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An opening speech by Louis Pasteur as professor at Lille on December 7,

1854 invoking the spirit of Benjamin Franklin:

Without theory, practice is but routine born of habit. Theory alone can

bring forth and develop the spirit of invention. It is you especially who are obliged

not to share the opinion of those narrow minds who reject everything in Science

which has no immediate application. You know Franklin's charming saying? He was

witnessing the first application of a purely scientific discovery and people around

him asked, " But what is its use?" Franklin answered them, "what is the use of a

newborn babe?" Yes, gentlemen, what is the use of a newborn child? And yet,

perhaps, at that tender age, germs already existed in you of the talents which

distinguish you. Among your baby boys, fragile things that they are, there are

incipient magistrates, scientists, heroes as valient as those who are now covering

themselves with glory under the walls of Sebastopol. And thus, gentlemen, a

theoretical discovery has but the merits of its existence: it awakens hope and that is

all. But let it be cultivated, let it grow and you will see what it will become.
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ABSTRACT

Irradiation with ultraviolet-B light (UV-B) suppresses some cell-

mediated immune responses to a variety of antigens, including contact sensitizers.

Following UV irradiation there is a modulation of Langerhans cell markers, and

keratinocytes are induced to synthesize and secrete tumour necrosis factor-alpha

(TNF-a). It has been postulated that there is a photoreceptor in the skin which

mediates the effects of UV-B radiation on the immune system. One candidate is

urocanic acid (UCA) found naturally in the stratum corneum of the epidermis as the

trans-isomer. which converts to the cis-isomer on irradiation. Cis-UCA has been

demonstrated to suppress immune responses in several experimental systems.

The mechanism of UV-B induced suppression of contact hypersensitivity

(CH) responses and the role of cis-UCA were examined using a murine model of CH.

UV-B irradiation was demonstrated to suppress the induction of CH responses whilst

cis-UCA had little, if any, effect. Next, the migration of dendritic cells (DC) to

draining lymph nodes (DLN) following UV-B irradiation or epicutaneous application

of UCA isomers was examined in unsensitized mice and mice sensitized with FITC. It

was found that UV-B irradiation alone induced DC migration to DLN with a maximum

number of DC being present in DLN 48hr following irradiation. In addition UV-B

irradiation followed by skin sensitization at the same site enhanced DC migration. In

sensitized mice, the percentage of DC bearing FITC and the quantity of FITC per DC

were unaltered by prior UV exposure. Further, the percentage of DC expressing la or

ICAM-1 molecules and the amount of la or ICAM-1 expressed per DC was unaffected

by UV-B irradiation. In contrast to these results with UV-B irradiation, neither

isomer of UCA had any significant effect on DC numbers in DLN in sensitized or

unsensitized mice.

The UV-B source used in the above studies emitted light over the range

270-350 nm. Another source was tried which emitted a narrow band only (311-
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312 nm) and isomerized trans to cis-UCA efficiently. It was revealed that narrow

band irradiation had no effect on DC accumulation in DLN or in suppressing the

induction of the CH response. This confirms that UV-B induced DC migration does not

occur as a result of the local production of cis-UCA and that cis-UCA is not sufficient

by itself to induce suppression of the CH response. Administration of dexamethasone

(a transcriptional inhibitor of TNFa) or TNFa antibodies to mice prior to UV-B

irradiation decreased DC accumulation in DLN suggesting that UV-B induced DC

migration to DLN is stimulated by TNFa release. If mice were treated with TNFa

antibodies prior to UV-B exposure, UV-B induced suppression of the CH response to

oxazolone was significantly inhibited. Thus UV-B induced suppression of CH is

mediated by intracutaneous release of TNFa.

High performance liquid chromatography (HPLC) proved successful in

quantifying UCA isomers in normal and UV-B irradiated skin extracts of several

mouse strains. The analysis of other mouse tissues by HPLC was not possible because

of the complexity of substances present and the fact that UCA represents a major UV

absorbing constituent only in the skin. Subsequently, a murine monoclonal antibody

to ds-UCA was prepared and tested by ELISA using UCA isomers conjugated to protein

as antigens. The interaction of the antibody with structural analogues of UCA was

assessed by competitive inhibition ELISA which indicated that the antibody had a high

specificity for cis-UCA. Screening of mouse sera at various times after UV-B

irradiation of mice by competitive inhibition ELISA using the monoclonal antibody

showed that cis-UCA was present, probably in an unbound form, for at least 2 days

after the exposure. Thus, cis-UCA produced in the epidermis following UV-B

irradiation reached the serum a few hours later where it may gain access to other

areas of the body such as DLN, spleen or unirradiated skin.
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CHAPTER 1

INTRODUCTION

1 .1 The Skin as a Lymphoid Organ

The skin is the main interface between the internal milieu of the

organism and the environment. Consequently, it is subject to a constant barrage of

antigenic challenges from pathogenic micro-organisms and environmental

chemicals, that represent a broad spectrum of antigenic specificities. The skin and

the immune system collaborate to provide a cutaneous defence mechanism against

this continuous onslaught of antigens. The principal physical function of the skin is

that of a relatively impenetrable physicochemical barrier over the entire surface of

the body, keeping most, but not all, invading pathogens and noxious agents at bay. As

a second line of defence, the immune system recognizes and responds in a highly

specific manner to pathogens and chemical agents that penetrate this barrier.

It has been well documented that the skin has the capacity to function as an

appropriate microenvironment for the efferent arm of the immune response. Indeed,

many of the classical demonstrations of both cell and antibody mediated immune

reactions have used the skin as an immunological substrate. Studies suggest that the

skin is more than just an immunologically permissive microenvironment, but can be

considered a lymphoid organ in its own right, containing a characteristic

architecture of lymphoid and nonlymphoid elements capable of complex interactions.

This lymphoid organ, termed the skin-associated lymphoid tissue (SALT) [Streilein,

1983 and 1990], is a unique organization comprising of 1) keratinocytes which

create a microenvironment that is favourable to antigen uptake and its recognition by

lymphocytes; 2) distinctive populations or recirculating T lymphocytes that display

a natural proclivity for migrating to skin; 3) a specialised set of antigen-presenting
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cells within the epidermis called Langerhans cells (LC) which are responsible for

processing and presenting antigens to immunocompetent lymphocytes in situ or in

the draining lymph nodes (DLN); and 4) a set of peripheral DLN, integrating this

multicellular system, that contain, along with the dermis, blood vessels with

endothelial cells whose surfaces capture lymphocytes passing through the blood. The

complementary functional properties of each of these cell types and their cooperative

interactions provide the skin with immune protection.

Over the past eight years it has become apparent, at least in mice, that

another constituent of SALT is a relatively sessile, dendritic epidermal cell that

bears Thy-1 alloantigen (Thy-1+ DEC) but is la negative. The potential role that

these cells might play in SALT is a subject of intense interest and experimentation,

and at present a single specific in vivo function for these cells has not been agreed

upon.

Since several other immunologically relevant cells populate epidermal

and dermal tissues: mast cells, tissue macrophages (histiocytes), granulocytes and

indeterminant cells [Bos and Kapsenberg, 1986; Kapsenberg et al. 1990; Van

Loveren et al. 1990], Bos and Kapsenberg (1986) proposed that all these cells

including the cells comprising SALT, but excluding skin-draining lymph nodes, form

an intricate and complex system called the "skin immune system" (SIS) (Figure 1).

With the introduction of this term, all elements i.e. both innate and adaptive

(aquired) subsystems, contributing to immunological defence within the skin, are

described under one heading.

1.1.1 Keratinocytes

Keratinocytes which constitute the growing epidermal component of the

skin are enclosed in an aqueous microenvironment bounded most distally by the

stratum corneum and proximally by the basement membrane of the dermal

epidermal junction. Although, keratinocytes are the major cell types within this

2
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Figure 1 Schematic representation of type and distribution of skin immune system

cells and their blood and lymphatic drainage systems depicted in the frontal projection;
cells and structures not primarily involved in skin immune responses are drawn in the
lateral projection.
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space, several different bone-marrow derived cells also occupy it: LC, lymphocytes

and in mouse skin a population of Thy-1+ DEC. A number of important findings

indicate that keratinocytes may have a significant and extensive influence on the

contents and properties of this fluid microenvironment. The first was that

keratinocytes could be induced to express major histocompatibility complex (MHC)

class II molecules and molecules important in facilitating T lymphocyte/keratinocyte

interactions: intercellular adhesion molecule 1 (ICAM-1) and OKM5 antigen. This

observation has generated a great deal of interest in the possible role of the

keratinocyte as an accessory cell in antigen-specific T cell responses. Another

major finding was that keratinocytes, under appropriate circumstances secrete a

diverse array of cytokines that could augment this possible accessory cell function

as well as influencing intraepidermal immune responses.

1.1.1A Expression of MHC Class II and Adhesion Molecules

Since the first report by Lampert et al (1981) that keratinocytes in

human graft-vs-host disease expressed MHC class II molecules, further examination

of other skin diseases revealed that this expression was related to the presence of a

lymphoid infiltrate within the skin [Lampert, 1984], It is well known that gamma

interferon (IFN-y), a product of activated T cells can induce the expression of MHC

class II molecules on cells that do not normally express this antigen such as

endothelial cells and fibroblasts [Geppert and Lipsky, 1985], implying that this

cytokine may be the agent responsible for the expression of MHC class II molecules

by keratinocytes. Indeed, it has now been demonstrated that IFN-y is able to induce

the expression of MHC class II molecules by human and murine keratinocytes

[Basham et al. 1985; Aiba and Tagami, 1987].

In addition to inducing the expression of MHC class II molecules on

keratinocytes, IFN-y has been shown to induce two other antigens on the surface of

keratinocytes: OKM5 and ICAM-1. The OKM5 antigen is expressed on a number of
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other cells including endothelial cells, monocytes, platelets and accessory cells

[Barnwell et al. 1985; Cooper et al. 1986], where it is involved in cell adhesion.

The expression of this antigen by keratinocytes may suggest a role for these cells in

trapping T cells or other leukocytes within the epidermis. Normal keratinocytes

express no or very low levels of ICAM-1, but following stimulation with

inflammatory cytokines such as IFN-y and tumour necrosis factor alpha (TNFa)

expression is increased to easily recognized levels [Dustin et al. 1988], The raised

level of expression was found to be associated with an increase in the adhesion of T

lymphoblasts to monolayers of cultured keratinocytes, presumably due to binding of

lymphocyte function-associated antigen (LFA-1) on the lymphocyte to its ligand

ICAM-1 on the keratinocyte. Further, Krutmann and his colleagues (1990) have

shown recently that tumour necrosis factor beta (TNFp) can up-regulate ICAM-1

cell surface expression on keratinocytes [Krutmann et al. 1990]. It is suggested

that the expression of ICAM-1 on keratinocytes by inflammatory cytokines such as

IFN-y may play an important role in the trafficking of T cells through the epidermis

during inflammatory responses [Nickoloff, 1989; Lewis et al. 1989].

1.1.1B Cytokine Production by Keratinocytes

Keratinocytes exhibit the capacity to secrete a large number of cytokines:

interleukin (IL)-1a, IL-6, IL-8, IL-10 colony stimulating factors (CSF) such as

granulocyte/macrophage CSF (GM-CSF), TNFa and platelet-derived growth factor

[Luger and Schwarz, 1990; Enk and Katz, 1992]. The multifunctional nature of

these cytokines enables them on their own, or in concert, to carry out numerous

functions, which initiate, up-regulate and amplify intraepidermal immune and

inflammatory responses. These functions include inducing and increasing the

expression of MHC class I and II molecules and ICAM-1 molecules on various cell

types (e.g. endothelial cells); acting as a chemoattractant for T lymphocytes,

neutrophils, monocytes and macrophages; activating T lymphocytes, neutrophils and
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macrophages; inducing haematopoiesis; inducing the production of other cytokines

from a variety of cells and enhancing the proliferation of antigen-specific T cells

[McKenzie and Sauder, 1990; Luger and Schwarz, 1990]. As well as initiating, up-

regulating and enhancing the immune response by providing immunostimulatory

mediators, keratinocytes can also down-regulate ongoing inflammatory or

immunological reactions by secreting suppressive mediators which include:

prostaglandins [Rola-Pleszczynski, 1985], urocanic acid [De Fabo and Noonan,

1983], contra IL-1 [Schwarz et al. 1987] and a number of, as yet, structurally

undefined inhibitory molecules. The conditions under which suppressive factors are

released by keratinocytes and their possible role in suppressing certain immune

responses are discussed in detail later in this chapter.

The dermal-epidermal junction is a semipermeable membrane which

permits the bidirectional translocation of molecules into dermis and epidermis.

Subsequently, factors secreted by keratinocytes can cross the dermal-epidermal

junction and influence inflammatory or immunological reactions taking place locally

within the epidermis and/or dermis or systemically at other sites in the body.

1.1.1C Functional Activities of Keratinocytes

Keratinocytes constitutively secrete IL-1 [Luger and Schwarz, 1990]

and can be induced to express MHC class II molecules as well as molecules that

facilitate T cell/keratinocyte interactions: ICAM-1, OKM5 antigen. Thus, these cells

possess three of the major signals necessary for accessory cell function in

presenting antigen to T cells. However, despite attempts to establish whether or not

keratinocytes can present antigen [Breathnach et al. 1986; Tjernlund and

Scheynius, 1987; Cunningham and Noble, 1989], it is not clear if these cells can

perform this function, mainly because unpurified epidermal cell populations were

used in the studies.
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It is known that keratinocytes are phagocytic [Luger et al. 1983], more

so than epidermal LC. Whether the effect of this property of keratinocytes would be

to increase or decrease the possibility that antigens within this compartment would

be successfully presented to T cells is unknown at present. However, based on the

findings that LC phagocytose very poorly, the concept that keratinocytes may

function to take up particulate antigen, modify/partially degrade it and release it

into the epidermal microenvironment enabling LC to then take up the fragments and

process them for presentation is an attractive one.

1.1.2 Skin-Seeking T Lymphocytes

Normal human [Bos et al. 1987] and mouse [Barker and Billingham,

1972] skin harbour lymphocytes, an overwhelming majority, if not exclusively of T

cell type only. Studies examining the immunophenotypes of T cells in normal skin

[Bos et al. 1987] revealed that the majority of intracutaneous T cells are located

within the dermis where they are clustered around post-capillary venules and are

approximately evenly distributed over CD4+, CDW29+ (4B4+) memory and CD8+

suppressor/cytotoxic T cell subsets. On the other hand, CD4+, CD45R+ (2H4+)

naive T cells were found to be relatively rare in the skin, although these cells form

approximately 50% of peripheral blood CD4+ T cells. Intraepidermal lymphocytes

were mostly of the CD8+ suppressor-cytotoxic T cell subset, accounting for less

than 2% of the total number of lymphocytes present in normal skin. Studies

examining the immunophenotype of T cells in diseased skin such as contact dermatitis

[Bos et al. 1989] also revealed that intra-cutaneous T cells of the CD4+ subset were

almost exclusively of the memory T cell subpopulation; CD4+, CD45R+ (2H4+)

naive T cells were rare. Further, intraepidermal cells in diseased skin were found

to be mostly of the CD8+ suppressor-cytotoxic T cell subset. These results indicate

that T cells in normal and diseased skin, as far as the CD4+ T cell subset is

concerned, have already met antigen in association with MHC class II molecules, as
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they have mainly a memory immunophenotype. It is not known whether these T cells

have immigrated into the skin in an activated state or whether they have been locally

activated or reactivated.

The concept that the T cell component of the skin represents a distinct

subpopulation of skin-seeking lymphocytes is supported by studies suggesting that

the skin may be a distinct regional lymphocyte homing specificity. For example

several investigators have shown experimentally preferential lymphoid migration to

skin [Issekutz et al. 1980; Issekutz et al. 1986] and certain skin-localizing T cell

malignancies have been demonstrated clinically in patients [Abel, 1985; Miller et

a[, 1980], More direct evidence for the existence of a skin-specific lymphocyte

phenotype has recently been provided by Picker and his colleagues [Picker et al.

1990]. These investigators reported that cutaneous T cells differ from their

counterparts in noncutaneous sites by the expression of an epitope recognized by the

monoclonal antibody HECA-452. Interestingly, the existence of a distinct

compartmentalized gut associated lymphoid tissue (GALT) is supported by the

identification of cell-surface antigens in both humans and rats that are

preferentially expressed on intestinal lymphocytes [Cerf-Bensussan et al. 1987;

Cerf-Bensussan et al. 1986] and by studies showing that certain gut-derived

lymphoid populations are GALT specific in their homing/recirculation properties

[Butcher et al. 1980; Jalkanen et al. 1989; Schmitz et al. 1988]. Thus, the report

by Picker and co-workers [Picker et al. 1990] of the existence of a skin-specific

lymphocyte phenotype provides significant new evidence supporting the hypothesis

that SALT is an immunologically unique lymphoid organ.

1.1.3 Langerhans Cells: Dendritic Cells of the Skin

1.1.3A Dendritic Cells

Dendritic cells (DC) were originally described by Steinman and Cohn

(1973), as 'a novel cell type in peripheral lymphoid organs of mice', with a
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morphology that resemble macrophages but with a characteristic dendritic

appearance. Like macrophages, DC are bone marrow derived, but may be regarded as

a separate cell line, reacting with DC-specific antibodies [Nussenzweig et al. 1982;

Kraal et al. 1986]. Further, DC constitutively express MHC class II molecules

[Steinman and Nussenzweig, 1980] in contrast to macrophages where this is an

inducible trait [Unanue and Allan, 1987] and are specialized to initiate primary T

cell responses [Steinman and Inaba, 1989]. Also, unlike macrophages, DC are only

weakly phagocytic [Steinman and Nussenzweig, 1980].

Since their original description [Steinman and Cohn, 1973] DC have been

isolated from spleens and lymph nodes of mice, rats and humans [Tew et al. 1982;

Steinman et al. 1979; Klinkert et al. 1982; Van Voorhis et al. 1982]. They have

also been observed in the medullary area of the thymus [Van Ewijk, 1984]. Apart

from their presence within primary and secondary lymphoid organs, DC are present

in various other sites in the body. They can be isolated from peripheral blood

(circulating DC) [Van Voorhis et al. 1982; Knight et al. 1986] and from afferent

lymph (veiled cells) [Knight, 1984], DC in low numbers have been identified in the

interstitial connective tissues of all organs, including the portal area of the liver,

kidney, heart, gut and respiratory tract but not the brain [Hart and Fabre, 1981].

Most strikingly, DC are abundantly present in stratified squamous epithelia as LC.

1.1.3B Langerhans Cells

Large numbers of LC form a regular and almost closed network of

dendrites within the basal and suprabasal layers of the epidermis. LC are bone

marrow-derived [Katz et al. 1979; Frelinger et al. 1979], have a low buoyant

density [Teunissen et al. 1988] and a low phagocytic activity [Streilein and

Bergstresser, 1984]. It has long been regarded that LC form a reticulo-epithelial

trap for antigen encountered at skin surfaces, and that they transport it, via afferent

lymphatics to DLN [Shelly and Juhlin, 1976; Silberberg-Sinakin et al. 1976].
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Evidence supporting and confirming this hypothesis will be discussed later in this

chapter. It is proposed that LC that leave the skin are replaced from the blood by

circulating LC precursors (the identity of which remains unknown) [Bos and

Kapsenberg, 1986]. Alternatively or in addition, epidermal LC that have left the

skin may be replaced by division from an intra-epidermal LC pool [Miyauchi and

Hashimoto, 1987; Czerneielewski and Demarchez, 1987]. An array of molecules

are displayed on the surface of LC, some of which help to establish the cell's identity

and some of which have defined functional properties: class II MHC molecules, Fc and

C3b receptors, CD1 (T6), T200 (Ly5), ICAM-1 (very low levels), LFA-3, CD4 (on

human LC), IL-2 receptor (on murine LC), F4/80 and membrane ATPase activity

[Bos and Kapsenberg, 1986; Teunissen et al. 1990; Cumberbatch et al. 1992].

