Planning is underway for several space-borne gravitational wave observatories
to be built in the next ten to twenty years. Realistic and efficient forward
modeling will play a key role in the design and operation of these
observatories. Space-borne interferometric gravitational wave detectors operate
very differently from their ground based counterparts. Complex orbital motion,
virtual interferometry, and finite size effects complicate the description of
space-based systems, while nonlinear control systems complicate the description
of ground based systems. Here we explore the forward modeling of space-based
gravitational wave detectors and introduce an adiabatic approximation to the
detector response that significantly extends the range of the standard low
frequency approximation. The adiabatic approximation will aid in the
development of data analysis techniques, and improve the modeling of
astrophysical parameter extraction.Comment: 14 Pages, 14 Figures, RevTex