralization of the contaminant for the BDD electrode and, on the contrary, worsens for the ceramic electrode. This is due to the ability of each electrode to oxidize sulfates to persulfates. Finally, ecotoxicity tests on the treated samples were carried out, and it was shown that, in the presence of the membrane, at higher current density and with the BDD electrode, the toxicity of the sample is greater due to the higher presence of persulfate ions. Therefore, with the ceramic electrode, in addition to achieving a high degree of contaminant degradation, the treated samples are less toxic than the samples treated with the BDD electrode.Agradezco al Ministerio de Economía y Competitividad por la financiación recibida mediante los proyectos CTQ2015-65202-C2-1-R y RTI2018-101341-B-C21, y a la cofinanciación con los fondos FEDER, que han permitido llevar a cabo la investigación en la Universitat Politècnica de València para la realización de la presente Tesis. También agradecer a Sergio Mestre Beltrán por proporcionarnos los nuevos electrodos cerámicos en los que se ha basado este trabajo.Mora Gómez, J. (2020). Eliminación de contaminantes orgánicos emergentes mediante procesos electroquímicos de oxidación avanzada [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158751TESI

    Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane

    Get PDF
    [EN] Electrochemical oxidation of Norfloxacin (NOR) in sodium sulphate media has been comparatively studied in an undivided and in a divided electrolytic cell both containing either a boron doped diamond (BDD) or a novel Sb-doped SnO2 ceramic anode under galvanostatic operation. The electro-oxidation was found to occur with first order kinetics mainly when using both anodes. The results showed the great oxidizing power of BDD in relation to the ceramic anode to convert NOR and all the intermediate accumulated into CO2. In the case of the BDD, although a 92% of TOC abatement was achieved, the complete mineralization was not possible probably due to the carboxylic acids still present in solution. On the contrary, for the ceramic electrode, which presented a maximum value of TOC removal of about 63%, the total mineralization of the aromatic oxidation intermediates was not reached under the experimental conditions. The use of a membrane divided cell showed positive aspects in terms of molecule degradation, degree of mineralization and current efficiency since prevents the intermediate products formed during the NOR oxidation process from being reduced on the cathode.Mora-Gómez, J.; Ortega Navarro, EM.; Mestre, S.; Pérez-Herranz, V.; García Gabaldón, M. (2019). Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology. 208:68-75. https://doi.org/10.1016/j.seppur.2018.05.017S687520

    Incorporation of the PBL methodology to the subject of Environmental Technology of the Degree in Chemical Engineering at the Alcoy campus

    Full text link
    [EN] In the subject of Environmental Technology of the Degree in Chemical Engineering at the UPV on the Alcoy campus, a modification is incorporated in the methodology followed until now. The classes were based on the participatory lecture with resolution of questions and problems in the classroom, and the subsequent evaluation of theoretical tests through tests and open response activities at the end of each didactic unit. This methodology can lead to the student not feeling fully motivated, thus favoring superficial learning of the subject. To ensure that their learning is deep, it is proposed to add in the 2021-2022 academic year a task for each didactic unit in which the student is the protagonist of his own learning and in which he can develop his critical thinking about the problem posed. Once the tasks were carried out by the students, it was observed that a high percentage of students had managed to solve the problems by linking different theoretical concepts explained in class, so the objective of promoting deep learning had been achieved.[ES] En la asignatura de Tecnología del medio ambiente del Grado en Ingeniería Química de la Universitat Politècnica de València en el campus de Alcoy se incorpora una modificación en la metodología seguida hasta ahora. Las clases se basaban en la lección magistral participativa con resolución de cuestiones y problemas en el aula, y la posterior evaluación de pruebas teóricas mediante test y actividades de respuesta abierta al finalizar cada unidad didáctica. Esta metodología puede llevar a que el estudiante no se sienta del todo motivado, favoreciendo así el aprendizaje superficial de la materia. Para conseguir que su aprendizaje sea profundo, se propone añadir en el curso académico 2021-2022 una tarea para cada unidad didáctica en la que el alumno sea el protagonista de su propio aprendizaje y en la cual pueda desarrollar su pensamiento crítico sobre el problema planteado. Una vez realizadas las tareas por los alumnos, se observó que un elevado porcentaje de alumnos habían conseguido solucionar los problemas enlazando distintos conceptos teóricos explicados en clase, por lo que se había alcanzado el objetivo de favorecer el aprendizaje profundo.Mora Gómez, J.; Montañés Sanjuan, MT.; Blasco Tamarit, ME. (2022). Incorporación de la metodología ABP a la asignatura de Tecnología del medio ambiente del Grado en Ingeniería Química en el campus de Alcoy. En In-Red 2022 - VIII Congreso Nacional de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 1007-1016. https://doi.org/10.4995/INRED2022.2022.158711007101

    Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater

    Get PDF
    [EN] The properties of the ceramic electrodes make them interesting for electrochemical advanced oxidation processes (EAOPs), destined to the elimination of emergent or refractory contaminants, as an alternative to boron doped-diamond (BDD) electrodes. For this purpose, new ceramic electrodes based on Sb-doped SnO2 have been developed. Sb-doped tin oxide electrodes have been obtained through mechanical mixing of raw materials and sintering of dry-pressed specimens. Different sintering temperatures (1050 degrees C to 1250 degrees C) were considered. The electrochemical behavior of the resulting electrodes has been compared to that exhibited by Pt and BDDs electrodes. The oxygen discharge potential (E-02) for the ceramic electrodes decreases as the sintering temperature increases, being these values higher than that observed for the Pt electrode and smaller than that for the BDD electrode. This result in a highest rate of COD removal for the electrode sintered at 1050 degrees C comparing with the rest of ceramic electrodes under potentiostatic operation. On the other hand, in galvanostatic mode, the performance of the different ceramic electrodes in terms of the degradation of Norfloxacin, used as tested antibiotic, was similar. Comparing the behavior of the ceramic electrode sintered at 1250 degrees C and that of the BDD electrode at an applied potential of 3 V, it is inferred that although both present similar values in terms of the degradation of Norfloxacin, the rate of removal of the chemical oxygen demand is higher in the case of the BDD.The authors thanks to Ministerio de Economia y Competitividad (projects number: CTQ2015-65202-C2-1-R and CTQ2015-65202-C2-2R) and to Fondo Europeo de Desarrollo Regional (FEDER) the support to this research.Mora-Gómez, J.; García Gabaldón, M.; Ortega Navarro, EM.; Sánchez-Rivera, M.; Mestre, S.; Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International. 44(2):2216-2222. https://doi.org/10.1016/j.ceramint.2017.10.178S2216222244

    Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration

    Get PDF
    [EN] Novel Sb-doped SnO2 ceramic electrodes sintered at different temperatures, are applied to the degradation of Reactive Black 5 in both divided and undivided electrochemical reactors. In the undivided reactor the discoloration of the solution took place via the oxidation of RB5 dye, without the corresponding reduction in the chemical oxygen demand for the ceramic electrodes. However, in the divided one, it was possible to achieve the discoloration of the solution while at the same time decreasing the chemical oxygen demand through the ·OH-mediated oxidation, although the chemical oxygen demand degradation took place at a slower rate.The authors thank the financial support from the Ministerio de Economia y Competitividad (Spain) under projects CTQ2015-65202-C2-1-R and RTI2018-101341-B-C21, co-financed with FEDER funds.Droguett, T.; Mora-Gómez, J.; García Gabaldón, M.; Ortega Navarro, EM.; Mestre, S.; Cifuentes, G.; Pérez-Herranz, V. (2020). Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration. Scientific Reports. 10(1):1-11. https://doi.org/10.1038/s41598-020-61501-5S111101Daneshvar, N., Oladegaragoze, A. & Djafarzadeh, N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. J. Hazard. Mater. 129, 116–122 (2006).Şengil, I. A. & Özacar, M. The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. J. Hazard. Mater. 161, 1369–1376 (2009).Bandala, E. R. et al. Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes. Chem. Eng. Process. Process Intensif. 47, 169–176 (2008).Ahmad, A. L. & Puasa, S. W. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chem. Eng. J. 132, 257–265 (2007).Koyuncu, I. & Topacik, D. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Sep. Purif. Technol. 33, 283–294 (2003).Damodar, R. A., You, S. J. & Chou, H. H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 172, 1321–1328 (2009).Srivastava, H. P., Arthanareeswaran, G., Anantharaman, N. & Starov, V. M. Performance of modified poly(vinylidene fluoride) membrane for textile wastewater ultrafiltration. Desalination 282, 87–94 (2011).Mook, W. T., Ajeel, M. A., Aroua, M. K. & Szlachta, M. The application of iron mesh double layer as anode for the electrochemical treatment of Reactive Black 5 dye. J. Environ. Sci. (China) 54, 184–195 (2017).Tang, C. & Chen, V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Res. 38, 2775–2781 (2004).Aguedach, A., Brosillon, S., Morvan, J. & Lhadi, E. K. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal. B Environ. 57, 55–62 (2005).Sahel, K. et al. Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B-Isotherm of adsorption, kinetic of decolorization and mineralization. Appl. Catal. B Environ. 77, 100–109 (2007).Işik, M. & Sponza, D. T. A batch kinetic study on decolorization and inhibition of Reactive Black 5 and Direct Brown 2 in an anaerobic mixed culture. Chemosphere 55, 119–128 (2004).El Bouraie, M. & El Din, W. S. Biodegradation of Reactive Black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain. Environ. Res. 26, 209–216 (2016).Meriç, S., Kaptan, D. & Ölmez, T. Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere 54, 435–441 (2004).Dojčinović, B. P. et al. Decolorization of Reactive Black 5 using a Dielectric Barrier Discharge in the presence of inorganic salts. J. Serbian Chem. Soc. 77, 535–548 (2012).Cerón-Rivera, M., Dávila-Jiménez, M. M. & Elizalde-González, M. P. Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere 55, 1–10 (2004).Yavuz, Y. & Shahbazi, R. Anodic oxidation of Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Sep. Purif. Technol. 85, 130–136 (2012).Vasconcelos, V. M., Ponce-De-León, C., Nava, J. L. & Lanza, M. R. V. Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation-electro-Fenton in a filter-press flow cell. J. Electroanal. Chem. 765, 179–187 (2016).Lucas, M. S. & Peres, J. A. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dye. Pigment. 71, 236–244 (2006).Song, S., He, Z., Qiu, J., Xu, L. & Chen, J. Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters. Sep. Purif. Technol. 55, 238–245 (2007).Chang, S. H. et al. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process. J. Hazard. Mater. 175, 850–857 (2010).Daneshvar, N., Salari, D. & Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A Chem. 157, 111–116 (2003).Panizza, M. & Cerisola, G. Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl. Catal. B Environ. 75, 95–101 (2007).Martínez-Huitle, C. A. & Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B Environ. 87, 105–145 (2009).Panizza, M. & Cerisola, G. Electro-Fenton degradation of synthetic dyes. Water Res. 43, 339–44 (2009).Kapałka, A., Fóti, G. & Comninellis, C. Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J. Appl. Electrochem. 38, 7–16 (2008).Panizza, M. & Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51, 191–199 (2005).Panizza, M. & Cerisola, G. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 109, 6541–6569 (2009).Brillas, E. & Martínez-Huitle, C. A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 166–167, 603–643 (2015).Aquino, J. M., Pereira, G. F., Rocha-Filho, R. C., Bocchi, N. & Biaggio, S. R. Electrochemical degradation of a real textile effluent using boron-doped diamond or β-PbO2 as anode. J. Hazard. Mater. 192, 1275–1282 (2011).Comninellis, C. & Pulgarin, C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 23, 108–112 (1993).Zanta, C. L. P. S., Michaud, P.-A., Comninellis, C., De Andrade, A. R. & Boodts, J. F. C. Electrochemical oxidation of p-chlorophenol on SnO2 –Sb2O5 based anodes for wastewater treatment. J. Appl. Electrochem. 33, 1211–1215 (2003).Kötz, R., Stucki, S. & Carcer, B. Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem. 21, 14–20 (1991).Polcaro, A. M., Palmas, S., Renoldi, F. & Mascia, M. On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment. J. Appl. Electrochem. 29, 147–151 (1999).Martínez-Huitle, C. A. et al. Removal of the Pesticide Methamidophos from Aqueous Solutions by Electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD Electrodes. Environ. Sci. Technol. 42, 6929–6935 (2008).Watts, R. J., Wyeth, M. S., Finn, D. D. & Teel, A. L. Optimization of Ti/SnO2–Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J. Appl. Electrochem. 38, 31–37 (2007).Zhuo, Q., Deng, S., Yang, B., Huang, J. & Yu, G. Efficient Electrochemical Oxidation of Perfluorooctanoate Using a Ti/SnO2-Sb-Bi Anode. Environ. Sci. Technol. 45, 2973–2979 (2011).Lipp, L. & Pletcher, D. The preparation and characterization of tin dioxide coated titanium electrodes. Hecrrochimico Acta 42, 1091–1099 (1997).Zuca, S., Terzi, M., Zaharescu, M. & Matiasovsky, K. Contribution to the study of SnO2-based ceramics. J. Mater. Sci. 26, 1673–1676 (1991).Park, S.-Y., Mho, S.-I., Chi, E. O., Kwon, Y. U. & Park, H. L. Characteristics of Pt thin films on the conducting ceramics TiO and Ebonex (Ti4O7) as electrode materials. Thin Solid Films 258, 5–9 (1995).Chen, G., Betterton, E. A. & Arnold, R. G. Electrolytic oxidation of trichloroethylene using a ceramic anode. J. Appl. Electrochem. 29, 961–970 (1999).Scialdone, O., Galia, A. & Filardo, G. Electrochemical incineration of 1,2-dichloroethane: Effect of the electrode material. Electrochim. Acta 53, 7220–7225 (2008).Bejan, D., Malcolm, J. D., Morrison, L. & Bunce, N. J. Mechanistic investigation of the conductive ceramic Ebonex® as an anode material. Electrochim. Acta 54, 5548–5556 (2009).Zaky, A. M. & Chaplin, B. P. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment. Environ. Sci. Technol. 47, 6554–6563 (2013).Zhang, C. et al. Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 228, 455–467 (2013).Mora-Gómez, J. et al. Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceram. Int. 44, 2216–2222 (2018).Mora-Gómez, J., Ortega, E., Mestre, S., Pérez-Herranz, V. & García-Gabaldón, M. Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Sep. Purif. Technol. 208, 68–75 (2019).Montilla, F., Morallón, E., De Battisti, A. & Vázquez, J. L. Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. J. Phys. Chem. B 108, 5036–5043 (2004).Zhang, L., Xu, L., He, J. & Zhang, J. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim. Acta 117, 192–201 (2014).Martínez-Huitle, C. A., dos Santos, E. V., de Araújo, D. M. & Panizza, M. Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J. Electroanal. Chem. 674, 103–107 (2012).Correa-Lozano, B., Comninellis, C. & De Battisti, A. Service life of Ti/SnO2–Sb2O5 anodes. J. Appl. Electrochem. 27, 970–974 (1997).Loge, F. J., Inouye, T. & Watts, R. J. Disinfection of Secondary Effluents Using Tin Oxide Anodes. Water Environ. Res. 78, 41–48 (2006).Wu, W., Huang, Z.-H., Hu, Z.-T., He, C. & Lim, T.-T. High performance duplex-structured SnO2-Sb-CNT composite anode for bisphenol A removal. Sep. Purif. Technol. 179, 25–35 (2017).Ding, H. yang, Feng, Y. jie & Liu, J. feng. Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition. Mater. Lett. 61, 4920–4923 (2007).Chen, A. & Nigro, S. Influence of a Nanoscale Gold Thin Layer on Ti/SnO2-Sb2O5 Electrodes. J. Phys. Chem. B 107, 13341–13348 (2003).Kang, S. F., Liao, C. H. & Hung, H. P. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. J. Hazard. Mater. 65, 317–333 (1999).Feng, J., Hu, X., Yue, P. L., Zhu, H. Y. & Lu, G. Q. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction. Water Res. 37, 3776–3784 (2003).Méndez-Martínez, A. J. et al. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochim. Acta 59, 140–149 (2012).Jager, D., Kupka, D., Vaclavikova, M., Ivanicova, L. & Gallios, G. Degradation of Reactive Black 5 by electrochemical oxidation. Chemosphere 190, 405–416 (2018).Chen, X., Chen, G. & Yue, P. L. Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chem. Eng. Sci. 58, 995–1001 (2003).El-Ghenymy, A. et al. Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochim. Acta 130, 568–576 (2014).Guenfoud, F., Mokhtari, M. & Akrout, H. Electrochemical degradation of malachite green with BDD electrodes: Effect of electrochemical parameters. Diam. Relat. Mater. 46, 8–14 (2014).Koparal, A. S., Yavuz, Y., Gürel, C. & Öǧütveren, Ü. B. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode. J. Hazard. Mater. 145, 100–108 (2007).Panakoulias, T., Kalatzis, P., Kalderis, D. & Katsaounis, A. Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. J. Appl. Electrochem. 40, 1759–1765 (2010).Vasconcelos, V. M. et al. Electrochemical removal of Reactive Black 5 azo dye using non-commercial boron-doped diamond film anodes. Electrochim. Acta 178, 484–493 (2015).García-Montaño, J., Domènech, X., García-Hortal, J. A., Torrades, F. & Peral, J. The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. J. Hazard. Mater. 154, 484–490 (2008).Correa-Lozano, B., Comninellis, C. & De Battisti, A. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique. J. Appl. Electrochem. 26, 683–688 (1996).Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M. A. & Comninellis, C. Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 150, D79–D83 (2003).Chen, X., Gao, F. & Chen, G. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation. J. Appl. Electrochem. 35, 185–191 (2005).Guinea, E. et al. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim. Acta 55, 2101–2115 (2010).Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A. & Panizza, M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. Int. 21, 8336–8367 (2014)

