254 research outputs found

    Does Antidumping Use Contribute to Trade Liberalization? An Empirical Analysis

    Get PDF
    Some supporters of antidumping have argued that this procedure serves as a kind of "safety valve" for protectionist pressure.This paper examines whether there is any empirical evidence that the use of antidumping actions has contributed to tariff reductions in a sample of 35 developing and developed countries.There is very little evidence that such a relationship might exist among the 27 developing countries in the sample.We do find some weak but inconsistent evidence for antidumping helping liberalization efforts in the experience of developed countries, which have been the traditional users of antidumping.Antidumping;Trade Liberalization;Commercial Policy

    Does Antidumping Use Contribute to Trade Liberalization? An Empirical Analysis

    Get PDF
    Some supporters of antidumping have argued that this procedure serves as a kind of "safety valve" for protectionist pressure.This paper examines whether there is any empirical evidence that the use of antidumping actions has contributed to tariff reductions in a sample of 35 developing and developed countries.There is very little evidence that such a relationship might exist among the 27 developing countries in the sample.We do find some weak but inconsistent evidence for antidumping helping liberalization efforts in the experience of developed countries, which have been the traditional users of antidumping.

    Quantum, Stochastic, and Pseudo Stochastic Languages with Few States

    Full text link
    Stochastic languages are the languages recognized by probabilistic finite automata (PFAs) with cutpoint over the field of real numbers. More general computational models over the same field such as generalized finite automata (GFAs) and quantum finite automata (QFAs) define the same class. In 1963, Rabin proved the set of stochastic languages to be uncountable presenting a single 2-state PFA over the binary alphabet recognizing uncountably many languages depending on the cutpoint. In this paper, we show the same result for unary stochastic languages. Namely, we exhibit a 2-state unary GFA, a 2-state unary QFA, and a family of 3-state unary PFAs recognizing uncountably many languages; all these numbers of states are optimal. After this, we completely characterize the class of languages recognized by 1-state GFAs, which is the only nontrivial class of languages recognized by 1-state automata. Finally, we consider the variations of PFAs, QFAs, and GFAs based on the notion of inclusive/exclusive cutpoint, and present some results on their expressive power.Comment: A new version with new results. Previous version: Arseny M. Shur, Abuzer Yakaryilmaz: Quantum, Stochastic, and Pseudo Stochastic Languages with Few States. UCNC 2014: 327-33

    Weak localization of Dirac fermions in graphene beyond the diffusion regime

    Full text link
    We develop a microscopic theory of the weak localization of two-dimensional massless Dirac fermions which is valid in the whole range of classically weak magnetic fields. The theory is applied to calculate magnetoresistance caused by the weak localization in graphene and conducting surfaces of bulk topological insulators.Comment: 5 pages, 2 figure

    Higher-order mutual coherence of optical and matter waves

    Get PDF
    We use an operational approach to discuss ways to measure the higher-order cross-correlations between optical and matter-wave fields. We pay particular attention to the fact that atomic fields actually consist of composite particles that can easily be separated into their basic constituents by a detection process such as photoionization. In the case of bosonic fields, that we specifically consider here, this leads to the appearance in the detection signal of exchange contributions due to both the composite bosonic field and its individual fermionic constituents. We also show how time-gated counting schemes allow to isolate specific contributions to the signal, in particular involving different orderings of the Schr\"odinger and Maxwell fields.Comment: 11 pages, 2 figure

    Competition between quantum-liquid and electron-solid phases in intermediate Landau levels

    Full text link
    On the basis of energy calculations we investigate the competition between quantum-liquid and electron-solid phases in the Landau levels n=1,2, and 3 as a function of their partial filling factor. Whereas the quantum-liquid phases are stable only in the vicinity of quantized values 1/(2s+1) of the partial filling factor, an electron solid in the form of a triangular lattice of clusters with a few number of electrons (bubble phase) is energetically favorable between these fillings. This alternation of electron-solid phases, which are insulating because they are pinned by the residual impurities in the sample, and quantum liquids displaying the fractional quantum Hall effect explains a recently observed reentrance of the integral quantum Hall effect in the Landau levels n=1 and 2. Around half-filling of the last Landau level, a uni-directional charge density wave (stripe phase) has a lower energy than the bubble phase.Comment: 12 pages, 9 figures; calculation of exact exchange potential for n=1,2,3 included, energies of electron-solid phases now calculated with the help of the exact potential, and discussion of approximation include

    Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    Full text link
    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser and a strong classical coupling laser, which form a three-level Lambda-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency (EIT) with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and inter-atomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.Comment: 9 pages, 1 figur

    Effects of in vitro purging with 4-hydroperoxycyclophosphamide on the hematopoietic and microenvironmental elements of human bone marrow

    Get PDF
    We describe the effects of 4-hydroperoxycyclophosphamide (4-HC) on the hematopoietic and stromal elements of human bone marrow. Marrow cells were exposed to 4-HC and then assayed for mixed (CFU-Mix), erythroid (BFU-E), granulomonocytic (CFU-GM), and marrow fibroblast (CFU-F) colony-forming cells and studied in the long-term marrow culture (LTMC) system. The inhibition of colony formation by 4-HC was dose and cell-concentration dependent. The cell most sensitive to 4-HC was CFU-Mix (ID50 31 mumol/L) followed by BFU-E (ID50 41 mumol/L), CFU-GM (ID50 89 mumol/L), and CFU-F (ID50 235 mumol/L). In LTMC, a dose-related inhibition of CFU-GM production was noted. Marrows treated with 300 mumol/L 4-HC were completely depleted of CFU-GM but were able to generate these progenitors in LTMC. Marrow stromal progenitors giving rise to stromal layers in LTMC, although less sensitive to 4-HC cytotoxicity, were damaged by 4-HC also in a dose-related manner. Marrows treated with 4-HC up to 300 mumol/L, gave rise to stromal layers composed of fibroblasts, endothelial cells, adipocytes, and macrophages. Cocultivation experiments with freshly isolated autologous hematopoietic cells showed that stromal layers derived from 4-HC-treated marrows were capable of sustaining the long-term production of CFU-GM as well as controls

    Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates

    Full text link
    We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the dynamical Casimir emission of pairs of Bogoliubov phonons when the atom-atom scattering length is modulated in time. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical calculations of Hawking radiation from analog black holes
    • …
    corecore