Apart from the membrane molecules which are associated with antigen presenting

function, the function of the other molecules is less clear; the role of CD1 (T6), and

CD4 and IL-2 receptor expressed on human and murine LC, respectively remains

particularly enigmatic. It has recently been suggested, based on the structural

relationships between CD1 antigens and MHC class I molecules, that CD1 antigens are

important in the transport and release, at the LC surface, of soluble self peptides

which may interact with Thy-1+ DEC [Hanau et al. 1990], LC contain within their

cytoplasm organelles called Birbeck granules. Although the precise function of these

organelles is unknown, available evidence suggests that they are morphological

expressions of endocytosis [Hanau et al. 1987A and B] and are critical for antigen

processing or presentation [Stossel et al. 1990; Hanau etaj.,1987B; Bucana et al.

1992].

LC are considered the principal antigen-presenting cells of the skin

[Stingl et al. 1989]. Recently, investigators have shown LC to undergo important

phenotypic and functional changes in culture, transforming them into potent

immunostimulatory DC [Schuler and Steinman, 1985; Romani et al. 1989A; Romani

et al. 1990; Romani and Schuler, 1989; Shimada et al. 1987]. It appears that this
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functional maturation is effected by GM-CSF and IL-1 [Witmer-Pack et al. 1987;

Heufler et al. 1988], products of keratinocytes [Luger and Schwarz, 1990].

Freshly isolated LC can process native protein antigens efficiently for presentation

to antigen specific T cell clones but are weak in stimulating resting T cells.

Conversely, LC cultured for a total of 48-72hr lose the capacity to process antigen

but acquire potent stimulatory capacity for resting T cells [Romani et al. 1989B;

Streilein and Grammer, 1989; Witmer-Pack et al. 1987; Schuler and Steinman,

1985]. Based on these observations it is viewed that fresh and cultured LC are in

vitro representatives of their in vivo counterparts: intraepidermal LC and LC that

have migrated to DLN, respectively. With this view in mind it is suggested that

intraepidermal LC are especially programmed for efficient antigen processing and

can readily present antigen to primed or memory T cells but during migration to the

DLN this facility is 'exchanged' for potent immunostimulatory activity (achieved in

part, from the acquisition of accessory molecules) and the ability to present antigen

to unprimed T cells [Romani et al. 1989B; Streilein and Grammer, 1989;

Cumberbatch et al. 1991A and B; Cumberbatch et al. 1992],

1.1.4 Specialized Endothelial Cells Responsible for Directing

Lymphocyte Migration into Extravascular Tissue

The vascular endothelium which consists of a monolayer of squamous cells

lining the whole circulatory system forms an anatomical barrier between the blood

and extravascular tissues of the body. Consequently, a mechanism must exist that

permits skin-seeking lymphocytes to selectively escape from the vascular tree into

the dermis/epidermis (and DLN). Lymphocytes have been seen to cluster around the

post-capillary venules that occupy the papillary and reticular dermis in normal

skin and (in amplified numbers) in inflammed skin [Bos and Kapsenberg, 1986]. It

is believed that the cellular and molecular mechanism(s) of lymphocyte emigration

from the blood into the skin is promoted by the endothelial cells that line these small
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vessels [Streilein, 1990], A hypothetical model for the mechanism of selective

lymphocyte emigration from blood into extravascular tissue has been proposed

[Butcher et al. 1982]. This model suggests that lymphocytes possess on their

surface specific adhesion molecules (referred to as homing receptors) which

recognize and interact with appropriate ligand molecules expressed on the surface of

endothelial cells that line post-capillary venules. A brief summary of the

experimental data available describing these cell surface molecules and implicating

their role in the selective migration of lymphocytes from the vascular compartment

into extravascular tissue is given below.

A number of monoclonal antibodies have been produced which can block

lymphocyte binding to peripheral lymph node post-capillary venules in vitro and

lymphocyte homing to peripheral lymph nodes in vivo, by recognizing a glycoprotein

antigen of between 80 to 90 KDaltons expressed on the surface of these cells

[Gallatin et al. 1983; Rasmussen et al. 1985; Jalkanen et al. 1986], Another set of

antibodies has also been identified which block lymphocyte binding to Peyer's patch

post-capillary venules, but not peripheral lymph node post-capillary venules

[Jalkanen et al. 1986; Chin et al. 1986], An additional cell surface molecule on

lymphocytes which has been shown to be important in binding to endothelial cells of

the lymph node and skin is LFA-1 [Hamann et al. 1988; Haskard et al. 1987]. It has

been reported that if cultured human endothelial cells either from umbilical cords or

the microvasculature of the skin are pretreated with a variety of inflammatory

mediators such as IFN-y, IL-1 and/or TNF, leukocyte adherence was greatly

increased [Yu et al. 1985; Bevilacqua et al. 1985; Gamble et al. 1985]. Pre-

incubating lymphocytes with anti-LFA-1, however, resulted in a substantial (but

not total) inhibition of lymphocyte binding to both non-treated or inflammatory

mediator-treated cultured endothelial cells [Mentzer et al. 1986; Haskard et al.

1986; Haskard et al. 1987]. The observation that LFA-1 is important in the
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binding of lymphocytes to endothelial cells in lymph nodes and skin, suggest that this

molecule is not tissue specific.

Endothelial cells are functionally very diverse [Pasyk and Cherry, 1990]

beiftg able to respond to a variety of inflammatory mediators by expressing a

multitude of cell surface molecules believed to be important in lymphocyte

trafficking. Before focussing on the cell surface molecules on endothelial cells, it is

worth mentioning that some of the endothelial cell surface antigens represent

specific receptor ligand-like molecules for known lymphocyte molecules, whereas

other endothelial cell antigens are less well characterized with respect to the

identification of the complementary recognition molecule on the lymphocyte. ICAM-

1 which is expressed on vascular endothelial cells, macrophages, lymphocytes and

thymus and mucosal epithelial cells [Dustin et al. 1986] is a ligand for LFA-1

[Marlin and Springer, 1987]; so lymphocytes expressing LFA-1 are able to bind to

endothelial cells via the ICAM-1 molecule. In an analogous fashion to the previously

discussed results in which anti-LFA-1 antibodies on lymphocytes block binding to

endothelial cells, antibody to ICAM-1 on endothelial cells blocks this adherence

[Nickoloff, 1990], Further, it has been demonstrated that IFN-y and TNF enhance

the expression of ICAM-1 on cultured endothelial cells from normal skin after 24hr

[Griffiths et al. 1989], Also, markedly enhanced vascular endothelial cell

expression of ICAM-1 in several skin diseases has been reported [Griffiths et al.

1989] substantiating the in vitro data and supporting the notion that the expression

of ICAM-1 molecules by endothelial cells is important in the trafficking of

lymphocytes into skin. In contrast to the expression of ICAM-1 molecules on the

surface of vascular endothelial cells, a number of tissue-specific endothelial cell

molecules which are involved in lymphocyte homing have been identified [Butcher gt

al, 1980; Streeter et al. 1988].
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1.1.5 Thy-1+ Dendritic Epidermal Cells

It has been recognized for ten years that the epidermis of all strains of

normal mice is populated by a resident, bone-marrow-derived population of DC

phenotypically distinct from epidermal LC [Bergstresser et al. 1983; Tschachler ei

ai, 1983; Romani et al. 1985]. These cells express Thy-1, CD3 in association with

a gamma/delta T cell receptor, asialo GM-1, but not CD4, CD8 or class II MHC

molecules, and are referred to as Thy-1 + dendritic epidermal cells (DEC) [Tigelaar

et al. 1990; Streilein, 1990; Koning et al. 1987]. Whether the T cell receptor on

Thy-1 + DEC is used for recognizing antigen by itself or in association with MHC

molecules is unknown. However, preliminary evidence suggests that at least some of

the Thy-1 + DEC appear to recognize class I MHC molecules [Janeway et al. 1988].

It has been reported that the human epidermis harbours a very low number of a

similar subset of gamma/delta T cells [Groh et al. 1988].

In an attempt to explain the biological function of Thy-1 + DEC it has

been proposed that these cells are dedicated to providing immunosurveillance for the

"epithelia" [Tigelaar et al. 1990; Janeway et al. 1988; Streilein, 1990] which may

be accomplished by cytotoxic destruction of foreign/altered target cells [Nixon-

Fulton et al. 1988], On the other hand, the demonstration that administration of

hapten-derivatized Thy-1 + DEC to naive mice induces a state of specific

immunological unresponsiveness [Sullivan et al. 1986] suggests that Thy-1 + DEC

may have an important role to play in regulating immune responses (which will be

discussed in more detail later in this chapter). Despite these suggestions not a

single, specific in vivo function for Thy-1 + DEC has been agreed upon.
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1 .2 Immunological Mechanism in Contact Hypersensitivity

J. Jadassohn is reported to be the first investigator to describe the

phenomenon of skin sensitization [cited by Polak, 1980]. He observed in 1895 that

certain inflammations caused by contact of the skin with chemicals were not due to

the irritating properties of these substances but to a specific increase in skin

sensitivity, acquired by repeated contact with the same substance. Since that time a

number of important advances have been made in our understanding of the biology of

contact hypersensitivity (CH), a cutaneous delayed hypersensitivity reaction.

Progress has been facilitated by the development of suitable animal models of CH and

by a greater comprehension of the molecular and cellular events which initiate and

regulate immune responses in general.

CH is a biphasic phenomenon comprising an induction or afferent phase

during which sensitization is initiated, and an elicitation or efferent phase when,

following subsequent exposure to the same chemical, the sensitized animal exhibits a

cutaneous hypersensitivity reaction. A variety of immunoregulatory mechanisms

serve to modulate or contain both the induction and elicitation phases of the CH

response.

1.2.1 The Induction Phase

The inductive phase may be further subdivided into five stages:

a) the preparatory phase (formation of the conjugate)

b ) the antigen uptake phase

c) the antigen recognition phase

d) the proliferation and differentiation phase

e) The propagation phase consisting of the release of effector and memory

cells into the circulation and the spread of sensitivity over the entire

body.
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1.2.1A The Preparatory Phase

When applied to the skin, haptens, such as dinitrochlorobenzene (DNCB),

picryl chloride (TNCB) and oxazolone penetrate quickly through the stratum

corneum (the outermost layer of the epidermis) entering the epidermal

compartment that contains extracellular and cell-surface epidermal proteins

[Nishioka, 1985; Streilein, 1990]. Haptens that result in CH commonly exhibit

three features: chemical reactivity, lipid solubility and low molecular weight

[Bergstresser, 1984]. Chemical reactivity is required because most haptens

covalently bind to larger molecules, most importantly to structural and cell surface

proteins creating many novel hapten-protein conjugates [Bergstresser, 1989].

This chemical binding of haptens to larger molecules has been given a variety of

interchangeable terms, such as derivatization, haptenation and conjugation, which

describe the process by which relatively small reactive haptens bind to formerly

non-immunogenic structures, converting them to immunogenic ones. Protein-

hapten conjugates produced in this way become the materials against which the

resulting hypersentivity response is directed. This process is referred to as the

preparatory phase.

1.2.1B Uptake of Antigen by Epidermal Antigen Presenting Cells

A distinctive feature of the CH response is that the processing and

presentation of antigen (hapten-derivatized epidermal protein) in association with

class II MHC molecules is believed to be performed by LC. A considerable body of

evidence has been gathered to support the hypothesis that LC are important antigen-

presenting cells for the induction of CH responses. Numerous investigators have

reported that the efficiency of sensitization is impaired, or actively suppressed,

when hapten is applied to areas of skin naturally poor in, or depleted of, LC [Toews et

a], 1980; Streilein et al. 1980B; Semma and Sagami, 1981; Rheins and Nordlund,

1986; Halliday and Muller, 1987]. However, there is evidence that LC are not an
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absolute prerequisite for the initiation of CH. Studies in the guinea pig [Baker et al.

1985] and mouse [Streilein, 1989] suggest that contact sensitization may proceed

in the absence of epidermal LC, implying that a second pathway of cutaneous antigen

presentation may exist. In support of this view is the recent report by Tse and

Cooper (1990) that la+ DC, located in the perivascular region of the mouse dermis,

when derivatized with hapten can induce contact sensitivity in naive mice.

1.2.1C Antigen Recognition Step (Transmission of Antigenic Information to T-

Lymphocytes)

It is now very clear that contact sensitization is dependent upon the

activation and clonal expansion of hapten-reactive T lymphocytes [Parrott and De

Sousa, 1966; Davies et al. 1969; De Sousa and Parrott, 1969; Pritchard and

Micklem, 1972]. However, a great deal of controversy has centred on the actual site

of primary stimulation (sensitization) of T cells i.e. the site of transmission of

antigenic information to T-lymphocytes. Although a historical hypothesis has

proposed "peripheral sensitization" [Medawar, 1965], the majority of evidence

suggests that these events are initiated in the lymph nodes draining the site of

sensitization [Frey and Wenk, 1957; Parker and Turk, 1970; Asherson and

Mayhew, 1976; McFarlin and Balfour, 1973]. However, for the activation and

expansion of reactive T lymphocytes, antigen must reach the DLN in an appropriate

form. It has been thought for some time that the transport of antigen by LC from the

skin to the DLN represents the major route of cutaneous sensitization [Silberberg-

Sinakin et al. 1976]. In support of this is the observation that topical exposure of

mice to DNFB caused a temporary but marked, depletion of identifiable LC from the

epidermis [Bergstresser et al. 1980], In recent years it has become clear that

within hours of contact sensitization there is an accumulation of DC in the lymph

nodes draining the site of application [Knight et al. 1985A; Macatonia et al. 1986;

Knight et al. 1985B; Macatonia et al. 1987; Kinnaird et al. 1989] and that a

1 7



significant proportion of these cells bear high levels of antigen [Macatonia et al.

1986; Macatonia et al. 1987; Kinnaird et al. 1989], That these antigen-bearing DC

in DLN derive from epidermal LC which travel from the skin via afferent lymphatics

has been corroborated by studies of athymic mice bearing skin allografts [Kripke £t

al, 1990], It was found that the la+ antigen-bearing DC which accumulated in the

DLN following contact sensitization at the site of the allograft were of graft donor

origin. There is now strong evidence suggesting that the stimulus for the migration

of LC to DLN is TNFa [Cumberbatch and Kimber, 1992].

1.2.1 D Proliferation and Differentiation Phase

Considerable evidence suggests that the antigen-bearing DC which

accumulate in DLN play an important or decisive role in the induction of contact

sensitization. They have been demonstrated to be potent stimulators of both primary

and secondary T lymphocyte proliferative responses in vitro [Jones et al. 1989;

Robinson, 1989; Knight et al. 1985A; Macatonia et al. 1986; Macatonia et al.

1987] and small numbers will efficiently induce contact sensitization in naive

animals [Knight et al. 1985A; Knight et al. 1985B; Kinnaird et al. 1989; Macatonia

and Knight, 1989]. Further, it has been reported that a correlation exists between

the number of DC which arrive in the DLN within 24 hr of skin sensitization and the

vigour of the primary lymphocyte proliferative response [Kimber et al. 1990A],

It is thought that the antigen-laden DC migrating into DLN come to rest in

the paracortical area of the lymph node where they are referred to as interdigitating

cells [Teunissen et al. 1990]. Within the paracortical area, those T cells that

specifically bind to the antigen being presented (in association with MHC class II

molecules) by interdigitating DC, are activated. It is thought that these initiator T

lymphocytes upon activation, proliferate and release interleukins which recruit

another subset of T cells (Tdh) to the lymph node, which upon presentation of
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antigen become activated and proliferate and differentiate into effector T cells of CH

[Nishioka, 1985].

In order for DC to activate T cells, a direct interaction between these two

cell types is mandatory [Inaba et al. 1989]. It has been proposed that DC have a

reversible "antigen-independent" mechanism for surveying T cells [Inaba and

Steinman, 1987; Austyn and Morris, 1988; Austyn et al. 1988; Inaba et al. 1989].

This provides time for antigen-MHC class II complexes on the surface of the DC to

align with specific receptors on the T cell. If complementarity occurs the T cell is

retained for subsequent activation but if not, the T cell leaves and new clones have an

opportunity to bind.

1.2.1E Propagation Phase

This step involves systemic sensitization. The effector T cells of CH after

being produced in the lymph nodes, re-enter the circulation (via the efferent

lymphatics) and join the circulating T cell pool. As well as recirculating through the

lymphoid organs, these recently activated Tdh ce"s enter peripheral tissues,

particularly the skin [Andersen et al. 1987], The mechanism by which these cells

enter the skin has been previously discussed in section 1.1.4.

It is worth mentioning that keratinocytes may have an important role to

play in the induction phase of CH. It has previously been mentioned (Section 1.1.1C)

that keratinocytes are phagocytic, much more so than LC. Thus, any antigenic

particles that gain access to the epidermal compartment will be taken up by

keratinocytes and perhaps degraded. Consequently, the possibility arises that the

uptake of antigenic particles by keratinocytes might actually interfere with, rather

than promote, processing and presentation of antigen by LC.
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1.2.2 The Elicitation Phase

The elicitation phase of CH occurs following challenge of previously

sensitized animals, with a peak response approximately 24hr after exposure and is

characterized by an infiltration of mononuclear cells and in some instances basophils

[Dvorak and Mihm, 1972]. The sequence of events thought to take place are as

follows. Upon challenge, haptens penetrate into the epidermis to form the same

hapten-carrier protein complexes that are produced in the induction phase. LC

present in the epidermis take up these antigen complexes and present them to

effector Tdh ce"s °f CH which escape into the dermis from the blood vasculature (as

described in section 1.1.4) and migrate into the epidermis. Upon presentation these

T cells are activated and release a variety of lymphokines inducing an amplified

cellular infiltrate and local inflammation. These lymphokines which include IL-2,

chemotactic factor and IFN-y, have a variety of stimulatory effects on other

lymphocytes, mononuclear phagocytes and vasculature. These effects include causing

activated T lymphocytes to proliferate and release mediators; increasing the

expression of MHC class II molecules on the surface of LC; augmentation of the

cytotoxic activity of T cells; recruitment of mononuclear phagocytes to the site;

induction of mitosis of lymphocytes to increase their numbers; reduction of the

migratory activity of macrophages to increase their metabolic activity to process

antigens and toxic substances; dilation of blood vessels and increase in their

permeability [Goh, 1988]. The T lymphocytes contained within the infiltrate are

CD4+ and CD8+, usually with the former predominating [Wood et al. 1986] and

comprise both specific and non-specific elements [Scheper et al. 1985],

The local response is amplified further as a consequence of the capacity of

IFN-y to activate keratinocytes in three important ways: 1) to initiate the

expression of MHC class II molecules; 2) by inducing keratinocytes to release

several cytokines that modulate T cell activity; and 3) by inducing keratinocytes to

express cell adhesion molecules such as ICAM-1. It is thought that the expression of
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MHC class II molecules on keratinocytes may amplify the in situ potential for antigen

presentation, thereby activating additional T cells. T cell activation at the local site

could be further accelerated as a result of the release of certain cytokines by

keratinocytes and the expression of adhesion molecules may play a role in directing T

cell migration from dermis into epidermis [Streilein, 1990],

There is considerable interest in the role of mast cells and vasoactive

amines in the elicitation phase of CH. It is postulated that an early event takes place

following challenge involving the degranulation of mast cells and the release of

vasoactive amines such as histamine and serotonin, which induce vasodilation and the

creation of gaps between adjacent endothelial cells, facilitating the entry of effector T

lymphocytes which mediate the classical delayed hypersensitivity reaction [Van

Loveren and Askenase, 1984]. This view is supported by the observation that

challenge reactions in mice comprise both an early (1-2hr) and a late (24-48hr)

phase of tissue swelling [MacKenzie et al. 1981; Van Loveren et al. 1983] and that

the elicitation of contact sensitivity may be more effective in areas of skin rich in

mast cells [Gershon et al. 1975]. Further, reserpine, an agent that depletes mast

cell serotonin, markedly impairs the elicitation of sensitization [Askenase et al.

