1,816 research outputs found

    El humor gráfico en los 80: Una mirada al taller del humor

    Get PDF
    El presente trabajo da una mirada a uno de los proyectos gráficos más importantes de la ciudad de Bogotá dentro de un periodo muy crudo de la historia de nuestro país, y por ende de nuestra capital, agobiadas por los flagelos del narcotráfico, la guerrilla, los paramilitares. En medio de esas dificultades los humoristas gráficos del Taller del Humor lograron con ingenio publicar en periódicos de circulación nacional, en revistas, en televisión, en congresos sus opiniones de lo que percibían como realidad nacional, y aun sabiendo de los riesgos que su profesión presentaba, se dieron a la tarea de expresar de una forma no tan personalizada pero si contundente los más importantes flagelos de la década de los 80. Dentro del trabajo se tienen en cuenta el contexto histórico, el estilo gráfico que bordearon al Taller del Humor, así como también los recursos del humor gráfico que desarrollaron sus dibujantes, especialmente de las dos figuras más representativas del Taller: Jorge Grosso y Bernardo Rincón. Los dos últimos capítulos son estudios de caso de estos dibujantes y en ellos se tiene en cuenta sus referencias gráficas, el estilo de caricatura, y el estilo de historieta que realizaron en un periodo que abarca desde 1982 hasta 1991.Requerimientos de sistema: Adobe Acrobat ReaderThe present work looks at one of the most important graphic projects of the city of Bogota within a very crude period of the history of our country, and therefore of our capital, overwhelmed by the scourges of drug trafficking, the guerrilla, the paramilitaries. In the midst of these difficulties, the graphic comedians of the Taller del Humor ingeniously managed to publish in their national newspapers, magazines, television, congresses their opinions of what they perceived as a national reality, and even knowing the risks that their profession presented , they took on the task of expressing the most important scourges of the 1980s in a way that was not so personalized, but was blunt. within the work the historical context, the graphic style are taken into account that bordered the Humor Workshop are taken into account, as well as the resources of graphic humor developed by its cartoonists, especially the two most representative figures of the Workshop: Jorge Grosso and Bernardo Rincón. The last two chapters are case studies of these cartoonists and they take into account their graphic references, the caricature style, and the cartoon style they made in a period that covers from 1982 to 1991.Magíster en Estética e Historia del Art

    Cov-caldas: A new COVID-19 chest X-Ray dataset from state of Caldas-Colombia

    Get PDF
    The emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19 using deep learning approaches and medical images such as Chest Computed Tomography (CT) and Chest X-ray images. In order to contribute to this challenge, a new dataset was collected in collaboration with “S.E.S Hospital Universitario de Caldas” (https://hospitaldecaldas.com/) from Colombia and organized following the Medical Imaging Data Structure (MIDS) format. The dataset contains 7,307 chest X-ray images divided into 3,077 and 4,230 COVID-19 positive and negative images. Images were subjected to a selection and anonymization process to allow the scientific community to use them freely. Finally, different convolutional neural networks were used to perform technical validation. This dataset contributes to the scientific community by tackling significant limitations regarding data quality and availability for the detection of COVID-19. © 2022, The Author(s)

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Outreach activities at the Pierre Auger Observatory

    Get PDF

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations
    corecore