    Study of the chlorfenvinphos pesticide removal under different anodic materials and different reactor configuration

    Get PDF
    The present manuscript focuses on the study of the electrochemical oxidation of the insecticide Chlorfenvinphos (CVP). The assays were carried out under galvanostatic conditions using boron-doped diamond (BDD) and low-cost tin dioxide doped with antimony (Sb-doped SnO2) as anodes. The influence of the operating variables, such as applied current density, presence or absence of a cation-exchange membrane and concentration of supporting electrolyte, was discussed. The results revealed that the higher applied current density the higher degradation and mineralization of the insecticide for both anodes. The presence of the membrane and the highest concentration of Na2SO4 studied (0.1 M) as a supporting electrolyte benefited the oxidation process of CVP using the BDD electrode, while with the ceramic anode the elimination of CVP was lower under these experimental conditions. Although the BDD electrode showed the best performance, ceramic anodes appear as an interesting alternative as they were able to degrade CVP completely for the highest applied current density values. Toxicity tests revealed that the initial solution of CVP was more toxic than the samples treated with the ceramic electrode, while using the BDD electrode the toxicity of the sample increased

    El impulso del emprendimiento como competencia transversal en los estudiantes del Grado de Trabajo Social

    Get PDF
    Este proyecto está realizado por un grupo de profesores consolidado en docencia e investigación que apuesta por la innovación desde 2004, formado por profesores de la Facultad de Trabajo Social (UCM) y de distintas universidades nacionales que se preocupan por desarrollar planes de innovación que implementen la formación de los estudiantes con el fin de proporcionarles en su inserción laboral. El emprendimiento es parte de la competencia transversal “iniciativa y espíritu emprendedor” desarrollada especialmente en las asignaturas de Practicum (donde debe realizarse un Proyecto Social) y especialmente en el Trabajo Fin de Grado (TFG), ayudando a configurar el perfil profesional del alumnado. En la historia de la disciplina del Trabajo Social existen referentes que vinculan a la universidad como centro de la innovación y progreso de la humanidad. En este sentido sea motivado a la innovación y la creatividad en los estudiantes. La universidad se encuentra en una posición muy aventajada para promover las competencias relacionadas con la innovación y el espíritu empresarial. Estas competencias deben favorecer el emprendimiento social relacionado con el desarrollo social y humano, para la realización de una sociedad más equitativa y participativa desde distintas iniciativas que motiven la participación y la cooperación en esta sociedad desde sus instituciones. La responsabilidad social de la universidad, puede encontrase en esta función ya que se ha potenciado la adquisición de competencias profesionales. Entre algunos resultados próximos se resalta la presentación a los estudiantes de buenas prácticas realizadas desde la universidad para intervenir en la realidad social con el fin de incentivar la generación de nuevas experiencias. Además se destaca el hecho de que 5 estudiantes han terminado con un contrato de trabajo en su centro de practicas externas