1980; Back and Groth, 1983], It has been suggested that for mast cells to

participate in challenge reactions, the sequential action of two independent T

lymphocyte populations is required [Van Loveren and Askenase, 1984; Van Loveren

et al. 1984], There is evidence that the early component of the elicitation reaction

is mediated by a T lymphocyte-derived antigen-binding factor that 'sensitizes' tissue

mast cells and possibly other vasoactive amine-containing cells [Meade et al. 1988;

Herzog et al. 1989A], Following challenge it is thought that antigen binds to such

sensitized cells, initiating degranulation and allowing subsequent infiltration of the

second population of T lymphocytes which cause the late-phase reaction [Meade et al.

1988; Van Loveren et al. 1986], However, the role of mast cells and vasoactive

amines in delayed-type hypersensitivity remains controversial. For instance, mice
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genetically deficient in mast cells display 24hr challenge reactions comparable with

normal animals [Galli and Hammel, 1984; Mekori et al. 1987]. Also, reserpine has

been demonstrated to virtually abolish the expression of contact reactions in mast

cell-deficient mice [Galli and Hammel, 1984; Askenase et al. 1983], It is thought

that this is as a consequence of a direct effect of reserpine on T lymphocyte function

[Mekori et al. 1987; Mekori et al. 1985], Thus, the role of mast cells and

vasoactive amines in the elicitation phase of CH remains unresolved.

1.2.3 Immunoregulation

A great deal of work has been done to investigate the immunoregulation of

CH [Asherson et al. 1980; Claman et al. 1980A; Claman et al. 1980B], much of

which has involved deliberately perturbing the immune system to provoke the

appearance of immunoregulatory mechanisms [Dieli et al. 1987; Taborski et al.

1986; Miller et al. 1977; Miller et al. 1978; Asherson et al. 1977]. Such studies

have revealed that active regulation of CH can be achieved by suppressor cells which

influence the induction stage of sensitization (afferent-acting suppressor cells)

[Moorhead, 1976; Thomas et al. 1979; Dieli et al. 1987], by a complex network of

interacting suppressor cells (and molecules) which inhibit the elicitation reaction

(efferent-acting suppressor cells) [Miller et al. 1978; Asherson et al. 1984] or by

clonal inhibition [Miller et al. 1977]. In recent years, the description of

contrasuppressor cells which modify suppression in an antigen-specific manner

distinct from T cell help [Ptak et al. 1984; Green and Ptak, 1986] has added further

to the complexity of cellular interactions in induced immunoregulatory processes.

Although studies which have involved inducing immunoregulatory

mechanisms have advanced our understanding of the various cellular and molecular

mechanisms which may serve to modulate the immune system, they have provided

little information about the regulatory events which actually influence the

development and expression of CH following topical sensitization. On the other hand,

indirect evidence for the appearance of regulatory mechanisms following
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epicutaneous exposure derives from experiments in which cyclophosphamide, given

prior to sensitization, has been shown to augment CH reactions, presumably through

selective impairment or elimination of suppressor cells or their precursors

[Maguire and Ettore, 1967; Polak and Rinck, 1977; Parker and Turk, 1982].

These studies suggest that, following topical sensitization, there may be both

inducing or promoting signals and inhibitory (suppressive) effects with the balance

between them influencing the severity and duration of reactions and longevity of

sensitization. There is some evidence that this balance may be tipped in favour of the

appearance of cyclophosphamide-sensitive immunosuppression depending on the

concentration of skin-sensitizing chemical administered [Sy et al. 1977; Asherson

et al. 1979]. Polak (1980) suggested that contact sensitizers which appear to be

relatively weak sensitizers are such because of their ability to induce more active

suppression and not because of any lack of inherent immunogenicity.
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1 . 3 Ultraviolet Radiation

1.3.1 Natural Source

Ultraviolet (UV) radiation which is emitted by the sun comprises of

electromagnetic radiation of wavelengths ranging from 200-400nm. Like other

forms of electromagnetic radiation, UV is delivered in photons (wave/particle

'packets of energy'); the energy of a photon depends on the wavelength of radiation,

shorter wavelengths being more energetic. UV radiation is divided into three

subregions termed UV-A, UV-B and UV-C. The amount of UV radiation in sunlight

that reaches the earth's surface is directly dependent on its wavelength. Of the three

UV bands, UV-C (200-280nm) is most efficient in the induction of erythema, but

the penetration of its short wavelengths to the earth's surface is blocked by nitrous

oxide in the thin upper atmosphere and by oxygen and ozone at lower altitudes of the

stratosphere (15-30km). On the other hand, solar radiation in the UV-B (280-

320nm) and UV-A (320-400nm) region are present in terrestrial sunlight. UV-B

radiation is often referred to as the sunburn spectrum of solar radiation because it is

many more times efficient in inducing erythema than UV-A.

It is now established that there is a seasonal hole in the stratospheric

ozone layer over the Antarctic [Farman et al. 1985] and that ozone depletion may be

occuring outside this geographic boundary [Proffitt et al. 1989] as well as within

the Arctic circle [Hofmann et al. 1989], Further, Lubin et al (1989) have provided

the first direct ground-based measurements of increased levels of UV-B radiation

during an ozone depletion episode in Antarctica. These findings are confirming what

has long been predicted - a decrease in the stratospheric ozone concentration and a

subsequent increase in the amount of solar UV-B radiation reaching the earth's

surface will occur as a direct result of man-made perturbations to the atmosphere.

Since wavelengths in the middle UV region of the spectrum (UV-B 280-320nm) are

readily absorbed by living organisms and are responsible for much of the biological
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activity of solar UV radiation, increased environmental exposure to UV-B radiation

would have profound effects on human health and animal and plant life.

1.3.2 Artificial UV Sources

Various types of lamps exist which emit across the UV region. For

example, a lamp used to investigate the influence of broad band UV-B (280-320nm)

radiation on experimental animals is the Philips TL20W/12 fluorescent lamp.

However, although this type of UV source is convenient, there are disadvantages. As

can be seen from the relative spectral energy distribution of this UV-B sunlamp

(Figure 2), radiation on both sides of the UV-B band i.e. in the UV-A and UV-C, is

also being emitted. Thus, mice exposed to this lamp are exposed simultaneously to

other wavelengths of radiation, in addition to UV-B [Van Weelden et al. 1988].

A new UV-B fluorescent sunlamp, the Philips TL-01 lamp has recently

been developed. In contrast to the TL20W/12 lamp, the spectrum of this lamp is

dominated by a strong and narrow peak (band width 2.5nm) around 311-312nm,

with a second peak around 305nm and has much smaller output at wavelengths of

300nm and below than the broad band UV-B sources (Figure 3) [Flindt-Hansen et

a], 1991; Van Weelden et al. 1988 and 1990],

1.3.3 The Biological Effects of UV Radiation

UV-B radiation is among the most ubiquitous agents encountered in the

environment. Consequently, in mammalian systems the skin is the major substrate

upon which this nonionizing radiation directly interacts with an organism; such an

interaction determining the biological effects of UV radiation. Also, it should be noted

that UV-B penetrates very little, if at all, beyond the skin [Agin et al. 1981], partly

because of scattering of the radiation and partly because there are many efficient

absorbers of UV-B radiation in the skin. UV-A, in contrast, penetrates considerably

further [Agin et al. 1981],
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Figure 2 Relative spectral energy distribution of a Philips TL-20W/12 UV-B

lamp.
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Figure 3 Relative spectral energy distribution of the experimental fluorescent

lamp, Philips TL-01.

27



A major critical biological molecule which absorbs UV-B radiation is DNA

with the result that it is damaged. Damage may be direct such as the formation of

pyrimidine dimers by absorption of UV photons or indirect via a route involving

"excited-state" oxygen produced by the splitting of water molecules. In addition to

pyrimidine dimers other damage can occur in UV irradiated DNA including DNA-

protein cross-links and DNA strand breaks [Setlow and Carrier, 1966; Elkind and

Han, 1978; Peak et al. 1985; Miguell and Tyrrell, 1983].

The most serious biological consequences of UV radiation on proteins are

due to absorption by a few amino acids - tryptophan, tyrosine, phenylalanine,

cystine, and cysteine and the peptide bond. Since cystine with its chain-linking

disulphide bond is critical in tertiary structure formation, this is probably the most

important target in the inactivation of proteins. Changes which occur following UV

absorption of proteins include increased sensitivity to heat, enzyme inactivation and

antigenic changes due to altered amino acid residues [Smith and Hanawalt, 1969],

An important function of UV-B radiation is that it converts skin stores of

7-dehydrocholesterol (provitamin D3) to previtamin D3 which then slowly

converts to vitamin D3. Vitamin D is essential for calcium and bone metabolism

[Holick, 1985]. This appears to be the only well documented beneficial effect of UV-

B radiation, although exposure to UV-B radiation is very effective in the treatment

of a large number of skin diseases.

Despite many dark coloured cultures considering light coloured skin very

beautiful, many Caucasians through vanity and sociological pressures constantly seek

a tanned skin. During the process of tanning a number of biological events arise. UV

radiation upon penetrating the skin destroys and damages skin cells (i.e.

Keratinocytes and LC) [Obata and Tagami, 1985] and at the same time triggers

melanocytes (pigment cells) present in the epidermis to produce melanin which acts

as a shield to absorb damaging UV radiation. It is the UV-B induced production of

melanin which produces the tan. Further, during the process of tanning UV-B
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radiation induces erythema which is a local effect caused by the dilation of blood

vessels near the skin's surface and increased blood flow to the skin, making the skin

hot, swollen and red - sunburnt. Sunburn frequently causes the upper layers of the

epidermis to be discarded so that the skin peels and is replaced by new skin.

Depending on a person's predisposition, the effects of sunburn may cause

permanent damage which is only manifested after a number of years. Sunburn may

lead to degeneration of the connective tissue, increased susceptibility to infection and

skin carcinomas. There are three forms of skin cancer: basal-cell carcinoma,

squamous-cell carcinoma and malignant melanoma, all of epidermal origin. Although

non-melanoma skin cancers are the most common of all tumours in the Caucasian

population, with a low mortality rate of 1% or less [Pollock Shea, 1988], the

incidence of malignant melanoma skin cancer is increasing at an alarming rate,

particularly in Northern hemispheres [Mackie et al. 1992]. The mortality rate of

malignant melanoma skin cancer is much higher than non-melanoma skin tumours.

There is little question of the causal link between UV radiation and non-melanoma

skin cancer. These cancers correlate with latitude, and by implication UV levels.

The closer to the equator a white-skinned person lives, the more likely he or she is

to get basal-cell or squamous-cell carcinoma. Moreover, these carcinomas occur on

parts of the body we expose the most: face, hands, arms and neck. The formation of

these cancers appears to be dependent on the cumulative effect of exposure to

sunlight. Mice chronically exposed to UV radiation develop non-melanoma skin

cancer [Blum, 1959]. People who work outdoors are particularly prone to non-

melanoma skin cancers. De Gruijl and van der Leun (1991) reported that the action

spectrum of non-melanoma skin cancers is similar to that for erythema i.e. UV-B

wavelengths are more efficient than UV-A. Although the link between UV exposure

and malignant melanoma is not as clear cut as with non-melanoma skin cancer, it

seems to be associated with acute burning experiences since it occurs more

frequently in fair-skinned individuals with a history of blistering sunburn in their
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childhood. However, it is puzzling that malignant melanomas are not restricted to

UV-exposed areas of the body and vary in their distribution between men and women.

Other biological effects of UV-B radiation include photoageing, arising as

a consequence of frequent and prolonged exposure to UV radiation over a substantial

period and manifesting itself in the form of dryness and wrinkling [Kligman, 1989];

the formation of certain types of ocular cataracts [Taylor et al. 1988; Pitts et al.

1986] and an alteration in immunological function (discussed in detail in section

1.4).
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1 .4 Immunosuppression by Ultraviolet B Radiation

Irradiation with UV-B in vivo suppresses some cell-mediated immune

responses to a variety of antigens. For example CH responses to chemical haptens

[Greene et al. 1979; Toews et al. 1980; Noonan et al. 1981A & C; Lynch et al.

1981, 1983; De Fabo and Noonan, 1983; Elmets et al. 1983; Streilein and

Bergstresser, 1988; Vermeer et al. 1991] and delayed-type hypersensitivity

responses to herpes simplex virus (HSV) [Howie et al. 1986A; Yasumoto et al.

1987] and alloantigens [Ullrich, 1986; Mottram et al. 1988] are suppressed.

Other examples of UV-induced immunosuppression include suppression of highly

antigenic UV-induced tumours [Fisher and Kripke, 1977, 1978; De Fabo and

Kripke, 1979] and suppression of Leishmania parasite-induced skin lesions

[Giannini, 1986].

A model system used by many investigators to investigate the mechanism

of this effect is the UVB-induced suppression of the CH response to contact

sensitizers such as TNCB or dinitrofluorobenzene (DNFB).

1.4.1 Local and Systemic Immunosuppression

Irradiation of mice with UV-B suppresses CH either "locally" i.e. when

the contact sensitizer is applied to the UV irradiated site [Toews et al. 1980; Lynch

et al. 1981; Streilein and Bergstresser, 1988], or "systemically" i.e. when the

sensitizer is applied to a site distant from the site of UV-B exposure [Noonan et al.

1981A, C; De Fabo and Noonan, 1983]. Investigators using protocols that produce

local suppression of immune responsiveness have achieved their effect by exposing

the skin to relatively low doses of UV-B (20-480mJ/cm2) radiation. Conversely,

investigators using protocols that induce systemic suppression have only been able to

achieve suppression using high doses of UV-B (1500-9000mJ/cm2). Since local

suppression requires lower doses of UV-B radiation than does systemic suppression

it has been suggested that different mechanisms are therefore responsible for
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initiating local and systemic suppression [Freeman et al. 1982; Elmets et al. 1983;

Morison, 1984; Bergstresser, 1986; Kripke, 1986; Krutmann and Elmets, 1988;

Streilein and Bergstresser, 1988]. Consequently, throughout the literature the

terms "high dose" and "low dose" suppression have been used extensively to designate

the differences between systemic and local suppression, respectively. In an attempt

to clarify the issue of high dose versus low dose suppression, and systemic versus

local suppression, Noonan and De Fabo (1990) recently carried out an analysis of

the UV dose-responses and kinetics of generation of UV-induced local and systemic

suppression of CH using two different mouse strains, Balb/c and C57BL/6, which

had been used previously in other laboratories for studies of systemic [Lynch et al.

1981; Noonan et al. 1981A, C; De Fabo and Noonan, 1983] and local [Toews et al.

1980; Streilein and Bergstresser, 1988] suppression, respectively. These

investigators reported for the first time that for a given strain of mouse, the UV

dose-response for local and for systemic suppression was identical, indicating that

the use of the terms "low dose" and "high dose" to refer respectively to local and

systemic suppression by UV irradiation are incorrect. They were able to

demonstrate that the differences between the dose-response characteristics of local

and systemic suppression found previously, were due to differences in the time-

course of generation of local and systemic suppression after UV irradiation and

differing sensitivities to UV suppression between mouse strains. They found that

local suppression was initiated if the sensitizer was applied immediately, or between

1 and 3 days after a single dose of UV whilst systemic suppression was initiated only

if the sensitizer was applied between 1 and 3 days after UV irradiation and that

C57BL/6 mice were approximately 6-fold more sensitive to local or systemic

suppression than Balb/c mice.

These findings confirmed and extended the studies of Lynch et al (1983)

and Applegate et al (1989), who reported that for a given strain of mouse local

suppression could be detected by sensitization immediately or 3 days after UV
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irradiation and systemic suppression could only be detected if sensitization occurred

3 days after UV exposure. Further, Noonan and De Fabo's (1990) findings support

the view that differences in susceptibility to UV suppression exist [Streilein and

Bergstresser, 1988]. Taken together these results suggest that a common

mechanism may initiate UV-induced local and systemic suppression of CH by the

immediate formation, at the site of UV irradiation, of an immunosuppressive signal

which takes several days to act systemically.

Throughout the literature investigators studying UV-induced local

immunosuppression have focused on the direct effects of UV-B radiation on

immunocompetent cells at the irradiation site. Since UV-B radiation does not

penetrate beyond the skin, investigators studying UV-induced systemic alterations in

immune reactivity have focused on the indirect effects of UV-B radiation perhaps

occurring as a result of the release of soluble mediators which can act systemically.

In light of the report by Noonan and De Fabo (1990) that a common mechanism,

perhaps mediated by a UV-B induced soluble mediator, is responsible for initiating

local and systemic suppression, it seems reasonable to postulate that all or some of

the effects on immunocompetent cells at the irradiation site may arise as a

consequence of a UV-B induced mediator acting locally within the skin.

Alternatively, the direct and indirect effects of UV-B irradiation may both operate in

suppressing the induction of CH suggesting that more than one mechanism may be

involved in UV-B induced immunosuppression. Evidence that this is the case was

provided by Chung et al (1986A) who demonstrated that the direct effects of UV-B

radiation play a role in local UV-B induced immunosuppression whereas the indirect

effects of UV-B play a role both in local and systemic UV-B mediated

immunosuppression. They found that the capacity of systemically

immunosuppressed mice to mount a CH response to DNFB could be completely

restored by treatment with indomethacin (an inhibitor of prostaglandin activity). In

contrast, immunological responsiveness of locally suppressed mice could not be
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restored by indomethacin pretreatment, where DNFB application was confined to the

UV-B irradiation site. When a portion of the UV-B exposure site was shielded and

DNFB applied to the area of skin that was covered, an immunosuppressed response

was also observed. In this latter case, treatment with indomethacin was able to

reverse the suppression.

Both local [Elmets et al. 1983; Glass et al. 1990] and systemic

suppression [Ullrich, 1987; Morison and Kripke, 1984; Yee et al. 1989B] are

associated with the appearance of antigen-specific suppressor T lymphocytes in the

animals' spleens and lymph nodes which prevent the induction of CH upon transfer to

a normal recipient. Subsequently, it has been postulated that the generation of these

cells is essential for the production of unresponsiveness to cutaneously applied

haptens [Elmets et al. 1983; Ullrich, 1987]. Thus there has been considerable

interest in identifying the cell(s) responsible for activating suppressor T-cell

circuits following UV-B exposure; possible candidates will be discussed in later

sections.

1.4.2 Direct Effects of UV-B Irradiation in Suppressing the

Induction of Contact Hypersensitivity

1.4.2A The role of Lanaerhans Cells in UV-B Induced Immunosuppression

The major target of the direct effects of UV-B irradiation appears to be

the LC of the skin. To investigate whether a direct relationship exists between the

surface density of LC and the capacity of a cutaneous surface to support the induction

of CH, Streilein et al (1980B) and Toews et al (1980) developed a mouse model

system in which acute, low-dose exposure of body wall skin to UV-B was shown to

deplete surface expression of ATPase activity on epidermal LC. When contact

sensitizers, such as DNFB, were painted on cutaneous areas depleted of epidermal LC

expressing ATPase activity by UV-B irradiation, CH was not induced [Toews et al.

1980; Streilein et al. 1980B]. Mice treated in this way also proved to be
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specifically unresponsive to the same hapten when they were skin painted

subsequently on a normal site [Toews et al. 1980]. This hapten-specific

unresponsiveness was mediated by hapten-specific T suppressor cells [Elmets et al.

1983]. It was concluded that relatively low doses of UV-B radiation deplete the

irradiated skin of normally functioning LC, and thus prevent the induction of CH to

haptens by removing the critical antigen-presenting cells that are required to

initiate the immune process. Further data to substantiate this hypothesis, were

provided by Streilein et al (1980A) and Streilein and Bergstresser (1981) who

demonstrated that cutaneous surfaces physiologically deficient in LC (mouse tail

skin, hamster cheek pouch) also failed to support the induction of CH. However, the

validity of this postulate was questioned by Sauder and Katz (1983), who examined

the capacity of haptens to induce CH through tail skin of various inbred strains of

mice. They discovered that strains C57BL/6, C57BL/10 and AB.Y mice failed to

develop CH (and instead tolerance is induced) whilst Balb/c, A/J and CBA mice

displayed vigorous CH. No significant strain differences in the density of ATPase

positive cells in tail skin was found and thus they concluded that the ability to become

sensitive or tolerant is not related to LC density (as detected by ATPase staining).

