4 research outputs found

    Segmentation of consumers based on awareness, attitudes and use of sustainability labels in the purchase of commonly used products

    Get PDF
    [EN] Most of the previous studies that segment consumers based on the consideration of certifications and sustainability attributes in purchasing decision-making offer a limited vision, as focusing on specific labels or types of products, usually in the food sector. This paper aims to identify segments of Spanish consumers based on their awareness, attitudes and use of 28 certified sustainability labels linked to eight categories of common household products (food, clothing, paper and wood, cosmetics, electrical appliances, energy, computing and multi-sector). Likewise, it is intended to characterise the segments identified based on their environmental concern and socio-demographic characteristics. Data was collected from a survey study carried out with a sample of 3000 participants and the latent class analysis revealed seven typologies: experts, convinced, interested, moderate, sceptical, neutral and unmotivated. The segments differed in their awareness and attitudes towards different labels by product category, which was significantly associated with the purchase of certified products. The sectors in which a greater use of labels was appreciated were electrical, computing, and paper and wood. Young women with a high level of education and more environmental awareness were the most effective consumers when using certifications. In any case, it is concluded that sustainability labels do not provide added value for around half of Spanish consumers, who would benefit from measures such as legislative improvements, far-reaching advertising campaigns or high-order label systems to simplify the information on the packaging of the products.S

    Optimizing strategies for meningococcal C disease vaccination in Valencia (Spain)

    Get PDF
    BackgroundMeningococcal C (MenC) conjugate vaccines have controlled invasive diseases associated with this serogroup in countries where they are included in National Immunization Programs and also in an extensive catch-up program involving subjects up to 20 years of age. Catch-up was important, not only because it prevented disease in adolescents and young adults at risk, but also because it decreased transmission of the bacteria, since it was in this age group where the organism was circulating. Our objective is to develop a new vaccination schedule to achieve maximum seroprotection in these groups.MethodsA recent study has provided detailed age-structured information on the seroprotection levels against MenC in Valencia (Spain), where vaccination is routinely scheduled at 2 months and 6 months, with a booster dose at 18 months of age. A complementary catch-up campaign was also carried out in n for children from 12 months to 19 years of age. Statistical analyses of these data have provided an accurate picture on the evolution of seroprotection in the last few years.ResultsAn agent-based model has been developed to study the future evolution of the seroprotection histogram. We have shown that the optimum strategy for achieving high protection levels in all infants, toddlers and adolescents is a change to a 2 months, 12 months and 12 years of age vaccination pattern. If the new schedule were implemented in January 2014, high-risk subjects between 15-19 years of age would have very low seroprotection for the next 6 years, thereby threatening the program.ConclusionsHigh protection levels and a low incidence of meningococcal C disease can be achieved in the future by means of a cost-free change in vaccination program. However, we recommend a new catch-up program simultaneous to the change in regular vaccination program

