2,482 research outputs found
A rank based social norms model of how people judge their levels of drunkenness whilst intoxicated
Background:
A rank based social norms model predicts that drinkers’ judgements about their drinking will be based on the rank of their breath alcohol level amongst that of others in the immediate environment, rather than their actual breath alcohol level, with lower relative rank associated with greater feelings of safety. This study tested this hypothesis and examined how people judge their levels of drunkenness and the health consequences of their drinking whilst they are intoxicated in social drinking environments.
Methods:
Breath alcohol testing of 1,862 people (mean age = 26.96 years; 61.86 % male) in drinking environments. A subset (N = 400) also answered four questions asking about their perceptions of their drunkenness and the health consequences of their drinking (plus background measures).
Results:
Perceptions of drunkenness and the health consequences of drinking were regressed on: (a) breath alcohol level, (b) the rank of the breath alcohol level amongst that of others in the same environment, and (c) covariates. Only rank of breath alcohol level predicted perceptions: How drunk they felt (b 3.78, 95Â % CI 1.69 5.87), how extreme they regarded their drinking that night (b 3.7, 95Â % CI 1.3 6.20), how at risk their long-term health was due to their current level of drinking (b 4.1, 95Â % CI 0.2 8.0) and how likely they felt they would experience liver cirrhosis (b 4.8. 95Â % CI 0.7 8.8). People were more influenced by more sober others than by more drunk others.
Conclusion:
Whilst intoxicated and in drinking environments, people base judgements regarding their drinking on how their level of intoxication ranks relative to that of others of the same gender around them, not on their actual levels of intoxication. Thus, when in the company of others who are intoxicated, drinkers were found to be more likely to underestimate their own level of drinking, drunkenness and associated risks. The implications of these results, for example that increasing the numbers of sober people in night time environments could improve subjective assessments of drunkenness, are discussed
First steps in the development of a water temperature model framework for refining the ecological Reserve in South African rivers
Ecological Reserve determination for rivers in South Africa presently does not include a water temperature component, in spite of its importance in determining species distribution patterns. To achieve this requires an understanding of how lotic thermographs from South African rivers differ from northern hemisphere rivers, to avoid mismanaging rivers based on incorrect regional assumptions. Hourly water temperatures from 20 sites in four river systems, representing a range of latitudes, altitudes and stream orders, were assessed using a range of metrics. These data were analysed using principal component analyses and multiple linear regressions to understand what variables a water temperature model for use in ecoregions within South Africa should include. While temperature data are generally lacking in low- and higher-order South African rivers, data suggest that South African rivers are warmer than northern hemisphere rivers. Water temperatures could be grouped into cool, warm and intermediate types. Based on temperature time series analyses, this paper argues that a suitable water-temperature model for use in ecological Reserve determinations should be dynamic, include flow and air temperature variables, and be adaptive through a heat exchange coefficient term. The inclusion of water temperature in the determination and management of river ecological Reserves would allow for more holistic application of the National Water Act’s ecological management provisions. Water temperature guidelines added to the ecological Reserve could be integrated into heuristic aquatic monitoring programmes within priority areas identified in regional conservation plans.Keywords: water temperatures, conservation planning, water temperature modelling, managemen
Neuroscience and end-of-life decisions. New anthropological challenges for constitutional law: «Is Human Nature the only science of man»?
Nowadays, neuroscience permits the unveiling of interior elements of hu-man beings - the perception of pain, the presence of consciousness and even the will - in the absence of external manifestations. Physicians, indeed, seem capable of measuring the true mental state of individuals and their inner world through an elec-troencephalography or a functional magnetic resonance imaging. This new frontier affects the world of law and places heavy demands for lawyers embroiled in end-of-life matters. The present paper focuses on the use of neuroscientific acquisitions within end-of-life decisions, aiming to highlight two risks embedded in this use: the utmost deference towards science and scientific authority and the maximization of self-determination. The paper will provide, at the beginning, a framework of case law and end-of-life regulatory attempts; it will follow the analysis of the main challenges posed to law by advances in neuroscience. In the latter part of this paper, we will of-fer food for thought on the role of neuroscience and - in a broader perspective - of science in law
An accelerator mode based technique for studying quantum chaos
We experimentally demonstrate a method for selecting small regions of phase
space for kicked rotor quantum chaos experiments with cold atoms. Our technique
uses quantum accelerator modes to selectively accelerate atomic wavepackets
with localized spatial and momentum distributions. The potential used to create
the accelerator mode and subsequently realize the kicked rotor system is formed
by a set of off-resonant standing wave light pulses. We also propose a method
for testing whether a selected region of phase space exhibits chaotic or
regular behavior using a Ramsey type separated field experiment.Comment: 5 pages, 3 figures, some modest revisions to previous version (esp.
to the figures) to aid clarity; accepted for publication in Physical Review A
(due out on January 1st 2003
Geometric effects on T-breaking in p+ip and d+id superconductors
Superconducting order parameters that change phase around the Fermi surface
modify Josephson tunneling behavior, as in the phase-sensitive measurements
that confirmed order in the cuprates. This paper studies Josephson coupling
when the individual grains break time-reversal symmetry; the specific cases
considered are and , which may appear in SrRuO and
NaCoO(HO) respectively. -breaking order parameters
lead to frustrating phases when not all grains have the same sign of
time-reversal symmetry breaking, and the effects of these frustrating phases
depend sensitively on geometry for 2D arrays of coupled grains. These systems
can show perfect superconducting order with or without macroscopic
-breaking. The honeycomb lattice of superconducting grains has a
superconducting phase with no spontaneous breaking of but instead power-law
correlations. The superconducting transition in this case is driven by binding
of fractional vortices, and the zero-temperature criticality realizes a
generalization of Baxter's three-color model.Comment: 8 page
Are you suggesting that’s my hand? The relation between hypnotic suggestibility and the rubber hand illusion
Hypnotic suggestibility (HS) is the ability to respond automatically to suggestions and to experience alterations in perception and behaviour. Hypnotically suggestible participants are also better able to focus and sustain their attention on an experimental stimulus. The present study explores the relation between HS and susceptibility to the rubber hand illusion (RHI). Based on previous research with visual illusions, it was predicted that higher HS would lead to a stronger RHI illusion. Two behavioural output measures of the RHI, an implicit (proprioceptive drift) and an explicit (RHI questionnaire) measure were correlated against HS scores. Hypnotic suggestibility correlated positively with the implicit RHI measure contributing to 30% of the variation. However, there was no relation between HS and the explicit RHI questionnaire measure, or with compliance control items. High hypnotic suggestibility may facilitate, via attentional mechanisms, the multisensory integration of visuoproprioceptive inputs that leads to greater perceptual mislocalisation of a participant’s hand. These results may provide insight into the multisensory brain mechanisms involved in our sense of embodiment
Forward Modeling of Space-borne Gravitational Wave Detectors
Planning is underway for several space-borne gravitational wave observatories
to be built in the next ten to twenty years. Realistic and efficient forward
modeling will play a key role in the design and operation of these
observatories. Space-borne interferometric gravitational wave detectors operate
very differently from their ground based counterparts. Complex orbital motion,
virtual interferometry, and finite size effects complicate the description of
space-based systems, while nonlinear control systems complicate the description
of ground based systems. Here we explore the forward modeling of space-based
gravitational wave detectors and introduce an adiabatic approximation to the
detector response that significantly extends the range of the standard low
frequency approximation. The adiabatic approximation will aid in the
development of data analysis techniques, and improve the modeling of
astrophysical parameter extraction.Comment: 14 Pages, 14 Figures, RevTex
- …