Work by Lynch et al (1981) and Aberer et al (1981) served to

emphasize that the presence (or absence) of a phenotypic characteristic of LC (such

as ATPase activity) cannot be used as a reliable indicator of either the presence (or

absence) or of the functional capabilities of these cells. Thus, more direct evidence

for the role of LC in UV-B induced suppression of CH was needed other than

attempting to elucidate whether or not alterations in the number of LC present in the

skin following UV-B irradiation were responsible for immunosuppression. This was

provided by a number of investigators [Stingl et al. 1981; Sauder et al. 1981;

Austaad and Braathen, 1985; Cruz et al. 1989; and Cruz et al. 1990], Stingl et al

(1981) observed that exposure to a single low dose of UV-B radiation resulted in an

inhibition of the ability of epidermal cells to serve in vitro as antigen-presenting
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cells for dinitrophenylated-ovalbumin (DNP6 OVA) and PPD-induced proliferation

of immune T cells. In a related experiment using human epidermal cells Austaad and

Braathen (1985) reported that low-dose irradiation similarly reduced the ability of

these cells to mediate PPD - and alloantigen-induced T cell proliferation. Although,

non-purified epidermal cells were utilized by both groups of investigators, these

experiments suggested that LC were the targets of UV-B radiation based on previous

circumstantial evidence that LC stood alone among epidermal cells in their capacity

to present antigen effectively to sensitized T lymphocytes. In a different set of

experiments also utilizing non-purified epidermal cells, Sauder et al (1981), who

had demonstrated that trinitrophenol (TNP)-derivatized epidermal cells injected

subcutaneously (s.c.) into mice could induce CH, found that exposure of these cells to

a single low dose of UV-B radiation, prior to hapten-derivatization, robbed them of

this capacity. Instead, the induction of a state of specific immunological tolerance

was observed which could be adoptively transferred via spleen cells from mice that

had previously received the irradiated epidermal cells.

More recently Cruz et al (1989) have provided direct evidence that LC

are the relevant immunological targets of low-dose UV-B irradiation. These

investigators utilized intravenous (i.v.) immunization with flow cytometry-

purified epidermal cell subpopulations for the induction of CH as a tool to

characterize the effects of low-dose UV-B irradiation on the immunogenic properties

of these cells. They found that not only does UV-B irradiation abrogate the capacity

of la+ epidermal cells (presumably LC) to sensitize for CH, but such treatment

results in down-regulation of CH responses indicating that LC are indeed the relevant

immunological targets of low dose UV-B irradiation. It was also found that the down-

regulation induced by the UV-B irradiated la+ epidermal cells was hapten-specific.

Thus, it appears from these results that low-dose UV-B irradiated LC may be capable

of activating suppressor mechanisms. The studies by Cruz et al (1989) however,

addressed neither the fate of the transferred cells nor the relevance of this technique

36



to CH, where sensitization is ordinarily achieved epicutaneously. This issue was

clarified by Cruz et al (1990) who examined the migration of epidermal cells after

i.v. infusion, the immunogenic properties of LC that return to skin and the effect of

low dose UV-B radiation on these processes. LC (la+ epidermal cells) were found to

home preferentially to skin and were competent to induce CH. Moreover, low-dose

UV-B irradiation confered upon these "migrant" LC the capacity to mediate

immunological unresponsiveness and down-regulation of subsequent CH responses,

confirming that LC are the relevant immunological targets of low-dose UV-B

radiation.

It has been demonstrated that some strains of mice (C57BL/6, C57BL/10

and AB.Y) fail to develop CH whilst other strains (Balb/c, A/J and CBA) display

vigorous CH [Sauder and Katz, 1983], Streilein and Bergstresser (1988) found

that a similar genetic effect was operative in the low-dose UV-B irradiation model.

They found that when DNFB was applied to UV-B irradiation sites, unresponsiveness

developed in some strains of mice (e.g. C57BL/6, C57BL/10, C3H/HeN) but

vigorous CH was induced in others (e.g. Balb/c, A/J). However, these investigators

found that all the strains tested were equally susceptible to the effects of UV-B

radiation on LC (as measured by ATPase staining) at UV-B treated sites, implying

that there is a dissociation between the effects of UV-B radiation on epidermal LC and

the capacity of a cutaneous surface to support the induction of CH. The observations

of Sauder and Katz (1983) and Streilein and Bergstresser (1988) called into

question whether LC are always required for the induction of CH and tended to imply

that in the so called UV-B resistant strains of mice, alternative (non-LC dependent)

mechanisms allow the induction of CH.

In an effort to explain these findings Streilein (1989) proposed that two

antigen-presentation pathways for the induction of CH may exist in the skin. He

suggested that one pathway which is LC dependent, is present in all mice, but the

other pathway, which is LC independent, may be functional only in mice that are
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designated UV-B resistant. Streilein (1989) speculated that MHC class ll+

DC/macrophages of the dermis may be responsible for the LC independent pathway.

Interestingly, recently Tse and Cooper (1990) reported that dermal cells can

initiate a CH reaction in mouse skin. These investigators found that, like dendritic

LC of the epidermis, perivascular dendritic la+ cells of the dermis were capable of

initiating T-cell mediated CH in vivo. Streilein (1989) tested the hypothesis that

UV-B resistant mice utilize extraepidermally located antigen-presenting cells for

CH induction by tape stripping the epidermis of UV-B susceptible and resistant

strains. Since tape stripping of mouse epidermis had previously been shown to

completely (albeit transiently) remove LC from the epidermis [Streilein et al.

1982], he speculated that tape stripping would resemble UV-B irradiation in the

ability to rob the skin of UV-B susceptible animals of its capacity to support the

induction of CH. He demonstrated that tape stripped skin of UV-B resistant Balb/c

mice did support the induction of hapten-induced CH in the absence of epidermal LC.

However, he found that tape stripped skin of UV-B susceptible mice also supported

the induction of CH. These results were consistent with the hypothesis that cells

(presumably in the dermis) other than LC can be important in the induction of CH

[Tse and Cooper, 1990] but failed to illuminate the reason why some strains of mice

are susceptible to UV-B radiation and others not. Based on the observations of these

investigators [Sauder and Katz, 1983; Streilein and Bergstresser, 1988; Streilein,

1989] it was necessary to re-examine the epidermis for another UV-B induced

perturbation, other than a direct effect on LC.

1.4.2B The role of I-J+ and Thv-1+ Epidermal Cells in UV-B Induced Immuno¬

suppression

Other than UV-B irradiated LC, two other cell types present in the

epidermis of mice have been identified that are capable of initiating down-regulatory

signals to topically applied haptens. These are I-J+ cells and the Thy-1+ DEC.
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Granstein et al (1984) first described the epidermal I-J+ cell when it

was observed that hapten-coupled, UV-B irradiated epidermal cells were capable of

generating afferent acting, antigen-specific, transferable suppressor T cells.

Treatment of the UV-B-irradiated epidermal cell population with an antibody

directed against the I-J+ determinant abrogated its capacity to activate the

suppressor T cell pathway. Further studies have shown that this I-J+ cell is a high

density, cyclophosphamide sensitive, adherent cell that is la+, but not Thy-1 +

[Granstein, 1985]. I-J+ epidermal cells were found to exhibit resistance to UV-B

irradiation [Granstein et al. 1984]. However, since its original description there

have been no other reports confirming that such a cell exists.

Another epidermal cell, distinct from LC, which is thought to

preferentially deliver down-regulatory signals for cell-mediated immune reactions

is the Thy-1+ DEC. It has been shown that low-dose UV-B irradiation does not seem

to affect Thy-1+ DEC [Aberer et al. 1986] suggesting that this cell population may

also represent a UV-resistant cell population capable of inducing suppression of CH.

When purified Thy-1+ DEC are conjugated with the hapten TNCB and then injected

i.v. into mice they mediated down-regulation of CH [Sullivan et al. 1986]. However,

Sullivan et al (1986) found that s.c. injection of these TNCB conjugated cells

produced no effect. Further, Cruz et al (1989) have demonstrated that when

purified populations of haptenated unirradiated and irradiated Thy-1+ DEC were

injected i.v. both delivered down-regulatory signals. It is unclear why haptenated

Thy-1+ DEC do not initiate a down-regulatory signal when injected by the s.c. route.

Sullivan et al (1986) proposed that derivatized Thy-1+ DEC may only be perceived

as down-regulating when they are allowed access to the systemic (i.v.)

compartment, which they suggest may be accomplished either by the migration of

Thy-1+ DEC from the epidermis or by a change in cellular traffic to the epidermis.

Interestingly, studies by Okamoto and Kripke (1987) have demonstrated that the

DLN of mice painted with fluorescein isothiocyanate (FITC) on skin irradiated with
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low-dose UV-B contain a population of fluoresceinated la"/Thy-1+ cells. These

investigators showed that injection of DLN cell suspensions from these mice into

naive recipients produced inhibition of CH which was associated with the presence of

suppressor T lymphocytes. They further demonstrated that the DLN Thy-1+ cells

were essential for the production of these suppressor T lymphocytes since depleting

the Thy-1+ cells from the DLN population abrogated the ability of this population to

induce suppressor T lymphocytes. If it is possible to demonstrate that the Thy-1 +

cells that initiate suppression in this system are part of the same population of Thy-

1+ DEC that reside within the epidermis, this would provide evidence for the ability

of Thy-1+ DEC to induce suppressor cell activity. In support of the notion that these

DLN Thy-1+ cells originate from the skin is the recent report by Cruz et al (1990)

which showed that i.v. injected Thy-1+ DEC traffic to skin and lymphoid tissues.

So, the possibility exists that a UV-B resistant population of cutaneous

cells (either Thy-1+ DEC or perhaps the cell described functionally by Granstein et

ai (1984)) governs the induction of signals leading to suppression of CH, and that

these putative cells may serve as the medium through which the genetic basis of UV-

B susceptibility is expressed. Interestingly, Sauder and Katz (1983) and Streilein

and Bergstresser (1988) both showed that there were no significant strain

differences in the density of ATPase positive cells or in the depletion of epidermal LC

(as detected by ATPase staining) by low-dose UV-B irradiation respectively,

supporting the notion that the genetic basis for strain differences may reside on

differences in the number of Thy-1+ DEC or I-J+ epidermal cells between strains.

It has been hypothesized [Sullivan et al. 1986] that the outcome of an epicutaneous

application of contact sensitizer in the murine system may depend on the balance

between the activation signals from LC and down-regulatory signals provided by

Thy-1+ DEC or I-J+ epidermal cells. Thus, it can be speculated that UV-B

susceptible and resistant mouse strains differ in the ratio of their LC to Thy-1+ DEC

or I-J+ epidermal cell. Evidence to support the theory that UV-B susceptible and
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resistant mouse strains may differ in the ratio of their LC to Thy-1+ DEC was

provided by Bigby et al (1987) who demonstrated that the ratio of LC to Thy-1 +

DEC varies markedly in different strains of mice. More importantly they showed

that the ratio of LC to Thy-1+ DEC appears to influence the intensity of CH in

different strains of mice. Although, these investigators did not alter the number of

LC or Thy-1+ DEC with pharmacological or physical modalities such as topical

corticosteroids or UV-B radiation, their results extended the findings of Streilein

and Bergstresser (1988) who demonstrated that when a chemical hapten was applied

to UV-B irradiated sites, unresponsiveness developed in some strains of mice

(C57BL/10 and 6) but vigorous CH was induced in others (Balb/c and A/J). Bigby

et al (1987) showed that C57BL/10 and 6 mice developed very small CH responses

to chemical haptens and also had very low ratios of LC to Thy-1+ DEC whilst Balb/c

and A/J mouse strains developed very vigorous CH responses and had a significantly

high ratio of LC to Thy-1+ DEC.

It has been proposed [Sullivan et al. 1986] that normally, the cutaneous

system is poised for immunity and LC are a dominant signal for a positive

immunogenic response. The down-regulating influence of Thy-1+ DEC and/or I-J+

epidermal cells may provide one mechanism by which the immune system regulates

the expression of the CH response, thus establishing a functional balance between the

effects of the three epidermal populations. This could be important physiologically

in limiting the extent of tissue damage in the host. If there is a breakdown in the

balance and functioning LC are not apparent, this helpful down-regulatory

mechanism may be perceived as a primary suppressive mechanism that may occur

on its own or in concert with other suppressive circuits. Thus, it can be

hypothesized that these UV-B resistant epidermal cell populations (distinct from

LC) which are responsible for down-regulatory signals, could mediate the local,

low-dose UV-B mediated suppression of CH responses.
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It should be emphasized that although the suppression-inducing cells

(Thy-1+ DEC and I-J+ epidermal cells) have been thought of as being antigen-

presenting cells [Granstein, 1985; Sullivan et al. 1986], it is equally possible that

they represent precursors of suppressor T lymphocytes. If this is the case then this

would imply that the suppressor circuit may be activated by direct contact with the

antigen, rather than by interaction with antigen bound to an antigen-presenting cell.

This possiblity is interesting in view of the finding by Siliciano et al (1985) that

certain FITC-specific human T lymphocyte clones can bind FITC directly without the

participation of an antigen-presenting cell.

1.4.2C The Role of Suppressor T Lymphocytes in UV-B Induced Immuno¬

suppression

It has been demonstrated that low-dose UV-B induced suppression of CH in

mice is associated with antigen-specific, afferent suppressor T cells that selectively

act on the induction phase of sensitization [Elmets et al. 1983], The finding that UV-

B irradiation impairs the induction of CH in some strains of mice and has no apparent

effect on CH in others suggested that UV-B susceptible strains of mice generate

hapten-specific suppressor T cells, whereas their UV-B resistant counterparts may

not. However, this possibility was excluded by examining the capacity of UV-B

radiation and hapten to generate suppressor T cells in several different inbred

strains of mice [Glass et al. 1990], Glass and his colleagues (1990) reported that

UV-B irradiation generates immune suppressor cells in resistant strains as well as

in susceptible ones.
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1.4.3 Indirect Effects of UV-B Irradiation in Suppressing the

Induction of Contact Hypersensitivity

1.4.3A The role of a Specific Skin Photoreceptor in Initiating UV-B Induced

Immunosuppression

1.4.3A1 Urocanic Acid

Irradiation with UV-B initiates systemic immunosuppression of CH

[Noonan et al. 1981 A, C; De Fabo and Noonan, 1983]. Since the wavelengths

responsible do not penetrate beyond the skin, the sequence of events leading to

systemic immune suppression must be initiated by the absorption of UV radiation by

some moiety in the skin. It has been demonstrated that this UV-induced systemic

suppression of CH is not dependent on a UV-induced loss of LC. Both Noonan et al

(1984) and Morison et al (1984) observed that with the use of different

wavelengths of UV radiation, the UV effects on LC numbers and morphology were seen

to be separable from UV-induced systemic suppression of CH, suggesting that

systemic suppression is not generated by a UV-induced loss of LC from the UV-

irradiated site or by an alteration in LC morphology at the UV-irradiated site. These

investigators also showed that a UV-induced systemic effect on LC numbers at the site

of sensitization is not responsible for the UV-induced generation of systemic

suppression of CH. Further, UV-induced systemic suppression of CH is not dependent

on gross skin damage or erythema [De Fabo and Noonan, 1983; Noonan et al. 1981B;

Noonan et al. 1981C] and is observed in pigmented and nonpigmented mice and

humans [Vermeer et al. 1991; Noonan and De Fabo, 1990],

It has been proposed by De Fabo and Noonan (1983) that the initial photo

event that triggers systemic suppression is the interaction of UV-B radiation with

urocanic acid (UCA). This hypothesis is based on the location of UCA in the stratum

corneum and on similarities between its absorption spectrum and the action

spectrum of UV-B induced systemic suppression of CH. De Fabo and Noonan (1983)
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also found that if the stratum corneum was removed by tape stripping then

suppression of the CH response did not occur.

UCA is a major UV-absorbing component of the stratum corneum and

represents one of the major chemical components of the epidermis comprising 0.5%

of its dry weight [Tabachnick, 1959]. It was originally proposed that UCA may have

an important function as a natural "sun-screen" to protect against sunburn [Zenisek

et al. 1955] and secondly that it may function as a natural photoprotecting agent for

DNA as it absorbs strongly at 277nm and because of its location [reviewed by

Morrison, 1985], UCA is synthesized from histidine in the stratum corneum by the

enzyme histidine ammonia-lyase (histidase). Histidine ammonia-lyase is itself

produced in the granular and spinous layers of the epidermis where it is inactive. As

the granular cells move upwards into the stratum corneum, they become enucleated,

the pH drops, various non-structural proteins including the keratohyalin granule

are degraded and the enzyme is activated. Upon activation, UCA is formed and

accumulates as the cells become highly impermeable on keratinization [Baden and

Pathak, 1967; Scott, 1981; Taylor et al. 1991], On absorption of UV-B radiation

either in vitro or in mammalian skin, including human skin [Baden and Pathak,

1967; Norval et al. 1989A; Morrison et al. 1980; Pasanen et al. 1990], UCA

undergoes a trans to cis-isomerization in a dose-dependent manner until a

photostationary state is reached [Anglin et al. 1961; Baden and Pathak, 1967;

Morrison, 1985] (Figure 4).

De Fabo and Noonan (1983) proposed that UV-B radiation exerts its

immuno-modulatory properties via £i£-UCA and that trans-UCA is the photoreceptor

for the UV-B induced systemic suppression of CH. To test this hypothesis further,

De Fabo et al (1983) investigated UV-B induced systemic suppression of CH in mice

genetically deficient in the enzyme histidine ammonia-lyase and thus in skin UCA.

These animals had greatly impaired UV-induced immune suppression. Recently,

Reilly and De Fabo (1991) carried out a reciprocal experiment with mice that had
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increased skin levels of UCA when fed with a diet containing a high level of histidine,

the metabolic precursor of UCA. They showed significantly greater UV-induced

immune suppression of CH than mice fed a normal diet.

Direct evidence implicating cjs-UCA as a mediator of the indirect effects

of UV-B radiation on UV-B induced local and systemic suppression of CH has been

provided by several investigators [Harriott-Smith and Halliday, 1988B; Kurimoto

and Streilein, 1992; Reeve et al. 1989 and 1993]. Harriott-Smith and Halliday

(1988B) injected cis-UCA i.v. 3 days prior to sensitization with TNCB and measured

the CH response developed, compared with mice which had received trans-UCA by the

same route. They found that i.v. injection of eis-UCA suppressed the induction of CH

to TNCB whereas trans-UCA had no significant effect. In experiments carried out by

Reeve et al (1989 and 1993) UV-irradiated UCA was shown to suppress both local

and systemic CH reactions when it was topically applied to the shaved dorsum of mice

3hr before sensitization on either the dorsum or ventrum. Further, Kurimoto and

Streilein (1992) demonstrated that ci^-UCA can impair the induction of CH whether

injected intradermal^ (i.d.) or applied epicutaneously to skin immediately or 5hr

prior to hapten painting on the same site.

Evidence that cis-UCA acts as a mediator of UV-induced immuno¬

suppression in other experimental systems is also available. For example, cis-UCA

has been shown to suppress delayed-type hypersensitivity (DTH) responses in a

murine model of HSV infection [Ross et al. 1986], to delay rejection of transplant

allografts [Oesterwitz et al. 1990; Williams et al. 1990; Gruner et al. 1992;

Guymer and Mandel, 1990], prevent and delay the onset of acute lethal graft-

versus-host disease [Gruner et al. 1992] and to enhance UV-induced tumour yield

and malignancy in the hairless mouse [Reeve et al. 1989].