    Epidemic Random Network Simulations in a Distributed Computing Environment

    Get PDF
    We discuss a computational system following the paradigm of distributed computing, which will allow us to simulate the epidemic propagation in random networks with large number of nodes up to one million. This paradigm consists of a server that delivers tasks to be carried out by client computers. When the task is finished, the client sends the obtained results to the server to be stored until all tasks are finished and then ready to be analysed. Finally, we show that this technique allows us to disclose the emergence of seasonal patterns in the respiratory syncytial virus transmission dynamics which do not appear neither in smaller systems nor in continuous systems.This paper has been supported by the Grant from the Universitat Politecnica de Valencia PAID-06-11 ref: 2087 and the Grant FIS PI-10/01433. The authors would like to thank the staff of the Facultad de Administracion de Empresas of the Universidad Politecnica de Valencia, in particular Mara Angeles Herrera, Teresa Solaz, and Jose Luis Real, and the staff of the CES Felipe II of Aranjuez for their help and for letting them use free computer rooms to carry out the Sisifo computations described in this paper. They would also like to acknowledge the BOINC community for its support and the many anonymous volunteers who joined thier project and helped them obtain the results so fast.Villanueva-Oller, J.; Acedo Rodríguez, L.; Moraño Fernández, JA.; Sánchez Sánchez, A. (2013). Epidemic Random Network Simulations in a Distributed Computing Environment. Abstract and Applied Analysis. 2013:1-10. https://doi.org/10.1155/2013/462801S1102013PROULX, S., PROMISLOW, D., & PHILLIPS, P. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20(6), 345-353. doi:10.1016/j.tree.2005.04.004Traud, A. L., Mucha, P. J., & Porter, M. A. (2012). Social structure of Facebook networks. Physica A: Statistical Mechanics and its Applications, 391(16), 4165-4180. doi:10.1016/j.physa.2011.12.021Christakis, N. A., & Fowler, J. H. (2008). The Collective Dynamics of Smoking in a Large Social Network. New England Journal of Medicine, 358(21), 2249-2258. doi:10.1056/nejmsa0706154Christakis, N. A., & Fowler, J. H. (2007). The Spread of Obesity in a Large Social Network over 32 Years. New England Journal of Medicine, 357(4), 370-379. doi:10.1056/nejmsa066082Halloran, M. E. (2002). Containing Bioterrorist Smallpox. Science, 298(5597), 1428-1432. doi:10.1126/science.1074674Ahmed, E., & Agiza, H. N. (1998). On modeling epidemics Including latency, incubation and variable susceptibility. Physica A: Statistical Mechanics and its Applications, 253(1-4), 347-352. doi:10.1016/s0378-4371(97)00665-1Martins, M. L., Ceotto, G., Alves, S. G., Bufon, C. C. B., Silva, J. M., & Laranjeira, F. F. (2000). Cellular automata model for citrus variegated chlorosis. Physical Review E, 62(5), 7024-7030. doi:10.1103/physreve.62.7024Hershberg, U., Louzoun, Y., Atlan, H., & Solomon, S. (2001). HIV time hierarchy: winning the war while, loosing all the battles. Physica A: Statistical Mechanics and its Applications, 289(1-2), 178-190. doi:10.1016/s0378-4371(00)00466-0Witten, G., & Poulter, G. (2007). Simulations of infectious diseases on networks. Computers in Biology and Medicine, 37(2), 195-205. doi:10.1016/j.compbiomed.2005.12.002Acedo, L., Moraño, J.-A., & Díez-Domingo, J. (2010). Cost analysis of a vaccination strategy for respiratory syncytial virus (RSV) in a network model. Mathematical and Computer Modelling, 52(7-8), 1016-1022. doi:10.1016/j.mcm.2010.02.041Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509Villanueva-Oller, J., Villanueva, R. J., & Díez, S. (2007). CASANDRA: A prototype implementation of a system of network progressive transmission of medical digital images. Computer Methods and Programs in Biomedicine, 85(2), 152-164. doi:10.1016/j.cmpb.2006.10.002Korpela, E., Werthimer, D., Anderson, D., Cobb, J., & Leboisky, M. (2001). SETI@home-massively distributed computing for SETI. Computing in Science & Engineering, 3(1), 78-83. doi:10.1109/5992.895191Hall, C. B., Powell, K. R., MacDonald, N. E., Gala, C. L., Menegus, M. E., Suffin, S. C., & Cohen, H. J. (1986). Respiratory Syncytial Viral Infection in Children with Compromised Immune Function. New England Journal of Medicine, 315(2), 77-81. doi:10.1056/nejm198607103150201Falsey, A. R., & Walsh, E. E. (2000). Respiratory Syncytial Virus Infection in Adults. Clinical Microbiology Reviews, 13(3), 371-384. doi:10.1128/cmr.13.3.371-384.2000Díez Domingo, J., Ridao López, M., Úbeda Sansano, I., & Ballester Sanz, A. (2006). Incidencia y costes de la hospitalización por bronquiolitis y de las infecciones por virus respiratorio sincitial en la Comunidad Valenciana. Años 2001 y 2002. Anales de Pediatría, 65(4), 325-330. doi:10.1157/13093515ACEDO, L., DÍEZ-DOMINGO, J., MORAÑO, J.-A., & VILLANUEVA, R.-J. (2009). Mathematical modelling of respiratory syncytial virus (RSV): vaccination strategies and budget applications. Epidemiology and Infection, 138(6), 853-860. doi:10.1017/s0950268809991373Weber, A., Weber, M., & Milligan, P. (2001). Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical Biosciences, 172(2), 95-113. doi:10.1016/s0025-5564(01)00066-9White, L. J., Mandl, J. N., Gomes, M. G. M., Bodley-Tickell, A. T., Cane, P. A., Perez-Brena, P., … Medley, G. F. (2007). Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical Biosciences, 209(1), 222-239. doi:10.1016/j.mbs.2006.08.018Acedo, L., Moraño, J.-A., Villanueva, R.-J., Villanueva-Oller, J., & Díez-Domingo, J. (2011). Using random networks to study the dynamics of respiratory syncytial virus (RSV) in the Spanish region of Valencia. Mathematical and Computer Modelling, 54(7-8), 1650-1654. doi:10.1016/j.mcm.2010.11.068SCHNEEBERGER, A., MERCER, C. H., GREGSON, S. A. J., FERGUSON, N. M., NYAMUKAPA, C. A., ANDERSON, R. M., … GARNETT, G. P. (2004). Scale-Free Networks and Sexually Transmitted Diseases. Sexually Transmitted Diseases, 31(6), 380-387. doi:10.1097/00007435-200406000-00012Lou, J., & Ruggeri, T. (2010). The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network. Journal of Mathematical Analysis and Applications, 365(1), 210-219. doi:10.1016/j.jmaa.2009.10.044Fleming, D. M. (2005). Mortality in children from influenza and respiratory syncytial virus. Journal of Epidemiology & Community Health, 59(7), 586-590. doi:10.1136/jech.2004.026450Meerhoff, T. J., Paget, J. W., Kimpen, J. L., & Schellevis, F. (2009). Variation of Respiratory Syncytial Virus and the Relation With Meteorological Factors in Different Winter Seasons. The Pediatric Infectious Disease Journal, 28(10), 860-866. doi:10.1097/inf.0b013e3181a3e949Welliver, R. C. (2007). Temperature, Humidity, and Ultraviolet B Radiation Predict Community Respiratory Syncytial Virus Activity. The Pediatric Infectious Disease Journal, 26(Supplement), S29-S35. doi:10.1097/inf.0b013e318157da59Dushoff, J., Plotkin, J. B., Levin, S. A., & Earn, D. J. D. (2004). Dynamical resonance can account for seasonality of influenza epidemics. Proceedings of the National Academy of Sciences, 101(48), 16915-16916. doi:10.1073/pnas.0407293101Arino, J., Davis, J. R., Hartley, D., Jordan, R., Miller, J. M., & van den Driessche, P. (2005). A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology: A Journal of the IMA, 22(2), 129-142. doi:10.1093/imammb/dqi00

