196 research outputs found

    Mechanism of immunosuppression induced by ultraviolet-B light irradiation

    Get PDF

    Cd40–Cd40 Ligand Interactions in Vivo Regulate Migration of Antigen-Bearing Dendritic Cells from the Skin to Draining Lymph Nodes

    Get PDF
    Whereas CD40–CD40 ligand interactions are important for various dendritic cell (DC) functions in vitro, their in vivo relevance is unknown. We analyzed the DC status of CD40 ligand −/− mice using a contact hypersensitivity (CHS) model system that enables multiple functions of DCs to be assessed in vivo. Immunohistochemistry of skin sections revealed no differences in terms of numbers and morphology of dendritic epidermal Langerhans cells (LCs) in unsensitized CD40 ligand −/− mice as compared with wild-type C57BL/6 mice. However, after contact sensitization of CD40 ligand −/− mice, LCs failed to migrate out of the skin and substantially fewer DCs accumulated in draining lymph nodes (DLNs). Furthermore, very few antigen-bearing DCs could be detected in the paracortical region of lymph nodes draining sensitized skin. This defect in DC migration after hapten sensitization was associated with defective CHS responses and decreased cutaneous tumor necrosis factor (TNF)-α production and was corrected by injecting recombinant TNF-α or an agonistic anti-CD40 monoclonal antibody. Thus, CD40–CD40 ligand interactions in vivo regulate the migration of antigen-bearing DCs from the skin to DLNs via TNF-α production and play a vital role in the initiation of acquired T cell–mediated immunity

    Despite the presence of UVB-induced DNA damage, HLA-DR+ cells from ex vivo UVB-exposed human skin are able to migrate and show no impaired allostimulatory capacity

    Get PDF
    In this study, we investigated the effect of ultraviolet B radiation on human Langerhans cell function. Normal human skin was irradiated ex vivo with single doses of ultraviolet B. For assessment of T-cell stimulatory function, cells that spontaneously migrated from epidermal sheets were used, whereas full-thickness skin biopsies were used to investigate alterations in migratory properties. The cells migrating from ultraviolet B-exposed epidermal sheets demonstrated a decrease in the percentage of HLA-DR positive Langerhans cells, as well as a reduced capacity to induce proliferation of allogeneic T cells, when compared with cells migrating from nonexposed sheets. When a correction was made for the decreased number of HLA-DR positive Langerhans cells migrating from ultraviolet B-exposed epidermis, however, it appeared that the capacity to induce T-cell proliferation was identical for Langerhans cells migrating from ultraviolet B-exposed and nonexposed epidermis. The presence of ultraviolet B-induced DNA damage could be demonstrated in the Langerhans cells from ultraviolet B-treated skin, indicating that the cells had received significant doses of ultraviolet B. As regards the effect of ultraviolet B on migratory properties of Langerhans cells, we found not only that reduced numbers of CD1a-positive Langerhans cells migrated from the ultraviolet B-exposed full-thickness skin, but also that there was a reduction in CD1a-positive Langerhans cells in the epidermis. This implies that ultraviolet B induces death of Langerhans cells as well as loss of cell surface molecules rather than altering Langerhans cells migration, whereas the Langerhans cells that were still able to migrate fully retained the capacity to activate allogeneic T cells

    Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation.</p> <p>Methods</p> <p>UVB-irradiated p53<sup>+/- </sup>mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling.</p> <p>Results</p> <p>UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19<sup>+</sup>, CD5<sup>+</sup>, B220<sup>+</sup>, IgM<sup>+ </sup>and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19) translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression.</p> <p>Conclusion</p> <p>UV-irradiated p53<sup>+/- </sup>mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal tumors after chronic exposure to UV light. The induction of B cell lymphoma in UV-irradiated p53 heterozygous mice may provide a useful model for lymphoma development in humans.</p

    Distinct and Overlapping Effector Functions of Expanded Human CD4+, CD8α+ and CD4-CD8α- Invariant Natural Killer T Cells

    Get PDF
    CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4+, CD8α+ and CD4−CD8α− double-negative (DN) subsets. CD4+ iNKT cells expanded more readily than CD8α+ and DN iNKT cells upon mitogen stimulation. CD8α+ and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d+ cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4+ and CD8α+ fractions, respectively. Only CD4+ iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α+, DN or CD4+ iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease

    MMP19 Is Essential for T Cell Development and T Cell-Mediated Cutaneous Immune Responses

    Get PDF
    Matrix metalloproteinase-19 (MMP19) affects cell proliferation, adhesion, and migration in vitro but its physiological role in vivo is poorly understood. To determine the function of MMP19, we generated mice deficient for MMP19 by disrupting the catalytic domain of mmp19 gene. Although MMP19-deficient mice do not show overt developmental and morphological abnormalities they display a distinct physiological phenotype. In a model of contact hypersensitivity (CHS) MMP19-deficient mice showed impaired T cell-mediated immune reaction that was characterized by limited influx of inflammatory cells, low proliferation of keratinocytes, and reduced number of activated CD8+ T cells in draining lymph nodes. In the inflamed tissue, the low number of CD8+ T cells in MMP19-deficient mice correlated with low amounts of proinflammatory cytokines, especially lymphotactin and interferon-inducible T cell α chemoattractant (I-TAC). Further analyses showed that T cell populations in the blood of immature, unsensitized mice were diminished and that this alteration originated from an altered maturation of thymocytes. In the thymus, thymocytes exhibited low proliferation rates and the number of CD4+CD8+ double-positive cells was remarkably augmented. Based on the phenotype of MMP19-deficient mice we propose that MMP19 is an important factor in cutaneous immune responses and influences the development of T cells

    Imunopatologia da dermatite de contato alérgica

    Full text link

    Role of tumour necrosis factor-alpha in ultraviolet B light-induced dendritic cell migration and suppression of contact hypersensitivity.

    No full text
    Irradiation with ultraviolet B light (UVB) is known to suppress contact and delayed hypersensitivity response to a variety of antigens encountered within a short period following exposure. Such irradiation results in loss of Langerhans' cells and in synthesis of tumour necrosis factor-alpha (TNF-alpha) in the epidermis. In the present study the effect of broad-band (270-350 nm) and narrow-band (311-312 nm) UVB on the induction of contact hypersensitivity (CH) and on dendritic cell (DC) numbers in draining lymph nodes (DLN) of mice was examined. Broad-band UVB induced the accumulation of DC in DLN and this increase was substantially abrogated by treatment of mice with neutralizing antibody to TNF-alpha before irradiation. In addition, irradiation before sensitization with oxazolone resulted in a suppressed CH response. The suppression was negated to a considerable extent by TNF-alpha antibodies, administered before irradiation. Thus, one of the major effects of broad-band UVB is likely to be the synthesis of epidermal TNF-alpha which, in turn induces the migration of Langerhans' cells to DLN and leads to an impairment of their activity or function. Conversely narrow-band UVB did not result in an accumulation of DC in DLN or in a suppressed CH response. Such irradiation does, however, cause the isomerization from trans to cis-UCA in the epidermis. Cis-UCA has been proposed as a photoreceptor for UV and suppresses immune responses in a variety of experimental systems. Thus cis-UCA does not act through TNF-alpha induction or by influencing DC migration, and other studies indicate that histamine-like receptors in the skin may be involved
    corecore