Using a variety of UCA analogues including histamine Norval et al

(1989B) provided evidence that the 5-membered imidazole ring of UCA is necessary

for suppressive activity, while the side arm may be modified considerably without

46



affecting immune function. Since histamine was found to suppress the DTH response

and is structurally similar to cis-UCA i.e. it possesses a 5-membered imidazole

ring, these investigators speculated that cis-UCA may act via histamine-like

receptors present in the epidermis. Support for this notion was provided by the

demonstration that Hi and H2 histamine receptor antagonists negated the effects of

cis-UCA in reducing the number of ATPase positive cells in murine epidermis and

suppressing the DTH response to HSV [Norval et al. 1990]. New evidence indicating

that cis-UCA interacts with a target cell in the skin via a histamine receptor has

recently been provided. Palaszynski et al (1992) reported that trans-UCA and

histamine are biologically active in vitro in human dermal fibroblasts, inducing

adenyl cyclase as measured by cyclic AMP formation while cis-UCA can actively

down-regulate the production of this molecule. Further, they demonstrated that the

trans-UCA induction of cyclic AMP can be down-regulated with an H2 histamine

receptor antagonist (cimetidine), thus confirming and extending the findings of

Norval et al (1989B and 1990). The down-regulation of the production of an

important second messenger such as cyclic AMP may ultimately allow cascading

signals to occur leading to immune suppression.

1.4.3A2 DNA

A second candidate for the target molecule, suggested by the action

spectrum of UV-induced immunosuppression [De Fabo and Noonan, 1983] is DNA.

However, it is difficult to imagine that DNA itself would serve as a chemical mediator

of immunosuppression. It is more likely that UV-induced damage to the DNA of a

particular cell present in the skin triggers the release of a chemical mediator that,

in turn, initiates the immunological effects. Alternatively, it is possible that repair

mechanisms which are error prone may lead to increased mutations resulting in the

synthesis of suppressive mediators. An indirect approach to testing whether UV-B

induced damage to DNA of a particular skin-target cell might be the initiating event

47



in the subsequent suppression of CH was carried out by Kripke et al (1983). This

group selected another agent i.e. the chemical photosensitizer 8-methoxypsoralen

(8-MOP) in combination with UV-A radiation (PUVA), which like UV-B radiation

also induces DNA damage in the skin [Pathak et al. 1974] and tested it to ascertain

whether it produced similar immunological alterations. Indeed, they found that this

treatment as with UV-B irradiation systemically suppressed the CH response. More

direct evidence that DNA is the primary target of UV-B radiation and that local and

systemic suppression of CH is initiated as a consequence of DNA damage was provided

by Applegate et al (1989). These investigators used the Opossum as an animal model

because the cells of these marsupials possess an enzyme that is activated by visible

light (photoreactivating enzyme) and repairs UV radiation induced pyrimidine

dimers in DNA. They reported that exposure of these animals to a single low dose of

UV-B radiation prevented them from developing a CH response to DNFB applied

either at the site of irradiation or an unirradiated site. By treating the animals with

wavelengths that activate the repair enzyme immediately following UV-B

irradiation, Applegate et al (1989) were able to demonstrate that the UV-B induced

local and systemic suppression generated could be inhibited almost completely. A

different approach to further test the hypothesis that UV-induced lesions in DNA are

responsible for the immunosuppressive effects of UV-B irradiation, was carried out

by Kripke et al (1991). Based on the observation that epicutaneous application of

liposomes containing T4 endonuclease V (T4N5 liposomes) to irradiated murine

skin, immediately following exposure, increases repair of UV-induced pyrimidine

dimers in the skin, these investigators found using this approach that increasing the

repair of UV-induced lesions in DNA abrogates the UV-induced systemic suppression

of CH and DTH responses.
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1.4.3B The Role of UV-B Induced Soluble Mediators in UV-B Induced Immuno¬

suppression

A number of UV-B induced soluble factors have been identified which are

capable of suppressing the CH response in mice and thus could be mediators of the

indirect effects of UV-B irradiation. These include prostaglandins, IL-1, TNFa and a

number of as yet unidentified mediators transiently present in the serum of

irradiated mice or induced in epidermal cell cultures following UV-B irradiation.

There is also evidence that suppressor T cells induced as a consequence of UV-B

exposure produce and release mediators important in suppressing CH.

1.4.3B1 Prostaglandins

Numerous studies have shown that indomethacin is able to block the

indirect effects of UV-B radiation on immune function and consequently

prostaglandins have been implicated as mediators of these activities [Rheins et al.

1987; Chung et al. 1986A; Robertson et al. 1987; Jun et al. 1988], More direct

evidence for the involvement of prostaglandins was provided by Rheins et al (1987)

who reported that topical application of various prostaglandins prior to sensitization

with DNFB at the same site suppressed the induction of CH.

1.4.3B2 IL-1

IL-1 (a cytokine produced by keratinocytes and LC) may be a mediator of

the indirect UV-B induced immunosuppressive effects on the CH response. In vivo

studies in mice [Gahring et al. 1984] have demonstrated that IL-1 activity can be

detected in the serum of subjects 3 days after exposure to high doses of UV-B

radiation. Robertson et al (1987) have shown that i.v. administration of pyrogenic

doses of IL-1 to normal mice depressed a subsequent immunological response to

DNFB. In addition the capacity of IL-1 to depress CH responses in normal mice was

due to an indomethacin sensitive process, suggesting that the suppression of the CH

49



response to DNFB observed, was in fact due to the IL-1 induced generation and action

of prostaglandins.

1.4.3B3 TNFa

As discussed in section 1.4.2A the phenomenon by which UV-B irradiation

mediates the inhibition of the induction phase of CH appears to be determined

genetically. Impaired CH following UV-B exposure occurs in some strains of mice

(UV-susceptible), but not in others (UV-resistant) [Streilein and Bergstresser,

1988], Recently, it has been demonstrated that susceptibility to UV-B irradiation is

dictated by alleles at the Lps and TNFa loci which influence the amount of

intracutaneous TNFa produced in response to UV-B irradiation [Yoshikawa and

Streilein, 1990]. There is now evidence that keratinocytes synthesize and release

TNFa following UV-B irradiation [Kock et al. 1990A; Oxholm et al. 1988].

Moreover, TNFa has been shown to act as an important mediator of the suppressive

effects of UV-B irradiation on the induction of CH [Yoshikawa and Streilein, 1990].

1.4.3B4 Mediators Transiently Present in the Serum of Mice

Swartz (1984) described a factor in serum 2-6hr following UV-B

irradiation of mice which suppressed CH. Interestingly, a specific IL-1 inhibitor

(serum-contra-IL-1) exhibiting a molecular weight (m.wt.) of 40KDaltons and

found at a maximum concentration in sera 24hr following whole-body UV-B

exposure of mice was reported by Schwarz et al (1988). Also, a soluble suppressor

factor (mwt > 15000 Daltons) was found in serum 3-5 days after UV-B irradiation

which was neither antigen-specific or genetically restricted [Harriott-Smith and

Halliday, 1988A], Harriott-Smith and Halliday (1988A) could not detect

significant amounts of IL-1 in serum containing suppressive activity, 3 days after

irradiation. By increasing the dose of UV-B irradiation to levels used by Gahring et

a[ (1984) who did observe significant amounts of IL-1 in serum 3 days following
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UV-B irradiation, they were still unable to detect any significant amounts of IL-1 in

the serum.

Harriott-Smith and Halliday (1988A) obtained evidence that the UV-

induced serum factor was produced by suppressor T cells. They found that the

suppressive effect of UV-B irradiation was abrogated by cyclophosphamide, but that

this restored reactivity was still inhibited by serum from irradiated donors,

suggesting that the serum factor requires suppressor T cells for its production but

not for its action. Yee et al (1990) have provided further evidence that suppressor

T cell factors released by UV-induced suppressor T cells play a role in the

suppression of CH responses. They showed that a suppressor T cell factor-specific

monoclonal antibody inhibited the suppression of CH by inactivating a 45-60K

Dalton suppressor T cell factor released by UV-induced suppressor T cells. It was

demonstrated previously by Yee et al (1989A and B) that multiple suppressor

factors, both hapten-specific and non-specific may be involved in the suppression of

CH responses exhibited in UV-B irradiated, sensitized mice.

It is worth noting that each of the investigators mentioned, used different

irradiation protocols when attempting to identify their particular serum soluble

suppressor factor - some used high doses of UV-B radiation (e.g. Swartz, 1984 used

doses of 8600mJ/cm2) and others used comparatively lower doses of UV-B radiation

(e.g. Harriott-Smith and Halliday, 1988A used doses of 780mJ/cm2). This is

likely to account for the variety of suppressor factors identified, at various time

intervals after UV irradiation.

1.4.3B5 Mediators Induced in Epidermal Cell Cultures

It has been observed that a factor in supernatants from normal as well as

transformed keratinocytes, UV-B irradiated in vitro, suppresses the induction but

not elicitation of CH after i.v. injection [Schwarz et al. 1986], Due to the high m.wt

of this factor (15-50K Dalton) and the fact that treatment with indomethacin before
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UV-B irradiation did not abolish the suppression of CH Schwarz et al (1986) suggest

that it was not a prostaglandin. The specificity of the suppression induced by this

factor was not demonstrated. In addition, under identical conditions the same cells

and cell lines produce a closely related, if not identical factor, exhibiting a m.wt. of

40KDaltons which blocks the biological activity of IL-1 specifically [Schwarz et al.

1987]. Interestingly, Kim et al (1990) have reported that UV irradiated

keratinocytes release multiple suppressor factors each having different

immunosuppressive properties and each being produced by different wavelengths of

UV radiation. They found that i.v. injection of supernatants into mice obtained from

epidermal cell cultures or transformed keratinocytes (Pam212 cells) exposed to

UV-B (280-320nm) radiation suppressed the induction of DTH to alloantigens and

TNP-modified self-antigens in syngeneic and allogeneic mice, while having no effect

on the induction of CH to TNCB. On the other hand, treatment of the cell cultures with

UV-A (320-420nm) radiation induced the release of a factor which suppressed CH

but not DTH. Further analysis of the suppressive factor released by epidermal cells

exposed to UV-B radiation revealed that it is a glycoprotein, perhaps 68KDaltons in

m.wt. and its suppressive activity is not H-2 restricted [Ullrich et al. 1990]. It

has also been reported that PUVA-treated keratinocytes release suppressive factors

that suppress both CH and DTH responses, depending on the dose of UV-A radiation

used [Aubin et al. 1991], If keratinocytes are treated with 8-MOP followed by

50mJcm"2 UV-A radiation the release of suppressive factors that depressed both

DTH and CH was induced, whereas treatment of the keratinocytes with 8-MOP plus

5mJcm"2 UV-A radiation induced a suppressive factor that only inhibited CH.

1.4.3C Possible Targets and Mechanism of Action of those Soluble Factors that

Mediate the Indirect Effects of UV-B Irradiation

Each of the UV-B induced soluble suppressor factors identified are

believed to be involved in both local and systemic suppression of CH. Further, they
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may function alone or in combination with other factors to carry out their role in

UV-B induced immunosuppression of CH. It is also possible that they are all part of

one or more pathways and thus each rely on the production of another factor before

they themselves can be formed.

The immunological target activity which is imparied/altered by those

factors that mediate the indirect effects of UV-B irradiation is uncertain. There is

evidence in the literature to suggest that these factors may act to: 1) inhibit or alter

the function of antigen-presenting cells [Noonan et al. 1988; Araneo et al. 1989;

Ullrich et al. 1990; Ross et al. 1987, 1988 and 1987/88; Robertson et al. 1987];

2) alter the normal trafficking pattern of T lymphocytes, with the result of

diverting cells away from sites of active immunological reactions [Spangrude et al.

1983; Chung et al. 1986B]; 3) stimulate other cells to release soluble suppressor

factors [Harriott-Smith and Halliday, 1988B; Kurimoto and Streilein, 1992] or 4)

influence the migration of epidermal DC [Cumberbatch and Kimber, 1992]. It is

likely that some or all of these effects are expressed and may act together or

independently in suppressing the system.

1.4.3C1 Mediators that Interfere with the Function of Antigen-Presenting Cells

Associated with the systemic suppression of CH, alterations in the

function of antigen-presenting cells present in the spleen have been observed

[Greene et al. 1979; Noonan et al. 1981 A], This observed antigen-presenting cell

defect was associated with the formation of antigen-specific suppressor T

lymphocytes. De Fabo and Noonan (1983) postulated that this antigen-presenting

cell defect and the resultant formation of antigen-specific suppressor T cells is

initiated by the UV-B induced formation of the c[a isomer of UCA. Support for this

notion was later provided by Noonan and her colleagues (1988) who demonstrated

that i.v. administration of the UV-B induced isomer of UCA, cis-UCA. like in vivo
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UV-B irradiation, depresses the antigen-presenting function of splenic DC. Trans-

UCA did not have this effect.

More direct evidence that the UV-B induced production of cis-UCA is

important in inducing the formation of suppressor T lymphocytes is available. Ross

et al (1987 and 1988) demonstrated that cis-UCA-induced local and systemic

suppression of the DTH response to HSV was antigen-specific and mediated by

suppressor T cells of two phenotypes, namely L3T4+Ly2" and L3T4"Ly2+. An

experiment involving the transfer of epidermal cells, from mice skin-painted 24hr

previously with £is.-UCA, to naive syngeneic recipient mice at the same time and site

of infection with HSV revealed that only one T subset of phenotype L3T4+Ly2" was

generated by modified epidermal cell transfer [Ross et al. 1987/88], This suggested

that two signals may be generated by cis-UCA. one local inducing the L3T4+Ly2"

subset possibly through a unique antigen presenting event in skin and the other

systemic,interpreted by antigen-presenting cells possibly in the lymph node or

spleen and inducing either L3T4"Ly2+ alone or both L3T4+Ly2" and L3T4"Ly2 + .

These findings exactly mimicked the immunosuppressive effect of UV-B irradiation

on the DTH response to HSV [Howie et al. 1986A and B; Howie et al. 1987].

There is evidence from a number of studies which indicate that other

soluble suppressor factors may act on antigen-presenting cells, modifying their

function to induce the formation of antigen-specific suppressor T cells. Associated

with the suppression of the CH response induced by injecting recombinant IL-1 into

mice was the formation of suppressor T cells in the spleen of these mice [Robertson

et al. 1987]. The findings of Simon et al (1990 and 1991) show that UV-B

radiation abrogates the capacity of LC to present antigen to TH1 cells (effectors of

DTH responses) while not affecting their ability to stimulate the proliferation of

TH2 cells. In the context of these studies Araneo et al (1989) provided evidence

which suggests that this altered antigen presenting function of LC may be mediated

through an IL-1 dependent mechanism. Further, Ullrich et al (1990) found that a
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factor released from UV-B irradiated keratinocytes which suppressed the DTH

response to alloantigens induced the formation of an antigen-specific CD4+

suppressor T cell in the spleen.

Although, in systemic suppression of CH, there is evidence that UV-B

radiation may mediate its indirect effect through the release of mediators which alter

the function of antigen-presenting cells in the spleen, such that upon encountering

antigen they induce the formation of suppressor T cells, investigators have not been

able to demonstrate alterations in the function of antigen-presenting cells at the site

of antigen application [Noonan et al. 1984; Lynch et al. 1983] or in the DLN

[Kripke and McClendon, 1986; Alcalay and Kripke, 1991; Chung et al. 1986A].

It is not clear how suppressor T cells are generated in the spleen, after

epicutaneous introduction of haptens through unirradiated or irradiated skin. One

possibility is that antigen-binding cells in the DLN represent only one of several

antigen-presenting cell populations capable of inducing CH. A second pathway, not

involving cells in the DLN may be altered by the direct and/or indirect effects of UV-

B radiation, and, upon encountering antigen, transport it to the spleen where

suppressor T cells are induced. However, the existence of such alternative pathways

for contact sensitization has not been demonstrated. A second possibility is that

soluble mediators released from UV-B irradiated skin alter the vascular

permeability of both exposed and unexposed skin, causing an influx of the hapten into

the bloodstream which could then gain access into the spleen. The uptake of antigen

by splenic antigen-presenting cells following exposure of these cells to UV-B

induced soluble mediators could then generate suppressor T cells.

1.4.3C2 Alteration in the Normal Trafficking Pattern of T lymphocytes by Soluble

Mediators

Studies by Spangrude et al (1983) have demonstrated that exposure of

mice to UV radiation causes alterations in normal lymphocyte recirculation, with an
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enhancement of the localization potential of normal lymphocytes for the DLN.

However, an increase in the ability of circulating lymphocytes to localize into

peripheral lymph nodes of UV-irradiated animals may not be the only explanation

for the increase in the size and lymphocyte content of the lymph nodes which drain

the exposed skin. It is feasible that a decreased rate of lymphocyte egress might also

be taking place. This type of delay in lymphocyte migration through lymph nodes has

been termed "efferent blockade", and is associated with a reduction in the numbers of

lymphoid cells found in the efferent lymphatic drainage of antigen-stimulated nodes

[Chung et al. 1986B]. Chung et al (1986B) showed that exposing mice to UV

radiation induces an efferent blockade of lymphocyte egress from the peripheral

lymph nodes which drain the irradiated skin, resulting in a marked retention of

lymphocytes. More importantly, they established that prostaglandins may be

involved in the generation of an efferent blockade. Although, the exact site of their

action within the lymph node still remains to be defined, this observation suggests

another mechanism by which mediators of the indirect effects of UV-B radiation

could cause systemic and local suppression of CH.

1.4.3C3 Stimulation of Other Cells to Release Soluble Suppressor Factors

Palaszynski et al (1992) reported that cis-UCA can actively down-

regulate the production of cyclic AMP within dermal fibroblasts in vitro and

proposed that this may stimulate these cells to produce and release systemic factors

responsible for immunosuppression. Further support for the notion that cis-UCA

may act on skin cells to produce soluble mediators of suppression was provided by

Kurimoto and Streilein (1992). These investigators were able to demonstrate that

the reduced capacity of skin, injected i.d. with cis-UCA. to support the induction of

CH to DNFB painted subsequently on to the injected skin site could be reversed by

intraperitoneal (i.p.) injection of anti-TNFa antibodies, suggesting that cis-UCA

achieves its inhibitory effects, al least in part, through TNFa release. Kurimoto and
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Streilein (1992) suggested that cis-UCA may achieve its effect by binding to a

receptor on an appropriate target skin cell (such as a keratinocyte) and inducing

this cell to activate its TNFa genes (which are transcriptionally silent in normal

epidermis). Thus, TNFa released intraepidermally could then act to suppress the

induction of the CH response.

Harriott-Smith and Halliday (1988B) reported that production of the

suppressive factor they identified was dependent on the UV-induced conversion of

trans-UCA in the skin to the more soluble cis-form. Harriott-smith and Halliday

(1988B) proposed that cis-UCA interacts directly with suppressor T cells which

subsequently appear in the spleen and stimulates them to produce the circulating

suppressor factor(s) that inhibit induction of CH.

1.4.3C4 Mediators that Influence the Migration of Epidermal Dendritic Cells

Cumberbatch and Kimber (1992) demonstrated that i.d. injection of

murine recombinant TNFa causes a rapid and concentration-dependent accumulation

of DC in lymph nodes draining the site of application. Since keratinocytes have the

potential to synthesize and secrete TNFa following UV-B irradiation [Kock et al.

1990A; Oxholm et al. 1988] it is conceivable that the production and/or release of

this cytokine after UV exposure may have a profound local and/or systemic effect on

the migration of LC to DLN prior to sensitization, thus influencing the number of

available LC to pick up antigen and carry it to the lymph node. Further there is some

evidence that cis-UCA may influence epidermal LC migration. Treatment with cis-

UCA resulted in a reduction in the number of la+ cells at the site of application while

trans-UCA had no effect [Ross et al. 1987/88]. Also, Norval et al (1990) found

that cis-UCA reduced the numbers of ATPase positive cells in the epidermis at the

site of treatment.
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1 .5 The Aims of this Investigation

The main aim of the first part of this research project was to elucidate

the mechanism of UV-B induced immunosuppression and to establish whether the

effects of UV-B radiation are mediated by cis-UCA, using a murine model of CH.

