1,229 research outputs found

    Just consequentialism and computing

    Get PDF

    Frequency Locking of an Optical Cavity using LQG Integral Control

    Full text link
    This paper considers the application of integral Linear Quadratic Gaussian (LQG) optimal control theory to a problem of cavity locking in quantum optics. The cavity locking problem involves controlling the error between the laser frequency and the resonant frequency of the cavity. A model for the cavity system, which comprises a piezo-electric actuator and an optical cavity is experimentally determined using a subspace identification method. An LQG controller which includes integral action is synthesized to stabilize the frequency of the cavity to the laser frequency and to reject low frequency noise. The controller is successfully implemented in the laboratory using a dSpace DSP board.Comment: 18 pages, 9 figure

    The Dopaminergic Reward System and Leisure Time Exercise Behavior: A Candidate Allele Study

    Get PDF
    Purpose. Twin studies provide evidence that genetic influences contribute strongly to individual differences in exercise behavior. We hypothesize that part of this heritability is explained by genetic variation in the dopaminergic reward system. Eight single nucleotide polymorphisms (SNPs in DRD1: rs265981, DRD2: rs6275, rs1800497, DRD3: rs6280, DRD4: rs1800955, DBH: rs1611115, rs2519152, and in COMT: rs4680) and three variable number of tandem repeats (VNTRs in DRD4, upstream of DRD5, and in DAT1) were investigated for an association with regular leisure time exercise behavior. Materials and Methods. Data on exercise activities and at least one SNP/VNTR were available for 8,768 individuals aged 7 to 50 years old that were part of the Netherlands Twin Register. Exercise behavior was quantified as weekly metabolic equivalents of task (MET) spent on exercise activities. Mixed models were fitted in SPSS with genetic relatedness as a random effect. Results. None of the genetic variants were associated with exercise behavior (P > .02), despite sufficient power to detect small effects. Discussion and Conclusions. We did not confirm that allelic variants involved in dopaminergic function play a role in creating individual differences in exercise behavior. A plea is made for large genome-wide association studies to unravel the genetic pathways that affect this health-enhancing behavior

    Meta-analysis of genome-wide association studies for extraversion:Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Harmonization of Neuroticism and Extraversion phenotypes across inventories and cohorts in the Genetics of Personality Consortium : an application of Item Response Theory

    Get PDF
    Peer reviewe

    Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Measurement of triple-differential inclusive muon-neutrino charged-current cross section on argon with the MicroBooNE detector

    Full text link
    We report the first measurement of the differential cross section d2σ(Eν)/dcos(θμ)dPμd^{2}\sigma (E_{\nu})/ d\cos(\theta_{\mu}) dP_{\mu} for inclusive muon-neutrino charged-current scattering on argon. This measurement utilizes data from 6.4×1020\times10^{20} protons on target of exposure collected using the MicroBooNE liquid argon time projection chamber located along the Fermilab Booster Neutrino Beam with a mean neutrino energy of approximately 0.8~GeV. The mapping from reconstructed kinematics to truth quantities, particularly from reconstructed to true neutrino energy, is validated by comparing the distribution of reconstructed hadronic energy in data to that of the model prediction in different muon scattering angle bins after conditional constraint from the muon momentum distribution in data. The success of this validation gives confidence that the missing energy in the MicroBooNE detector is well-modeled in simulation, enabling the unfolding to a triple-differential measurement over muon momentum, muon scattering angle, and neutrino energy. The unfolded measurement covers an extensive phase space, providing a wealth of information useful for future liquid argon time projection chamber experiments measuring neutrino oscillations. Comparisons against a number of commonly used model predictions are included and their performance in different parts of the available phase-space is discussed
    corecore