373 research outputs found

    The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities

    Get PDF
    PUBLISHED 10 August 2022Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM's pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.Josephine A. Hinneh, Joanna L. Gillis, Nicole L. Moore, Lisa M. Butler and Margaret M. Centener

    Spatial repellents: from discovery and development to evidence based validation

    Get PDF
    International public health workers are challenged by a burden of arthropod-borne disease that remains elevated despite best efforts in control programmes. With this challenge comes the opportunity to develop novel vector control paradigms to guide product development and programme implementation. The role of vector behaviour modification in disease control was first highlighted several decades ago but has received limited attention within the public health community. This paper presents current evidence highlighting the value of sub-lethal agents, specifically spatial repellents, and their use in global health, and identifies the primary challenges towards establishing a clearly defined and recommended role for spatial repellent products in disease control

    MRI findings in men on active surveillance for prostate cancer: does dutasteride make MRI visible lesions less conspicuous? Results from a placebo-controlled, randomised clinical trial

    Get PDF
    Objectives To investigate changes in the Apparent Diffusion Coefficient (ADC) using diffusion-weighted imaging (DWI) in men on active surveillance for prostate cancer taking dutasteride 0.5 mg or placebo. Methods We analysed 37 men, randomised to 6 months of daily dutasteride (n = 18) or placebo (n = 19), undergoing 3T multi-parametric Magnetic Resonance Imaging (mpMRI) scans at baseline and 6 months. Images were reviewed blind to treatment allocation and clinical information. Mean ADC of peripheral (PZ) and transition (TZ) zones, and MR-suspicious lesions were compared between groups over 6 months. Conspicuity was defined as the PZ divided by tumour ADC, and its change over 6 months was assessed. Results A decrease in mean conspicuity in the dutasteride group (but not the controls) was seen over 6 months (1.54 vs 1.38; p = 0.025). Absolute changes in ADC and conspicuity were significantly different between placebo and dutasteride groups at 6 months: (-0.03 vs 0.08, p = 0.033) and (0.11 vs –0.16, p = 0.012), as were percentage changes in the same parameters: (-2.27% vs 8.56% p = 0.048) and (9.25% vs -9.89% p = 0.013). Conclusions Dutasteride was associated with increased tumour ADC and reduced conspicuity. A lower threshold for triggering biopsy might be considered in men on dutasteride undergoing mpMRI for prostate cancer

    The UK risk assessment scheme for all non-native species

    Get PDF
    1. A pest risk assessment scheme, adapted from the EPPO (European and Mediterranean Plant Protection Organisation) scheme, was developed to assess the risks posed to UK species, habitats and ecosystems by non-native taxa. 2. The scheme provides a structured framework for evaluating the potential for non-native organisms, whether intentional or unintentional introductions, to enter, establish, spread and cause significant impacts in all or part of the UK. Specialist modules permit the relative importance of entry pathways, the vulnerability of receptors and the consequences of policies to be assessed and appropriate risk management options to be selected. Spreadsheets for summarising the level of risk and uncertainty, invasive attributes and economic impact were created. In addition, new methods for quantifying economic impact and summarising risk and uncertainty were explored. 3. Although designed for the UK, the scheme can readily be applied elsewhere

    Electronic Structure of the BaFe2_2As2_2 Family of Iron Pnictides

    Full text link
    We use high resolution angle-resolved photoemission spectroscopy to study the band structure and Fermi surface topology of the BaFe2_2As2_2 iron pnictides. We observe two electron bands and two hole bands near the X-point, (π,π)(\pi,\pi) of the Brillouin zone, in the paramagnetic state for different doping levels, including electron-doped Ba(Co0.06_{0.06}Fe0.94_{0.94})2_2As2_2, undoped BaFe2_2As2_2, and hole-doped Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2. Among these four bands, only the electron bands cross the Fermi level, forming two electron pockets around X, while the hole bands approach but never reach the Fermi level. We show that the band structure of the BaFe2_2As2_2 family matches reasonably well with the prediction of LDA calculations after a momentum-dependent shift and renormalization. Our finding resolves a number of inconsistencies regarding the electronic structure of pnictides.Comment: 5 pages, 4 figure

    Feed supplementation with biochar may reduce poultry pathogens, including Campylobacter hepaticus, the causative agent of Spotty Liver Disease

    Get PDF
    Increased global regulation and restrictions on the non-therapeutic use of antibiotics in the poultry industry means that there is a need to identify alternatives that prevent infection while still conveying the growth and performance benefits afforded by their use. Biochars are produced by the incomplete pyrolysis of organic materials, with reports of use as a feed supplement and activity against pathogenic bacteria. In the current study the dose-dependent effects of biochar dietary inclusion in layer diets at 1%, 2% and 4% w/w were investigated to determine a) the efficacy of biochar as an anti-pathogenic additive on the intestinal microbiota and b) the optimal inclusion level. Biochar inclusion for anti-pathogenic effects was found to be most beneficial at 2% w/w. Poultry pathogens such as Gallibacterium anatis and campylobacters, including Campylobacter hepaticus, were found to be significantly lower in biochar fed birds. A shift in microbiota was also associated with the incorporation of 2% w/w biochar in the feed in two large scale trials on two commercial layer farms. Biochar inclusion for anti-pathogenic effects was found to be most beneficial at 2% w/w. Differential effects of the timing of biochar administration (supplementation beginning at hatch or at point of lay) were also evident, with greater impact on community microbial structure at 48 weeks of age when birds were fed from hatch rather than supplemented at point of lay.Nicky-Lee Willson, Thi T.H. Van, Surya P. Bhattarai, Jodi M. Courtice, Joshua R. McIntyre, Tanka P. Prasai, Robert J. Moore, Kerry Walsh, Dragana Stanle

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Effects of rapid antigen degradation and VEE glycoprotein specificity on immune responses induced by a VEE replicon vaccine

    Get PDF
    Genetic vaccines are engineered to produce immunogens de novo in the cells of the host for stimulation of a protective immune response. In some of these systems, antigens engineered for rapid degradation have produced an enhanced cellular immune response by more efficient entry into pathways for processing and presentation of MHC class I peptides. VEE replicon particles (VRP), single cycle vaccine vectors derived from Venezuelan equine encephalitis virus (VEE), are examined here for the effect of an increased rate of immunogen degradation on VRP vaccine efficacy. VRP expressing the matrix capsid (MA/CA) portion of SIV Gag were altered to promote rapid degradation of MA/CA by various linkages to co-translated ubiquitin or by destabilizing mutations and were used to immunize BALB/c mice for quantitation of the anti-MA/CA cellular and humoral immune responses. Rapid degradation by the N-end rule correlated with a dampened immune response relative to unmodified MA/CA when the VRP carried a glycoprotein spike from an attenuated strain of VEE. In contrast, statistically equivalent numbers of IFNγ+ T-cells resulted when VRP expressing unstable MA/CA were packaged with the wild-type VEE glycoproteins. These results suggest that the cell types targeted in vivo by VRP carrying mutant or wild type glycoprotein spikes are functionally different, and are consistent with previous findings suggesting that wild-type VEE glycoproteins preferentially target professional antigen presenting cells that use peptides generated from the degraded antigen for direct presentation on MHC
    corecore