As previously discussed in the Introduction, the available evidence

suggests that following epicutaneous application of a contact sensitizer, LC at the site

pick up antigen and migrate via the afferent lymphatics to the DLN, a process which

appears to be essential for the induction of CH responses. Thus any alteration or

inhibition in this migratory behaviour would have profound implications for the

impairment of the CH response. Indeed there is evidence that UV-B irradiation or

topical application of cis-UCA decrease epidermal LC numbers at the site of

treatment suggesting that the UV-B induced formation of cis-UCA and subsequent

stimulation of epidermal LC migration away from the skin prior to sensitization on

the exposed site may be one or part of the mechanism of UV-B induced

immunosuppression. However, since it has been revealed that the presence or

absence of a particular cell surface marker is not necessarily evidence of the

presence or absence of the particular cell, there is some controversy as to the

validity of these findings. Hence, in the first part of the study the influence of UV-B

irradiation and UCA isomers on DC accumulation in DLN of unsensitized and

sensitized mice was examined. Also, since it has been demonstrated that LC from

irradiated skin have an impaired ability to present antigen, another aim was to

investigate the influence of UV-B radiation and UCA isomers on the antigen-

presenting function of lymph node DC.

Cis-UCA has been demonstrated to be a mediator of the suppressive

effects of UV-B radiation in a number of systems including CH. How cis-UCA alters

immune function is not known or, indeed if it is confined solely to the epidermis

following UV-B irradiation. Establishing if this molecule is able to leave the skin
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and thus act systemically would provide some insight into its possible mode of action.

Thus, the aim of the second part of the project was to investigate the localization of

cis-UCA following UV-B irradiation of mice. The first approach involved an analysis

of various tissues from mice exposed to UV-B radiation using high performance

liquid chromatography (HPLC). The second approach involved the production of a

monoclonal antibody with specificity for cis-UCA which could be used in subsequent

experiments to detect £is-UCA in serum and other tissues following UV-B irradiation

of mice.
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CHAPTER 2

MATERIALS AND METHODS

2.1.1 Mice

Female and male Balb/c, C3HBu/Kam and C57BL/6 mice were bred,

maintained and supplied by the Department of Medical Microbiology Animal House,

University of Edinburgh. Female C3HBu/Kam mice were used throughout unless

stated otherwise. The mice were aged 6-8 weeks at the start of each experiment and

did not differ in age by more than 2 weeks within each experiment. They were

housed in a room where ambient light was regulated on a 12hr light/dark cycle.

2.1.2 Growth Media

2.1.2A RPMI-FCS Medium

This medium consisted of RPMI-1640 growth medium (Flow

Laboratories Ltd., Irvine, Ayrshire) supplemented with 5 x 10"^M 2-

mercaptoethanol, 100i.u./ml penicillin, 200pg/ml streptomycin, 2mM L-

glutamine, lOOpg/ml gentamicin, 20(j.g/ml fungizone and 10% heat-inactivated

foetal calf serum.

2.1.2B R10 Medium

This medium consisted of RPMI-1640 growth medium supplemented

with 50pg/ml penicillin, 50|ig/ml streptomycin, 2mM L-glutamine, 2.5pg/ml

fungizone, 100pg/ml kanamycin, 5 x 10"5M 2-mercaptoethanol, 2mM HEPES,

1mM sodium pyruvate and 10% heat-inactivated foetal calf serum.
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2.1.2C R20 Medium

This medium was identical to the growth medium described in section

2.1.2B except that it was supplemented with 20% heat-inactivated foetal calf serum.

2.1.2D HAT Medium

This medium consisted of 500ml of R20 medium and 10ml of hypoxanthine

(5 x 10"3M), thymidine (8 x 10"4M) and aminopterin (2 x 10"5M) (HAT)

solution (x50) (Sigma).

2.1.2E HT Medium

This medium consisted of 500ml of R20 medium and 10ml of

hypoxanthine (5 x 10"3M) and thymidine (8 x 10"4M) (HT) solution (x50)

(Sigma).

2.2 UV Irradiation

Mice were exposed to one of two different types of UV radiation. They

were irradiated under two Philips TL-20W/12 bulbs with an output of 80p.W/cm2

in the UVB broad band range between 270-350nm (Figure 2) or under a Philips

TL-01 lamp with an output of 200(iW/cm2 in the UVB narrow band range of 311-

312nm (Figure 3).

The backs of mice were shaved with an electric clipper and both or none of

their ears were protected with autoclave tape during irradiation. Unshaven mice had

one or none of their ears protected. The mice were irradiated for various times in

separate compartments of a high-sided perspex box to prevent shielding by cage

mates.

2.3 Extraction and Quantification of UCA Isomers

The backs of fifteen female mice of each strain of C3HBu/Kam, Balb/c and

C57BL/6 mice were shaven and their ears left unprotected. Five female mice from
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each of these strains were either exposed to a single dose of 96mJcm"2 UV-B

radiation, were sensitized on the dorsum of both their ears with 25pl of 2.5%

oxazolone (as described in section 2.5.1) or left untreated. The backs of five male

mice from each of these strains were also shaved and their ears left unprotected.

Mice irradiated with UV-B or sensitized were killed 48 and 24hr later,

respectively. Untreated male and female mice were killed at the same time. After

killing by anaesthetisation their ears were removed. Lymph nodes, spleens and

kidneys from untreated and irradiated female C3HBu/Kam mice were also removed.

Prior to killing urine was collected from these mice. Tissues and urine were stored

in the dark at -20°C.

2.3.1 Extraction of UCA Isomers

The method outlined by Norval et al (1988) was used. In brief after

measuring the wet weight of a single ear or organ from the appropriate strain of

mouse, it was then placed in a small glass tube with 100mg fine sand and 10Opil

0.1 M NaOH, and homogenized by grinding by hand with a glass rod, while cooling in

ice, until no visible particles of tissue remained. Nine hundred pi 0.1 M NaOH was

used to rinse the glass rod and walls of the tube. After allowing the contents of the

tube to settle, the supernatant was centrifuged at 2000g for 5 min. The supernatant

was filtered through a 1.2pm Gelman Metricel filter. The volume of the resulting

clear filtrate was measured and one-tenth of the volume of 0.5M phosphoric acid

added to give a solution of pH 7. Urine was analysed directly by HPLC.

2.3.2 Quantification of UCA Isomers

HPLC analysis of urine and tissue extracts from individual mice was

performed by Mr. T. Reid at Bristol University using the method of Norval et al

(1988). Analysis was carried out on a system consisting of a Waters 6000A solvent

delivery system, a Rheodyne 7125 sample injection valve with a 20pl loop and a
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Waters M440 UV-detector set at 254nm combined with a plotting integrator

(Spectra-Physics Autolab Minigrator). The column was a 15 cm x 4.6 mm ID

cartridge column (Capital HPLC, Bathgate, Scotland) packed with 5pm APS Hypersil.

The mobile phase was 10mM acetic acid adjusted to pH 5 with 2M NaOH. The flow

rate was 1.0 ml/min. UCA isomers in the samples were quantified by using standard

solutions of cis-UCA and trans-UCA (see below) and comparing the peak areas.

Typical elution peaks of a standard solution of els and trans-UCA is shown in Figure

5 .

2.4 Preparation of UCA Isomers and Treatment of Mice

Trans-UCA (Sigma Chemical Co., Poole, Dorset) or ds-UCA (prepared by

Professor T. Simpson's Laboratory in Bristol University using preparative thin

layer chromatography of UVB irradiated trans-UCA [Norval et al.1989BT> was

dissolved at a concentration of 40mg/ml in dimethylsulfoxide (DMSO) at 30°C for 5

min. The solution was then diluted 10, 20, 40, 200 or 2000-fold in acetone and

50pl applied topically to the shaved backs of mice. Alternatively, two lots of 25pl

or a single application of 25pl was similarly applied to the dorsum of one or both

ears. The solution was also diluted 20 or 40-fold in phosphate buffered saline

(PBS) and 10Opil injected i.p. or s.c. into the flank. An equal volume of the

appropriate vehicle was applied in the same way to control mice. The mice were

treated at various times with the appropriate dilution of the solution.

2.5 Contact Hypersensitivity Response

2.5.1 Induction and Expression of Contact Hypersensitivity

Fluorescein isothiocyanate (FITC, Sigma) was used at various

concentrations in 1:1 acetone:dibutylphthalate [Kimber et al. 1990A], 4-
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Figure 5 Chromatogram of urocanic acid standard solution containing 5pg/ml of

each isomer. Peak A corresponds to cis-isomer and peak B to trans-isomer (taken from

Norval et al. 1988).
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ethoxymethylene-2-phenyloxazol-5-one (oxazolone; Aldrich Chemical Co.) was

used at various concentrations in 4:1 acetonerolive oil [Kimber et al. 1990A], Fifty

pi of oxazolone or FITC or an equal volume of the appropriate vehicle was applied

topically to the shaved backs of mice on day 0. CH was elicited on day 5 or 6 by

challenging the dorsum of both ears with 25pl of oxazolone or FITC (as appropriate)

or with an equal volume of the appropriate vehicle alone. Alternatively, mice

received 25pl of oxazolone or FITC or an equal volume of the appropriate vehicle on

the dorsum of their left ear on day 0 and were challenged with 25pl of oxazolone or

FITC (as appropriate) or an equal volume of the appropriate vehicle on the dorsum of

their right ear on day 5 or 6.

Ear thickness was measured using a spring loaded caliper (Figure 6) 24hr

following challenge and compared with ear thickness prior to challenge. The

increment in ear swelling was used as a measure of the development of CH. Mean

values for incremental ear swelling and standard errors of the mean were calculated

for each group. A minimum of 5 mice were used per group.

2.5.2 Suppression of Contact Hypersensitivity

Shaved mice were UV irradiated with both their ears protected whilst

unshaven mice had their right ear protected during irradiation. UCA isomers were

applied topically to either the shaved backs of mice or to the left ear of unshaven

mice. Twenty-four hr after the last UV irradiation or UCA treatment, mice were

sensitized with the appropriate contact sensitizer at the same site as treatment . The

percentage suppression of CH was calculated according to the following formula:

% Suppression = 1 _ U experimental - negative control ) ] x 100
[ ( positive control - negative control ) ]
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Figure 6 Measuring the thickness of an untreated mouse ear using a spring loaded

caliper.
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Experimental represents the mean increment in ear swelling of mice treated

with UV radiation or UCA isomers prior to sensitization. The positive control

represents the mean increment in ear swelling of untreated mice, sensitized and

challenged with contact sensitizer. The negative control represents the mean

increment in ear swelling of untreated mice sensitized with vehicle and challenged

with contact sensitizer [Cruz et al. 1989].

2.6 Influence of UV Irradiation and UCA Isomers on Dendritic Cell

Migration and on Migration Induced by Sensitization

2.6.1 Treatment of Mice with and without Contact Sensitization

Unshaven mice whose ears were unprotected, were exposed for various

times to UV radiation (at the appropriate dose) or to UCA isomers (at the

appropriate concentration) applied topically to the dorsum of both ears. Twenty-

four hr after the last UV irradiation or UCA treatment, mice received 25pl of a 1%

FITC solution on the dorsum of both ears, and were killed 18hr later. Control mice

received an equal volume of the appropriate vehicle on the dorsum of both ears 18hr

before killing. Mice not exposed to contact sensitization were killed 12, 24, 36, 42,

48, 60 and 72 hr after the last UV irradiation or UCA treatment.

2.6.2 Isolation, Identification and Enumeration of Lymph Node

Dendritic Cells

Draining auricular lymph nodes were excised, pooled for each

experimental group which consisted of a minimum of 6 mice and a single cell

suspension of lymph node cells was prepared by mechanical disaggregation through a

200-mesh stainless steel gauze (John Stanier and Co., Manchester). Viable cell

counts were performed using 0.5% trypan blue and the cell concentration adjusted to

5 x 106 cells/ml RPMI-FCS (Section 2.1.2A). DC-enriched populations were
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Figure 7 Photograph showing the band (containing a dendritic cell-enriched

population) obtained after density gradient centrifugation.
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Figure 8 Photograph showing 2 dendritic cells in close contact, under a light

microscope (magnification = x400). These DC were derived from the low buoyant

density fraction obtained after density gradient centrifugation.
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prepared by density gradient centrifugation as described previously [Kinnaird et al.

1989]. Briefly, 8ml of the cell suspension was added to 10ml conical-bottomed test

tubes (Sterilin) and was gently underlayed with 2ml of 14.5% metrizamide

[Nygaard, Oslo, Norway] in RPMI-FCS. The tubes were then centrifuged for 15 min

(600g) at room temperature. The DC-enriched population accumulating at the

interface (Figure 7) was collected, washed once and resuspended in RPMI-FCS. The

number of DC within the low-buoyant density fraction was assessed routinely by

direct morphological examination using light microscopy (Figure 8). For each

experimental group, five counts were made and the mean number of DC present

within a single lymph node was calculated.

2.6.3 Analysis of FITC-bearing Dendritic Cells

DC-enriched preparations derived from draining auricular lymph nodes

of mice whose ears had been exposed to UV irradiation or painted with UCA isomers

prior to sensitization with FITC, were analysed by Mr. W Neill on an EPICS "C" flow

cytometer (Coulter Electronics) equipped with a 5 Watt (W) argon laser tuned to

488nm wavelength and operating at 100mW. A total of 5000 cells from each sample

was analysed at a flow rate of 200 cells per second. DC were identified on a 2-

parameter histogram measuring size and side-scatter and then green fluorescence

analysed from a bit map onto a 252 channel histogram using log amplification. The

percentage of FITC+ cells within this population was measured and also antigen

density per cell (fluorescence intensity) by mean channel analysis.

2.6.4 la Antigen Staining of Dendritic Cells and FITC-Bearing

Dendritic Cells

The ears of mice were either sensitized with FITC or left unsensitized

following UV irradiation or the topical application of UCA isomers. DC-enriched

preparations derived from draining auricular lymph nodes, were washed and 5 x
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104 cells stained with anti-mouse la monoclonal antibody (clone 11.5.2.1.9.-

ECACC, Porton Down, Salisbury) at a dilution of 1:100 for 1 hr on ice. The cells

were then washed and stained with either a sheep anti-mouse IgG (F(ab')2

fragment) labelled with FITC (Sigma) at a dilution of 1:40 or a sheep anti-mouse IgG

labelled with phycoerythrin (Sigma) at a dilution of 1:40 for 40 min on ice.

Simultaneously, 5 x 104 cells from DC-enriched preparations were incubated with

an irrelevant antibody followed by FITC or phycoerythrin-labelled secondary

antibody to act as background controls in the EPICS analysis. The cells were analysed

in an EPICS "C" flow cytometer by Mr. W Neill. To measure the percentage of DC

expressing la, the cells were labelled with anti-la and FITC secondary antibody

before analysis as outlined in the section above. To measure la expression on DC

after sensitization with FITC, the cells were labelled with anti-la and phycoerythrin

secondary antibody and a double colour analysis performed in the following manner.

Dichroic mirrors were used to separate light into the 90° scatter detector (500 long

pass) and into both red (560 short pass followed by a 575/25 band pass filter) and

green (530/30 band pass) fluorescence detectors. Any residual spectral overlap of

green fluorescence into the red detector was removed by electronic compensation.

2.6.5 ICAM-1 Antigen Staining of Dendritic Cells

Mice were killed 42hr after their last UV radiation treatment. DC-

enriched preparations derived from draining auricular lymph nodes were washed and

5 x 104 cells were incubated on ice with rat anti-mouse ICAM-1 monoclonal

antibody (YN-11.7.4) [Cumberbatch et al. 1992] diluted 1:50 in RPMI-FCS for 45

min. Following incubation the cells were washed in 2ml of cold RPMI-FCS,

centrifuged for 5 min (300g) at 2°- 8°C and the supernatant discarded. The cells

were incubated on ice for 45 min with a FITC-labelled F(ab')2 rabbit anti-rat IgG

antibody (Serotec Ltd) diluted 1:100 with RPMI-FCS. The cells were washed and

resuspended in 0.3ml of cold RPMI-FCS and retained on ice until analysis in an
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EPICS "C" flow cytometer by Mr. W Neill. Control experiments were performed

using an isotype-matched (lgG2b) rat anti-human HLA Class 1 antibody (Clone YTH

862.2; Serotec), in place of anti-ICAM-1. DC were identified as described in

section 2.6.3. The percentage of cells expressing ICAM-1 within this population was

measured and also the amount of ICAM-1 expression per cell (fluorescence

intensity) by mean channel analysis.

2.6.6 Dexamethasone Treatment of Mice

Dexamethasone (Sigma) was dissolved at a concentration of 2mg/ml in

sterile PBS. The solution was then diluted 67-fold in sterile PBS and 250pl of this

dilution was administered i.p. to mice 5hr and 1 hr before UVB irradiation.

2.6.7 Anti-TNFa Antibody Treatment of Mice

Rabbit anti-mouse TNFa antiserum (Genzyme) which had a neutralizing

activity of approximately 106 neutralizing units/ml was diluted 1:5 with sterile

PBS. Two hr prior to each UVB treatment, 10Opil of this solution was injected i.p.

into each mouse [Yoshikawa and Streilein, 1990].

2.7 Spontaneous Lymphoproliferation Assay

The method outlined by Kimber and Weisenberger (1989) was used. Each

experimental group consisted of 3 mice. Unshaven mice whose ears were

unprotected, were exposed at various times to the appropriate dose of UVB radiation.

Alternatively, at various times, the appropriate amount of UCA isomers was either

applied topically to the dorsum of both ears or injected i.p. or s.c. into the flank.

Twenty-four hr after the last treatment, the dorsum of both ears of each mouse was

then sensitized with 25pl of either 0.25% oxazolone or 0.5% FITC or an equal

volume of the appropriate vehicle. Mice that had been sensitized with oxazolone or

FITC were killed after 3 and 4 days, respectively and their draining auricular lymph
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nodes excised. The lymph nodes were pooled for each experimental group and a single

cell suspension of lymph node cells was prepared by mechanical disaggregation

through a sterile 200-mesh stainless steel gauze (John Stanier and Co.,

Manchester). Lymphocyte suspensions were then centrifuged for 10 min (600g) in

PBS at room temperature and resuspended in RPMI-FCS growth medium (section

2.1.2A). Viable cell counts were performed using 0.5% trypan blue and the cell

concentration adjusted to 7.5 x 106 cells/ml. Lymphocyte suspensions were seeded

into round bottomed 96-well microtitre plates (Sterilin) at a concentration of 1.5 x

10® cells/well (10 wells per group). The wells were then pulsed with 0.75pCi of

3H-thymidine (Amersham) and cultured for 24hr in a humidified atmosphere of 5%

CC>2 in air at 37°C. Cells were then harvested onto glass fibre discs using an

automatic harvester. When dry the discs were counted in a toluene-based liquid

scintillator for 1 min. The percentage suppression of spontaneous

lymphoproliferation was calculated according to the following formula :

% Suppression = 1 - [(experimental - negative controls ] x 100
[(positive control - negative control )]

Experimental represents the mean lymphoproliferative response of

lymph node cells from mice treated with UV radiation or UCA isomers prior to

sensitization. The positive control represents the mean lymphoproliferative

response of lymph node cells from mice sensitized only. The negative control

represents the mean lymphoproliferative response of lymph node cells from mice

sensitized with vehicle only.
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2.8 Secondary Lymphoproliferative Response Assay

2.8.1 Preparation of Stimulator Cells

Mice that had received 25(il of either 5% FITC or 2.5% oxazolone on the

dorsum of both ears were killed 18 and 21 hr later, respectively. Their draining

auricular lymph nodes were excised and DC-enriched populations prepared and

counted as described previously (section 2.6.2), with the only difference being that

sterile conical-bottom test tubes (Alpha Laboratories Ltd.) and sterile 200-mesh

stainless steel gauze was used. The concentration of DC was adjusted so that it was

the same for each experimental group.

2.8.2 Preparation of Responder Cells

Mice that had received 25pl of 5% FITC or 0.5% oxazolone on the dorsum

of both ears were killed 7 days later. Their draining auricular lymph nodes were

removed and a single cell suspension was prepared by mechanical disaggregation

through a sterile 200-mesh stainless steel gauze. The cells were washed and

resuspended in RPMI-FCS. A viable cell count was made using 0.5% trypan blue and

the cell concentration adjusted to 2.5 x 106 cells/ml.

2.8.3 Lymphocyte Proliferation Assay

The method outlined by Jones et al (1989) was used. Briefly, lymph node

cells were cultured alone or in the presence of a variable number of stimulator cells

in 96-well microtitre plates (Sterilin) at a concentration of 5 x 10^ cells/well (5

wells per group) for 48hr at 37°C in a humidified atmosphere of 5% CO2 in air.