    Flu Vaccination Coverage and Predictors of Non-Vaccination in Military Health Corps Personnel 2016–2017 and 2019–2021

    Get PDF
    (1) Background: Vaccination is the most effective intervention to control seasonal influenza morbidity and mortality. The present study aimed to determine the influenza vaccination coverage in the Military Health Corps personnel in the 2020–2021 season, as well as the time trend and the possible influence of the pandemic on coverage, in order to study the reasons that led to the non-vaccination of health professionals and to analyze adverse drug reactions (ADRs). (2) Methods: A descriptive, cross-sectional study was conducted from February to May 2021. All FAS CMS personnel were included. A self-administered questionnaire was sent by e-mail to the selected personnel. (3) Results: Vaccination coverage in the 2016–2017 season was 15.8% (n = 276), in the 2019–2020 season it was 17.41% (n = 424), and in the 2020–2021 season it was 24.22% (n = 590). The percentage of vaccinated men was higher than the percentage of women. In 2019 and 2020 the most vaccinated group was 31–40 years old. Lieutenants had the highest vaccination uptake in 2019 and 2020. The personnel with the highest uptake of vaccines were those in the specialty of nursing in each of 2016, 2019 and 2020, with >30 years of time worked in 2016. In terms of factors leading to refusal of vaccination, the most reported was “not considered a risk group” (23.0%), and the least reported was “avoidance of vaccine administration” (2.2%). Eighty individuals presented adverse reactions after vaccine administration (9.6%). (4) Conclusions: The rate of influenza vaccination among healthcare professionals was lower during the 2020 season compared to the previous season, but was expected to increase in the upcoming 2021 season

    HLA association with the susceptibility to anti-synthetase syndrome

    Get PDF
    Objective To investigate the human leukocyte antigen (HLA) association with anti-synthetase syndrome (ASSD). Methods We conducted the largest immunogenetic HLA-DRB1 and HLA-B study to date in a homogeneous cohort of 168 Caucasian patients with ASSD and 486 ethnically matched healthy controls by sequencing-based-typing. Results A statistically significant increase of HLA-DRB1*03:01 and HLA-B*08:01 alleles in patients with ASSD compared to healthy controls was disclosed (26.2% versus 12.2%, P = 1.56E?09, odds ratio?OR [95% confidence interval?CI] = 2.54 [1.84?3.50] and 21.4% versus 5.5%, P = 18.95E?18, OR [95% CI] = 4.73 [3.18?7.05]; respectively). Additionally, HLA-DRB1*07:01 allele was significantly decreased in patients with ASSD compared to controls (9.2% versus 17.5%, P = 0.0003, OR [95% CI] = 0.48 [0.31?0.72]). Moreover, a statistically significant increase of HLA-DRB1*03:01 allele in anti-Jo-1 positive compared to anti-Jo-1 negative patients with ASSD was observed (31.8% versus 15.5%, P = 0.001, OR [95% CI] = 2.54 [1.39?4.81]). Similar findings were observed when HLA carrier frequencies were assessed. The HLA-DRB1*03:01 association with anti-Jo-1 was unrelated to smoking history. No HLA differences in patients with ASSD stratified according to the presence/absence of the most representative non-anti-Jo-1 anti-synthetase autoantibodies (anti-PL-12 and anti-PL-7), arthritis, myositis or interstitial lung disease were observed. Conclusions Our results support the association of the HLA complex with the susceptibility to ASS

    Experiencias en la tutorización de enseñanzas técnicas

    Get PDF
    El PAT en la Escuela Politécnica está abierto a todos aquellos tutores que deseen formar parte del plan y también a todos los alumnos, que, voluntariamente pueden marcar la opción de participar en el plan en la matrícula, y también a aquellos que, a pesar de no marcar la opción en la matrícula, finalmente han decidido seguir el plan de acción tutorial. Esta característica de participación e inscripción voluntaria permite que el trabajo se realice más satisfactoriamente tanto por parte de tutores como por parte de los alumnos, puesto que han decidido seguir el plan por ello mismos y no como una imposición. Con este trabajo nos proponemos presentar nuestras experiencias en el desarrollo de la tutorización de nuestros estudiantes así como la evolución en el desarrollo de la tutorización por pares
    corecore