    An orbital model for the Parker Solar Probe mission: Classical vs relativistic effects

    Full text link
    [EN] The Parker Solar Probe is a spacecraft designed to study the Sun¿s corona from inside. It is providing unprecedented detailed information on the density and composition of the Sun¿s atmosphere as well as the electromagnetic fields, plasma and solar wind. On the other hand, this probe is to achieve record speeds in the International Celestial Reference Frame (ICRF) never obtained before in any previous mission. It is expected that in the last perihelion of 2025 it would move at 0:064% of the speed of light with respect to the barycenter of the Solar System. By this time it will approach only 9:86 solar radii to the center of the Sun. These orbital conditions make the Parker¿s Solar Probe also an interesting experiment concerning the validity of General Relativity (GR). The combination of a high velocity and a relatively intense gravitational field increases the values of the post-Newtonian terms governing the orbital corrections by GR. In this paper, we consider an orbital model for the Parker Probe trajectory, including the important effect of radiation pressure, to calculate the relativistic corrections. From this model, we compare the magnitude of the corrections in order to evaluate the possibility of obtaining a test of GR from spacecraft missions orbiting close to the Sun.Sebastián, A.; Acedo, L.; Moraño Fernández, JA. (2022). An orbital model for the Parker Solar Probe mission: Classical vs relativistic effects. Advances in Space Research. 70(3):842-853. https://doi.org/10.1016/j.asr.2022.05.03784285370
    corecore