Sixteen hr prior to culture termination the cells were pulsed with 0.75|iCi of 3H-

thymidine (Amersham). Culture was terminated by automatic cell harvesting and

3H-thymidine incorporation determined by (3-Scintillation counting. In all

experiments the capacity of stimulator populations to incorporate 3H-thymidine
when cultured alone was assessed also.
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2.9 Production of Anti-Cis-UCA Monoclonal Antibody

2.9.1 Immunization

The KLH-eis UCA conjugate (which consisted of 8 molecules of cjs UCA

per KLH molecule) used for immunizing the mice was produced and provided by

Professor T. Simpson's Laboratory in Bristol University. Three female Balb/c mice

were immunized by s.c. injection of 200pg KLH-cis-UCA conjugate in 0.1ml of

Freund's incomplete adjuvant per mouse. A first booster injection (200pg of KLH-

cis UCA in 0.2ml sterile PBS i.p.) was performed 36 days after the first injection

followed by a second and a third boost on day 61 and day 166, respectively. Mice

were bled 7 days after the second booster and screened for anti-cis-UCA activity by

ELISA.

2.9.2 Somatic Cell Fusion and Cloning

Approximately 105 NS-O mouse myeloma cells (a gift from Dr M.

McCann) were resuspended in 2ml R10 medium (section 2.1.2B) containing

ciprofloxacin (Bayer UK Limited, Berks) at 10p.g/ml. The cells were then

transferred to a tissue culture flask (Falcon) and cultured in an atmosphere of 5%

CO2 in air at 37°C. The cells were subcultured every few days over a period of 3

weeks in R10 growth medium supplemented with ciprofloxacin (10pg/ml),

maintaining maximum cell viability. After 3 weeks the cells were then subcultured

3-4 times in ciprofloxacin-free R10 medium, once again maintaining maximum cell

viability. The mouse producing the highest titre of anti-cis-UCA antibodies in

polyclonal antisera was killed 3 days after the third booster immunization.

Splenocytes (10®) were collected and fused with 10^ NS-O cells using a standard

fusion technique. Cells obtained after fusion were suspended in HAT medium (section

2.1.2D) containing mixed thymocyte medium (MTM) (prepared as described by

Reading, 1982) diluted 1:10 and seeded in 96-well round bottomed microtitre
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plates (Sterilin). The wells were then viewed on days 2, 5, 7, and 10 under an

inverted light microscope for the presence of HAT-resistant hybridomas. The

culture fluids of HAT-resistant hybridomas were tested for anti-cis UCA activity by

ELISA at 14 days after fusion. The single positive culture obtained was cloned by

limiting dilution (0.5, 1 and 10 cells/well) on feeder layers of MTM diluted 1:3

with HT medium (section 2.1.2E) in 96-well round bottomed microtitre plates

(Sterilin). After 4 days the HT medium was replaced with R20 medium (section

2.1.2C) containing MTM diluted 1:3. Following selection of the wells, in which cell

growth was detected visually, the culture supernatants were screened by ELISA. A

second subcloning procedure was performed on positive microwells. The positive

cultures were then expanded, first into flat-bottomed 24-well culture plates

(Falcon) and then into culture flasks (Falcon).

2.9.3 Screening by ELISA

An ELISA was used for the detection of anti-cis-UCA antibodies in

polyclonal antisera and in culture supernatants of hybridoma cell lines. ELISA plates

(Gibco) were coated overnight at 4°C with cis or trans-UCA-BSA conjugate (which

consisted of 3.7 molecules of cis-UCA or 4.5 molecules of trans-UCA per BSA

molecule and was produced by Professor T. Simpson's laboratory, Bristol

University) diluted in 0.1M carbonate-bicarbonate coating buffer, pH 9.6 (5pg in

100pg/well). The plates were then washed extensively with PBS-Tween pH 7.2.

Antisera or culture supernatants were left undiluted or diluted from 1:100-

1:12800 in PBS-Tween with 1% Bovine serum albumin (BSA; Sigma), and 100pl

added to each well in triplicate. The plates were then incubated for 3hr at room

temperature. The plates were washed again and incubated with a 10Opil of anti-

mouse IgG alkaline phosphatase (Sigma Chemical Co.) conjugate (diluted 1:1000 in

PBS-Tween with 1% BSA) for 3hr at room temperature. The plates were washed

once again and the reaction product was then developed by adding 10Opil of alkaline
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phosphate substrate buffer pH 9.8 (9.5ml diethanolamine, 80ml distilled H2O, 5ml

1M HCI and 1mg/ml p-nitrophenyl phosphate) to each well. The reaction was

stopped after 20 min with 3M NaOH (50p.l per well). Absorbance was read at

405nm using an ELISA plate reader.

The negative control used for antiserum was serum drawn from the mouse

prior to immunization and in the case of hybridoma cell supernatants, the

supernatant from the non-secreting NS-0 myeloma cell line used for fusion. The

positive control used for antiserum was a rabbit anti-UCA polyclonal antisera

(diluted 1:100), derived from a rabbit immunized s.c. on 2 sites with 4500pg KLH-

cjs-UCA (1:8) in 1ml Freund's incomplete adjuvant on day 0, 14 and 33, and bled on

day 47. The rabbit antisera had previously been demonstrated in an ELISA to react

with cjs or trans-UCA-BSA conjugate. An anti-rabbit IgG alkaline phosphatase

(Sigma Chemical Co.) conjugate (diluted 1:1000) was used as the secondary antibody

in this case. Mouse antiserum was used as the positive control for hybridoma cell

supernatants. The test was considered positive if the mean absorbance was above the

mean absorbance of negative control wells plus 3 times the standard deviation.

In other assays histamine-BSA conjugate (produced and provided by

Professor T. Simpson's laboratory, Bristol University) key hole limpet haemocyanin

(KLH; Sigma) and BSA (Sigma) were used as antigen, all at 5pg in 100pl/well.

2.9.4 Characterization of Anti-Cis-UCA Monoclonal Antibody

2.9.4A Typing of Anti-Cis-UCA Monoclonal Antibody

The immunoglobulin subclass of the monoclonal antibody generated was

determined by an isotyping kit according to the manufacturer's recommendations

(Amersham).
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2.9.4B Analogues Used

Various analogues [Norval et al. 1989B] of UCA (all produced and

provided by Professor T.Simpson's laboratory, Bristol University) (Figure 9)

including cis. and trans-UCA isomers conjugated with KLH (where there are 62

molecules of trans-UCA and 29 molecules of eia-UCA per KLH molecule), histamine-

BSA conjugate, histamine (Sigma Chemical Co.) and histidine (Sigma Chemical Co.),

were used in competitive inhibition ELISA assays, in order to ascertain the

specificity of the monoclonal antibody generated.

2.9.4C Competitive Inhibition ELISA

ELISA plates (Gibco) were coated overnight at 4°C with cis-UCA-BSA

conjugate diluted as appropriate in 0.1 M carbonate-bicarbonate coating buffer, pH

9.6. The plates were then washed extensively with PBS-Tween, pH 7.2. The

appropriate inhibitor was dissolved at a concentration of either 20, 5 or 1 mg/ml in

DMSO at 37°C for 5 min and then diluted to the required concentration in PBS-Tween

with 1% BSA. Fifty p.l of the inhibitor solution was added to each well in triplicate

or more followed by 50pl of monoclonal antibody culture supernatant (diluted as

appropriate in PBS-Tween with 1% BSA). The plates were then incubated for 3hr at

room temperature after which time the plates were washed and the procedure

carried out as previously described in section 2.9.3.

The background control used was 10Optl of PBS-Tween with 1% BSA instead

of 50pl of inhibitor and 50pl of monoclonal antibody. The appropriate positive

control used depended on the solution the inhibitor had been dissolved in.. The first

consisted of 50pl of DMSO dissolved as appropriate in PBS-Tween with 1% BSA and

50)0.1 of monoclonal antibody cell supernatant. The second consisted of 50jxl of PBS-

Tween containing 1% BSA and 50|ol of monoclonal antibody cell supernatant.
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Inhibition of the monoclonal antibody was calculated as follows:

% Inhibition =1 - ffmean absorbance test - mean absorbance background) ] x 100
[(mean absorbance max - mean absorbance background) ]

Mean absorbance max represents maximal binding of the monoclonal

antibody without inhibitor, whereas mean absorbance test represents binding in the

presence of an inhibitor. Mean absorbance background is the average background.

The standard deviation of the mean absorbance max, test and background was less

than 10%.

2.9.5 Purification of Anti-Cis-UCA Monoclonal Antibody by Protein

G Affinity Purification

This was carried out as outlined by Hudson and Hay (1989). In brief,

1ml of Protein G-Agarose (Calbiochem Co.) was added to a 1ml syringe with a nylon

wool plug at its base. The syringe was packed until the beads settled at the 1ml mark.

The syringe column was equilibrated by washing the column with 3ml of PBS.

Monoclonal antibody supernatant was diluted 1:2 in PBS and then 10ml was applied

to the column. Unbound proteins were washed through with 3ml of PBS. Bound IgG

monoclonal antibody was then eluted with 3ml glycine-HCI buffer (0.1 M pH 2.8).

The pH of the purified IgG solution was titrated to near neutrality with Tris buffer

pH 7.48 and then dialysed against PBS. The column was regenerated by washing with

3ml of PBS.

The eluted IgG fraction, the fraction obtained during the loading of the column

with the monoclonal antibody supernatant and the fraction collected during the wash

were all screened for anti-cis-UCA monoclonal antibody activity by ELISA. ELISA

plates were coated overnight at 4°C with cis-UCA-BSA conjugate diluted in 0.1 M

carbonate-bicarbonate coating buffer, pH 9.6 (0.078pg in 100pl/well) and the

procedure carried out as described previously in section 2.9.3.
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2.9.6 Protein Estimation

The protein concentration of affinity purified and unpurified monoclonal

antibody cell culture supernatant was determined by a protein assay kit according to

the manufacturer's recommendations [Biorad],

2.9.7 Antl-Cis-UCA Monoclonal Antibody Treatment of Mice

Affinity purified anti-cis-UCA monoclonal antibody (0.05mg/ml) was

injected (100pl) i.p. 2hr prior to each UVB treatment.

2.9.8 Screening of Mouse Serum for Cis-UCA Using Competitive

Inhibition ELISA

2.9.8A Treatment of Mice

Mice were bled via the orbital vein and 5hr later shaved mice were

exposed once to 216mJ/cm2 of UVB radiation or were exposed twice to 144mJ/cm2
of UVB radiation (with an interval of 24hr before the second exposure). At various

times thereafter two mice out of a group of ten or fourteen were bled from the vena

cava until death and the serum from each mouse pooled.

2.9.8B Competitive Inhibition ELISA

2.9.8.B1 Titration of Inhibitory Effect of Cis and Trans-UCA in Normal Mouse

Serum

Cis or trans-UCA was dissolved at a concentration of 2mg/ml in distilled

water at 37°C for 10 min. This solution was then diluted 1:2, 1:2.7, 1:4, 1:8 and

1:20 in PBS-Tween containing 1% BSA and then each dilution further diluted 1:25

in normal mouse serum (diluted 1:3 in PBS-Tween with 1% BSA) in order to ensure

that the mouse serum was diluted to the same extent regardless of the concentration

of UCA. Fifty pi of each dilution was then added to each of 6 wells of an ELISA plate

81



coated with cis-UCA-BSA conjugate (at 0.078pg/well) and washed as described in

section 2.9.3 followed by 50pl of monoclonal antibody culture supernatant (diluted

as appropriate in PBS-Tween with 1% BSA). The plates were then incubated for

3hr at room temperature after which time the plates were washed extensively and

the procedure carried out as previously described in section 2.9.3.

The negative control used was 50pl of normal mouse serum diluted 1:3 in

PBS-Tween with 1% BSA and 50pl of PBS-Tween with 1% BSA. The positive

control consisted of normal mouse serum diluted 1:3 in PBS-Tween with 1% BSA and

50pl of monoclonal antibody culture supernatant. The percentage inhibition was

calculated as described in section 2.9.4C.

2.9.8B2 Screening of Serum for Presence of Cis -UCA

ELISA plates were coated with cis-UCA-BSA conjugate (at 0.078fxl/well)

and washed as described in section 2.9.3. Prebleed serum and serum from mice

exposed to UVB radiation was diluted 1:3 in PBS-Tween with 1% BSA. Fifty pi of the

diluted serum was added to each of 6 wells or more followed by 50pl of monoclonal

antibody culture supernatant (diluted as appropriate in PBS-Tween with 1% BSA).

The plates were then incubated for 3hr at room temperature after which time the

plates were washed extensively and the procedure carried out as described

previously in section 2.9.3.

The negative control used was 50pl of prebleed serum or serum from

mice exposed to UVB radiation diluted 1:3 in PBS-Tween with 1% BSA and 50pl of

PBS-Tween with 1% BSA. This value was subtracted from the test value. A further

control incorporated in this assay involved adding 50pl of cis. or trans-UCA which

was prepared and diluted appropriately as described in section 2.9.8B1, to each of 4

wells followed by 50pl of monoclonal antibody culture supernatant. The percentage

inhibition was calculated as described in section 2.9.4C.
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2.9.8B3 Screening of Dialysed Serum for Presence of Cis-UCA

One ml of prebleed serum and 1ml of serum taken from a group of ten

mice 25hr after one exposure to 216mJ/cm2 of UVB radiation, was dialysed using

Visking tubing with a m.wt. cut off in the range 12,000 to 14,000 for 14hr against

PBS at 4°C. The volume of the dialysed serum was measured and diluted (in PBS-

Tween with 1% BSA) such that it was diluted 1:3 overall. Dialysed and undialysed

serum were then compared using a competitive inhibition ELISA as described in

section 2.9.8B2. The percentage inhibition was calculated as described in section

2.9.4C.
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CHAPTER 3

RESULTS

3.1 Quantification of UCA Isomers In Murine Tissue Before and

After UV-B Irradiation or Contact Sensitization

3.1.1 Introduction

It has been known for several years that UV-B irradiation of mammalian

skin, suppresses some cell-mediated immune responses to a variety of antigens,

including contact sensitizers [Noonan et al. 1981A and C; Fisher & Kripke, 1978;

Howie et al. 1986A; Giannini, 1986; Mottram et al. 1988;]. It has been postulated

that there is a photoreceptor in the skin which mediates the indirect effects of UV

irradiation on immune function. One candidate, first proposed by De Fabo and Noonan

(1983), is UCA found naturally in the stratum corneum of the epidermis as the

trans isomer, which converts to the cis-isomer on UV irradiation. There is now

considerable evidence available from a variety of experimental systems that cis-UCA

acts as a mediator of UV-induced immunosuppression [Noonan et al. 1988; Harriott-

Smith and Halliday, 1988B; Ross et al. 1986; Williams et al. 1990; Guymer and

Mandel, 1990; Reeve et al. 1989; Gruner et al. 1992].

3.1.2 Analysis of UCA Isomers and Total UCA Content in Ears from

Male and Female Mice of Different Strains, Before and After

UV-B Irradiation or Contact Sensitization

UCA isomers have been measured successfully in skin extracts by HPLC

[Norval et al. 1988; Juhlin et al. 1986; Jansen et al. 1991], It has been

demonstrated that the ears of female C3HBu/Kam mice aged 2 weeks or more have

one-third more UCA than neonatal mice and that 4% of this is in the cis-form
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[Norval et al. 1988], These investigators showed that after UV-B irradiation,

31.1% of UCA within the ears was present as the cis-isomer. It has been established

that in vivo and in vitro, a photostationary state is reached where no more

isomerization of UCA from the trans to the as form occurs despite continued UV-

irradiation [Morrison et al. 1980; Baden and Pathak, 1967; Anglin et al. 1961].

However, it seems reasonable to speculate that if the UCA content of skin varies

between sexes or different strains of mice then although UV-B irradiation may

result in the same percentage of isomerization of UCA, ultimately, more cis-UCA

will be formed in skin containing a higher concentration of UCA. Since there is a

correlation between the proportion of cis-UCA formed in the epidermis after UV-B

irradiation and the degree of immunosuppression induced [Norval et al. 1988] such

a speculation would imply that different sexes or strains of mice would vary in the

level of suppression induced after UV-B irradiation. Interestingly, it has been found

that the capacity of UV-B radiation to impair the induction of CH when the hapten is

painted directly on the irradiated site varies between different strains of mice

[Streilein and Bergstresser, 1988], This speculation, however, would only be valid

if one was to assume that differences in skin pigmentation, which does arise between

different sexes and strains of mice, had no effect on the capacity of UV-irradiation to

isomerize trans to cis-UCA.

In an attempt to explore whether the UCA content of skin varies between

sexes or different strains of mice and to establish whether or not a relationship

exists between skin pigmentation and the amount of trans to cis-UCA isomerization,

five ears from three strains of unirradiated male and female and irradiated

(96mJem"2 UV-B) female mice were analysed by HPLC for the presence of UCA

isomers. It was not known what effect (if any) contact sensitization might have on

the total UCA content of skin or on the isomerization of trans to cis-UCA. In order to

investigate this, five ears from female C3HBu/Kam, C57BL/6 and Balb/c mice each
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Table
1

Quantification
of

Urocanic
Acid

Isomers
in

C3HBu/Kam
Murine
Ears
Before

and
After
UV-B

Irradiation
or

Sensitization

UCA
(ng
/

mg
wet

weight)

Mean
±

Standard
Error

Treatment
Wet

Weight
of

Ear(mg)
Cis

UCA

Trans
UCA
Cis

UCA
as
a

%

of

Total
UCA

Mean
Cjs

UCA

as
a

%
of

Total
UCA

Mean
TotalUCA

StatisticalSignificance(by t-test)¥

Female
Untreated

3223293529

5030
1

0
5

1

0

390380300330350

11.47.03.21.52.7

5.2
±

1.8-

371
±

24

1

8

20

22

20

Male

Untreated

20

20

21

20

20

1

0

27

120

31

1

10

Female

UV-B(96mJcm~2)
32

90

40

90

22

1

10

55

2

Female
OX

2.5%

54

2

54

1

460

4.2

420

4.5

330

5.7

560

3.4

490

2.0

42

330

26.7

350

23.9

300

23.1

350

20.5

320

25.6

150

1.3

190

1.0

140

0.7

120

0.8

4.0
±

0.6

1.0
±

0.1

470
±

38

24.0
±

1.1

434
±12
p

<

0.001

152
±

15

NS*

The
mean
total
UCA

content
of

male
C3H

ears
was

significantly
different
from
the

mean
total
UCA

content
of

male
Balb/c

and

C57B/6
ears
(p
<

0.01
;

p

<

0.001,

respectively).

The
mean
total
UCA

content
of

female
C3H

ears
was

significantly
different
from
the

mean
total
UCA

content

of

female
C57B/6

ears
(p<

0.001)
but
not

significantly
from
the

mean
total
UCA

content
of

female
Balb/c

ears
(p
>

0.5).

¥

Significance
of

difference
of

mean
eî-UCA
(as
a

%
of

total
UCA)
from

control
group*

n

Not

significantly
different
from

control
group*



Table
2

Quantification
of

Urocanic
Acid

Isomers
in

Balb/c
Murine
Ears
Before

and
After
UV-B

Irradiation
or

Sensitization

UCA(ng/mg
wet

weight)

Mean
±

Standard
Error

Treatment
Wet

Weight
of

Ear(mg)
Cis

UCA

Trans
UCA
Cis

UCA
as
a

%

of

Total
UCA

Mean
Cjs

UCA

as
a

%
of

Total
UCA

Mean
TotalUCA

StatisticalSignificance(by

t-test)¥

Female
Untreated

3227

47

330450

1.21.5

1.4
±

0.2*

396
±

62

Male

Untreated

43

20

250

33

5

220

34

6

240

37

6

260

32

8

320

7.42.22.42.32.4

3.3
±

1,0

267
±17

Female

UV-B(96mJcm"2)
Female
OX

2.5%

1

7

150

310

32.6

1

2

350

590

37.2

21

1

90

280

40.4

37.0
±

1.3

566
±

95

p

<

0.001

24

160

270

37.2

22

200

330

37.7

41

5

260

1.9

39

5

250

2.0

57

4

1

60

2.4

2.3
±

0.2

194
±

42

NS*

51

1

40

2.4

43

7

240

2.8

*

Is-00

The
mean
total
UCA

content
of

male
Balb/c

ears
was

significantly
different
from
the

mean
total
UCA

content
of

male

C57B/6
ears
(p
<

0.001).

