326 research outputs found

    Оптимизация затрат нефтегазовой отрасли на примере предприятия АО «Томскнефть» ВНК

    Get PDF
    В работе были рассмотрены следующие вопросы: сущность затрат, формирование себестоимости продукции, методы учета и калькуляция затрат, особенности учета затрат в нефтегазовой отрасли, пути снижения затрат., краткая характеристика исследуемого объекта, проведен анализ себестоимости продукции.V rabote byli rassmotreny sleduyushchiye voprosy: sushchnost' zatrat, formirovaniye sebestoimosti produktsii, metody ucheta i kal'kulyatsii zatrat, osobennosti ucheta zatrat v neftegazovoy otrasli, puti snizheniya zatrat., Kratkaya kharakteristika issleduyemogo ob"yekta, proveden analiz sebestoimosti produktsii

    MMP-3 deficiency alleviates endotoxin-induced acute inflammation in the posterior eye segment

    Get PDF
    Matrix metalloproteinase-3 (MMP-3) is known to mediate neuroinflammatory processes by activating microglia, disrupting blood-central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE) and the blood-retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU) model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1), interleukin 6 (Il6), cytokine-inducible nitrogen oxide synthase (Nos2) and tumor necrosis factor alpha (Tnf alpha), which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP)-1 and (C-X-C motif) ligand 1 (CXCL1). These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation

    A proteomic approach to understand MMP?3?driven developmental processes in the postnatal cerebellum: Chaperonin CCT6A and MAP kinase as contributing factors

    Get PDF
    Matrix metalloproteinase?3 (MMP?3) deficiency in mice was previously reported to result in a transiently retarded granule cell migration at postnatal day 8 (P8) and a sustained disturbed arborization of Purkinje cell dendrites from P8 on, concomitant with a delayed synapse formation between granule cells and Purkinje cells and resulting in mild deficits in motor performance in adult animals. However, the molecular mechanisms by which MMP?3 contributes to proper development of the cerebellar cortex during the first postnatal weeks remains unknown. In this study, we used a functional proteomics approach to investigate alterations in protein expression in postnatal cerebella of wild?type versus MMP?3 deficient mice, and to further elucidate MMP?3?dependent pathways and downstream targets in vivo. At P8, two?dimensional difference gel electrophoresis and mass spectrometry identified 20 unique proteins with a different expression between the two genotypes. Subsequent “Ingenuity Pathway Analysis” and Western blotting indicate that the chaperonin containing T?complex polypeptide 1, subunit 6A and the MAP kinase signaling pathway play a key role in the MMP?3?dependent regulation of neurite outgrowth and neuronal migration in the developing brain

    Retinal α-synuclein deposits in Parkinson’s disease patients and animal models

    Get PDF
    Despite decades of research, accurate diagnosis of Parkinson’s disease remains a challenge, and disease-modifying treatments are still lacking. Research into the early (presymptomatic) stages of Parkinson’s disease and the discovery of novel biomarkers is of utmost importance to reduce this burden and to come to a more accurate diagnosis at the very onset of the disease. Many have speculated that non-motor symptoms could provide a breakthrough in the quest for early biomarkers of Parkinson’s disease, including the visual disturbances and retinal abnormalities that are seen in the majority of Parkinson’s disease patients. An expanding number of clinical studies have investigated the use of in vivo assessments of retinal structure, electrophysiological function, and vision-driven tasks as novel means for identifying patients at risk that need further neurological examination and for longitudinal follow-up of disease progression in Parkinson’s disease patients. Often, the results of these studies have been interpreted in relation to α-synuclein deposits and dopamine deficiency in the retina, mirroring the defining pathological features of Parkinson’s disease in the brain. To better understand the visual defects seen in Parkinson’s disease patients and to propel the use of retinal changes as biomarkers for Parkinson’s disease, however, more conclusive neuropathological evidence for the presence of retinal α-synuclein aggregates, and its relation to the cerebral α-synuclein burden, is urgently needed. This review provides a comprehensive and critical overview of the research conducted to unveil α-synuclein aggregates in the retina of Parkinson’s disease patients and animal models, and thereby aims to aid the ongoing discussion about the potential use of the retinal changes and/or visual symptoms as biomarkers for Parkinson’s disease.LV and LDG are supported by the Research Foundation Flanders (fellowships 1S51718N and 12I3817N). IOL acknowledges financial support from the Ministerio de Educación, Spain (FPU 14/03166). NC acknowledges financial support from the Ministerio de Economía y Competitividad, Spain (MINECO-FEDER-BFU2015-67139-R), Generalitat Valenciana (Prometeo 2016/158), and Instituto Carlos III (ISCIII RETICS-FEDER RD16/0008/0016). The Brain and Body Donation Program has been supported by the National Institute of Neurological Disorders and Stroke (U24 NS072026), the National Institute on Aging (P30 AG19610), the Arizona Department of Health Services, the Arizona Biomedical Research Commission, and the Michael J. Fox Foundation for Parkinson’s Research

    Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases

    Get PDF
    The blood-CSF barrier (BCSFB) consists of a monolayer of choroid plexus epithelial (CPE) cells that maintain CNS homeostasis by producing CSF and restricting the passage of undesirable molecules and pathogens into the brain. Alzheimer's disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid beta (A beta) plaques and neurofibrillary tangles in the brain. Recent research shows that Alzheimer's disease is associated with morphological changes in CPE cells and compromised production of CSF. Here, we studied the direct effects of A beta on the functionality of the BCSFB. Intracerebroventricular injection of A beta 1-42 oligomers into the cerebral ventricles of mice, a validated Alzheimer's disease model, caused induction of a cascade of detrimental events, including increased inflammatory gene expression in CPE cells and increased levels of proinflammatory cytokines and chemokines in the CSF. It also rapidly affected CPE cell morphology and tight junction protein levels. These changes were associated with loss of BCSFB integrity, as shown by an increase in BCSFB leakage. A beta 1-42 oligomers also increased matrix metalloproteinase (MMP) gene expression in the CPE and its activity in CSF. Interestingly, BCSFB disruption induced by A beta 1-42 oligomers did not occur in the presence of a broad-spectrum MMP inhibitor or in MMP3-deficient mice. These data provide evidence that MMPs are essential for the BCSFB leakage induced by A beta 1-42 oligomers. Our results reveal that Alzheimer's disease-associated soluble A beta 1-42 oligomers induce BCSFB dysfunction and suggest MMPs as a possible therapeutic target
    corecore