The
mean
total
UCA

content
of

female
Balb/c

ears
was

significantly
different
from
the

mean
total
UCA

content
of

female
C57B/6

ears
(p
<

0.02).

vSignificance
of

difference
of

mean
ds-UCA
(as
a

%
of

total
UCA)
from

control
group*

"Not

significantly
different
from

control
group*



Table
3

Quantification
of

Urocanic
Acid

Isomers
in

C57BL/6
Murine
Ears
Before

and
After
UV-B

Irradiation
or

Sensitization

UCA
(ng/mg
wet

weight)

Mean
±

Stanard
Error

Treatment
Wet

Weight
of

Ear(mg)
Cis

UCA

Trans
UCA
Cis

UCA
as
a

%

of

Total
UCA

Mean
Cjs

UCA

as
a

%
of

Total
UCA

Mean
TotalUCA

StatisticalSignificance

45

1

1

90

0.5

40

6

1

90

3.1

Female
Untreated

35

4

100

3.8

2.5
±

0.6-

182
±

27

29

3

150

2.0

1

7

8

260

3.0

38

2

1

00

2.0

39

1

80

1.2

Male

Untreated

32

0.7

70

1.0

1.5
±

0.3

102
±

12

32

3

120

2.4

27

1

1

30

0.8

1

3

90

220

29.0

1

4

120

310

27.9

Female

UV-B(96mJcnrr2)
22

60

150

28.6

30.1
±

1.0

264
±

49

p

<

0.001

22

50

100

33.3

23

70

1

50

31.8

58

7

1

60

4.2

43

4

150

2.6

Female
OX

2.5%

38

6

310

1.9

2.7
±

0.4

191
±

35

NS"

83

2

110

1.8

51

6

200

2.9

Significance
of

difference
of

mean
cis-UCA
(as
a

%
of

total
UCA)
from

control
group*

"Not

significantly
different
from

control
group*



exposed to 25|il of 2.5% oxazolone were analysed 24hr later by HPLC for the

quantity of UCA isomers.

The UCA content in terms of ng/mg wet weight and percentage of cis-

isomer in all the samples for each strain is given in Table 1, 2 and 3. From the

results it was difficult to reach any conclusion as to whether there is a definitive

difference between the UCA content of male and female ears. However, it was

possible to conclude that a difference in the UCA content of male and female ears

between strains exists. The ears of male and female C57BL/6 mice had a

significantly lower UCA content compared with male and female ears of the other two

strains. Also, the UCA content of male ears differed significantly between all three

strains of mice. As expected the percentage of cis-isomer in the ears of all three

strains of mice increased significantly after UV-B irradiation. This increase was

accompanied by an increase in the UCA content of ears of C3HBu/Kam, Balb/c and

C57BL/6 mice exposed to UV-B radiation. However, the percentage of cis-isomer

produced in the ears of Balb/c mice after irradiation was higher than in the other

two strains. Although there was no obvious difference between the percentage of cis-

isomer present in unsensitized and sensitized ears of Balb/c and C57BL/6 mice, the

percentage of cis-isomer in the ears of C3HBu/Kam mice was reduced following

sensitization. Also, the wet weight of sensitized C3HBu/Kam, C57BL/6 and Balb/c

ears compared with untreated ears increased. This increase in wet weight correlated

with a 50% reduction in the total UCA content of ears of Balb/c and C3HBu/Kam

mice.

3.1.3 Analysis of Kidneys, Spleens, Lymph Nodes and Urine for the

Presence of UCA Isomers

UCA was first described in the urine of dogs [Jaffe, 1874]. It is present

in human sweat [Zenisek, 1953] and in the epidermis of a variety of species
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including man [Everett et al. 1961], guinea pig [Tabachnick, 1957], mice and rats

although not in snakes [Baden and Pathak, 1967]. UCA is located predominantly in

the stratum corneum (the outermost layer of the skin) and the liver. However, it is

not known at present, despite attempts such as by Reeve et al. (1991), whether c]s-

UCA formed from the trans-isomer on UV-B irradiation stays within the epidermis

exerting its immunosuppressive effect entirely locally and/or systemically or

whether it leaves the skin via the lymphatic or blood system where it may gain

access to other areas within the body such as the draining lymph node, spleen or

unirradiated skin. To investigate whether or not UCA isomers are present in tissues

other than the skin including urine, the lymph nodes, spleens, kidneys and urine

from unirradiated and irradiated female C3HBu/Kam mice were analysed by HPLC.

HPLC analysis of lymph nodes, spleens, kidneys and urine from

unirradiated and irradiated mice for the presence of UCA isomers proved difficult and

it was not possible to conclude whether any UCA isomers were present (results not

shown). It was difficult to analyse the tissue and urine samples easily by HPLC due

to the complexity of substances present. Also, in contrast to the skin where UCA

represents a major UV absorbing constituent, any UCA isomers that may be present

in other tissues may be present in trace amounts, requiring the detection system to

be highly sensitive, thus further contributing to the difficulties in quantifying UCA

isomers in other tissues. Subsequently, a monoclonal antibody specific for the cis-

isomer of UCA was produced for use in detecting the presence of ds-UCA in serum

and other tissues, following UV-B irradiation. The production, characterization and

use of this monoclonal antibody in detecting cis-UCA in serum after UV-B irradiation

of mice is discussed in section 3.6.

90



3.2 Influence of UCA Isomers and UV-B Irradiation on the

Induction of Contact Hypersensitivity Responses

3.2.1 Introduction

Exposure of body wall skin of some (but not all) mice [Toews et al. 1980;

Streilein and Bergstresser, 1988], hamsters [Streilein and Bergstresser, 1981],

and human beings [Yoshikawa et al. 1990] to low doses of UV-B radiation impairs

the induction of CH responses to haptens, painted directly on the irradiated surface.

A number of investigators using different mouse strains and protocols have

demonstrated local UV-B induced suppression of CH responses to a variety of haptens

including DNFB (Gurish et al. 1983; Yoshikawa and Streilein, 1990], oxazolone

[Satoh et al. 1990], FITC [Okamoto and Kripke, 1987] and picryl chloride (PCI)

[Satoh et al. 1990],

Evidence from a wavelength dependence study of UV-B induced

suppression of CH responses suggests that suppression is initiated by an interaction

between UV-B radiation and a specific signal-transducing photoreceptor molecule in

mouse skin [De Fabo and Noonan, 1983]. As mentioned previously (in section

3.1.1) it is hypothesized that the photoreceptor molecule is the trans-isomer of

UCA, a major UV-absorbing component of the stratum corneum [De Fabo and Noonan,

1983], which isomerizes to £is-UCA on absorption of UV-B radiation. Noonan et al

[1988] have demonstrated that cis-UCA but not trans-UCA administered

systemically in vivo, in the absence of UV-B radiation, initiates an antigen-

presenting cell defect in splenic DC that is indistinguishable from the one caused by

UV-B irradiation. In similar and relevant studies, Howie et al (1986A)

demonstrated that UV-B irradiation of mice before infection with HSV resulted in

suppression of a virus-specific DTH response and Ross et al (1986) found that s.c.

injection of cis-UCA into mice before infection with HSV also impaired the

development of the DTH response. Cis-UCA has also been shown to delay rejection of
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transplantation allografts [Williams et al. 1990; Guymer and Mandel, 1990] and to

enhance UV-induced tumour yield and malignancy in hairless mice [Reeve et al.

1989]. Thus, there is considerable evidence from several experimental systems,

that £]£-UCA is involved in the suppressive effects of UV-B irradiation on cutaneous

immunity.

In order to elucidate the mechanism of local UV-B induced suppression of

CH responses it was first necessary to set up a murine model of CH to demonstrate

UV-B induced suppression and to explore under what conditions (if any) the

isomerized form (cjs-UCA) of the proposed UV-B photoreceptor molecule (trans-

UCA) can suppress the CH response.

3.2.2 Titration to Establish Optimal Sensitization Concentration of

oxazolone and FITC for Measurements of Suppression of

Contact Hypersensitivity

Contact sensitization responses are induced by processing of the allergen

by epidermal LC, which transport the processed antigenic determinant (hapten) to

draining lymph nodes. Therein, antigen-specific helper T cells recognize LC-bound

antigen (in conjunction with class II MHC antigen) and are triggered to proliferate

and promote the differentiation and dissemination of effector and memory T cells that

are able to elicit a cutaneous response upon their subsequent encounter with the

inducing antigen [Nishioka, 1985; Katz, 1985; Bos and Kapsenberg, 1986], It has

been demonstrated that challenge-induced increases in ear thickness convey the

skin-sensitizing activity of contact sensitizers [Asherson and Ptak, 1968; Maisey

and Miller, 1986]. The skin-sensitizing potential of different contact sensitizers

varies - some are strong (e.g. oxazolone) while others are comparitively weak (e.g.

FITC) [Gad et al. 1986; Maisey and Miller, 1986],

Two different model systems for investigating the influence of UV-B

radiation and UCA isomers on the induction of CH responses were used throughout.
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One involved UV-B irradiating or applying UCA isomers to the shaved dorsal surface

of mice whose ears were protected during irradiation in contrast to irradiating the

shaved abdominal skin as carried out by other investigators [Yoshikawa and

Streilein, 1990; Streilein and Bergstresser, 1988; Okamoto and Kripke, 1987;

Streilein et al. 1980A], applying the contact sensitizer to the same site 24hr after

the last UV or UCA treatment and then eliciting the CH response by challenging the

dorsum of both ears 5 or 6 days after sensitization. The other model system involved

UV-B irradiating or applying UCA isomers to the dorsum of the left ear of unshaven

mice whose right ear was protected during irradiation, applying the contact

sensitizer to the dorsum of the left ear 24hr after the last UV or UCA treatment and

then eliciting the CH response by challenging the right ear 5 or 6 days after

sensitization. UCA isomers were also administered i.p. and s.c. at sites distant from

the site of sensitization for both of these models in order to assess the systemic effect

of these isomers on the CH response.

Titration experiments were performed to establish the optimal

sensitization concentration of oxazolone when applied to the shaved dorsal surface

(Table 4) or to the left ear (Table 5) which would induce a measurable ear swelling

response such that a significant suppression of the CH response could be measured.

Mice were challenged on day 5 regardless of the site of sensitization as carried out by

Satoh et al. (1990). Although the skin-sensitizing potential of different contact

sensitizers varies [Gad et al. 1986; Maisey and Miller, 1986] it is not known

whether this can influence directly the degree of suppression induced by UV-B

irradiation. Assuming that the skin-sensitizing potential of contact sensitizers does

affect the ability of UV-B radiation to induce suppression it seemed reasonable to

speculate that a weaker contact sensitizer may shift the balance in favour of

suppression. Subsequently, FITC (a weaker contact sensitizer than oxazolone) was

also used with the aim of increasing the possibility of significant UV-B and cis-UCA

induced suppression. A titration experiment was performed to find the optimal
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Table
4

Titration
to

Establish
Optimal

Sensitization
Concentration
of

oxazolone
for

Measurements
of

Inhibition
of

CH

Sensitization

Challenge71
Mean
Ear

Swelling
±

SE

(mm

x10~2)A

Vehicle

Vehicle

0.3
±

0.3

Vehicle

25[il
0.25%
OX

0.5
±

0.3

50pl
2.5%
OX

ii

ii

ii

9.0
±

1.7

50|il
1.0%
OX

ii

ii

ii

11.4
±

2.3

50pl
0.1%
OX

ii

ii

ii

12.1
±

2.3

50|il

0.025%
OX

ii

ii

ii

2.6
±

0.7

*The
backs
of

mice
were
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and
50pl
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oxazolone
or
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applied
topically
to

the

shaved

surface
71

Both
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of

the
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(n=6)

were
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25pl
of
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or
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5
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later

A

Ear

swelling
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were
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at

24hr.
Data
are

presented
as

mean
ear

swelling

response
±

standard
error
of

mean
(SE)
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±
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x
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Vehicle

Vehicle

0.8
+

0.3

Vehicle

25|il
0.25%
OX
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±

0.3

25(il
2.5%
OX

13.7
±1.5

25|il
0.25%
OX

7.3
±

0.8

25(il
0.1
%

OX

5.6

±0.9

*

The
left
ear
of

each
mouse
was

sensitized
with
25|il
of

oxazolone
or
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¥

The
right
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of

each
mouse
(n=6)

was
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with
25pl
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oxazolone
or
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5
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A

Ear

swelling
responses
were

measured
at

24hr.
Data
are

presented
as

mean
ear

swelling

response
±

standard
error
of

mean
(SE).
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2.5%
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50(_lI
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50|il
0.5%
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50|il

0.25%
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Vehicle
25)0.1
0.5%
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ii

II

h

ii

ii
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0.6±0.30.810.312.1
1

1.912.510.910.01
1.6

9.1
1

1.3

*
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were
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of
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to

the

shaved
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¥
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6
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A

Ear
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were

measured
at

24hr.
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are

presented
as

mean
ear

swelling

response
1

standard
error
of

mean
(SE)



sensitization concentration of FITC when applied to the shaved dorsal surface (Table

6) which would induce a measurable ear swelling response such that a significant

suppression of the CH response could be measured. However, a titration experiment

was not performed for mice sensitized with FITC on the dorsum of their left ear due

to limited availability of mice. The chosen sensitizing dose (0.5%) and challenging

dose (0.5%) did, however, give a reasonable ear swelling response of approximately

8mm x 10"2 such that a significant suppression of the CH response could be

measured. Mice exposed to FITC either on the shaved dorsal surface or the dorsum of

their left ear were challenged on day 6 as carried out by Okamoto and Kripke,

(1 987).

Since it is not known whether or not the sensitizing dose of a contact

sensitizer can affect the degree of suppression induced by UV-B irradiation, doses of

contact sensitizers that were likely to induce a moderate (7mm x 10"2) to good

(12mm x 10"2) ear swelling response based on the results of the titration

experiments shown in Table 4, 5 and 6 were chosen.

3.2.3 Influence of UV-B Irradiation on the Induction of Contact

Hypersensitivity Responses to oxazolone and FITC

It can be seen from Table 7 and 8 that mice exposed to UV-B radiation

daily for three consecutive days (96mJcm"2/day) prior to sensitization with

oxazolone or FITC at the same site significantly suppressed the induction of CH

responses to these chemical antigens. A single exposure of mice to 96mJcm"2 of UV-

B radiation 3 days prior to sensitization did not, however, suppress the induction of

the CH response to oxazolone (Table 7).
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Table 7 Influence of UCA Isomers and UV-B Irradiation on the Induction of the CH Response to oxazolone

Treatment (Days/hr) Prior to Sensitization Challenge % Statistical
Sensitization Suppression Significance(by

t-test)

Trans UCA 5hr (100ua1 s.c.Flankt 50jul 0.5% Ox0 25/lxI 0.25% Ox5 7 NS
CisUCA 5hr (100pg) s.c.Flankt

ii ii ii ii ii ii 0 -

Trans UCA 5hr(100pg),r
ii ii ii ii ii ii 0 -

Cis UCA 5hr (lOOpg)71
ii ii ii ii ii ii 6 NS

CisUCA 7D (100pg) i.p.t
ii ii ii ii ii n 14 NS

ii " 3D (100jug) i.p.t
ii ii ii ii n ii 16 NS

ii "

1D(100pg) i.p.t
ii ii it ii ii n 15 NS

UV-B 3D (96mJcm-2)B " 2.5% " ii ii ii 20 NS
Cis UCA 1D (200pg) s.c.Flankt

ii ii ii ii ii ii 5 NS
ii ii 1D (200pg)7r

n ii ii ii ii ii 15 NS
ii ii 4D (200pg) s.c.Flankt

ii ii ii ii ii ii 15 NS
ii n 4D (200mg)*

ii ii ii ii ii ii 0 -

UV-B 3D (96mJcnr2 )B ii ii ii ii ii ii 4 NS
CisUCA 1D (200ug) s.c.Flankt

ii n ii ii ii n 40 p<0.01
ii ii 1D (200pg)Tr

ii ii ii ii ii ii 37 p < 0.01
ii ti 4D (200|ug) s.c.Flankt

ii ii ii ii ii ii 35 NS
ii ii 4D (200ug)*

ii ii ii ii ii ii 32 p < 0.05

UV-B 3D (96mJcnr2 )B " 0.1% " ii ii ii 0 -

CisUCA 1D (200pg) s.c.Flankt
ii ii ii ii ii ii 12 NS

ii ii 1D (200ug)ir
ii ii ii ii ii ii 3 NS

ii n 4D (200pg) s.c.Flankt
ii ii ii ii ii ii 11 NS

ii ii 4D (200ug)*
ii ii ii n ii ii 3 NS

UV-B 3D (96mJcm-2)B •i it it ii ii ii 0 .

CisUCA 1D (200pg) s.c.Flankt ii ii ii ii ii ii 34 NS
•i ii 1D (200pg)*

ii ii n ii ii ii 20 NS
ii ii 4D (200iug) s.c.Flankt

ii ii ii n ii ii 31 NS
ii ii 4D (200pg)*

ii ii ii ii ii ii 0 -

UV-B 3,2,1 D(288mJcm-2)& 25pl 0.25% OxA 25jul 0.25% Ox* 34 NS
CisUCA 3,2,1D(200Mg)"

ii h ii ii ii ii 18 NS
Trans UCA 3,2,1 D (200|ug)*

ii ii ii ii ii ii 0 -

Cis UCA 3,2,1 D (200pg)s.c.Flankt
ii ii ii ii ii ii 0 -

UV-B 3,2,1 D (288mJcm-2)&
ii 11 ii ii ii ii 67 p < 0.05

CisUCA 3,2,1D(200]ug)*
ii ii ii ii ii ii 0 -

Trans UCA 3,2,1D(200Mg)w
ii ii ii ii ii ii 0 -

Cis UCA 3,2,1D (200ug)s.c.Flankt
ii ii ii ii ii ii 24 NS

UV-B 3,2,1 D (288mJcm-2)& ii ii ii ii ii ii 75 p< 0.001
CisUCA 3,2,1D (200jug)*

11 ii 11 ii ii ii 11.4 NS

NS = Not significantly different from positive control group

¥ Significance of difference from positive control group
t Mice were treated at a site distant from the site of sensitization
0 50|ul of 0.5% Ox was topically applied to the shaven backs of mice
d 25pl of 0.25% Ox was topically applied to both ears 5 days later
* Mice were topically treated at the same site as sensitization
15 The shaven backs of mice were exposed to a single dose (96mJcnr2) of UV-B radiation
& The left ear of each mouse was exposed to 96mJcnr2 of UV-B radiation each day
A 25jul of 0.25% Ox was topically applied to the dorsum of the left ear
*

25|ul of 0.25% Ox was topically applied to the dorsum of the right ear 5 days later
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Table 8 Influence of UCA Isomers and UV-B Irradiation on the Induction of the CH Response to FITC

Treatment (Days) Prior to Sensitization Challenge % Statistical44
Sensitization* Suppression Significance(by t-test)

Cis UCA 3,2,1D(200ng)t 25MI 0.5% FITC& 25jul 0.5% FITC8 33 NS
Trans UCA3,2,1 D(200pg)t h u ii ii ii n 29 NS

UV-B3,2,lD(288mJcnr2 )<?
ii ii h h ii ii 94 p < 0.001

Cis UCA 3,2,1 D(200pg)t ii ii ii ii ii ii 34 NS

UV-B3,2,1 D(288mJcm2 )q
ii ii ii 11 ii 11 90 p < 0.001

Cis UCA 3,2,1 D(200pg)+ ii ii ii ii ii n 59 p < 0.02

UV-B3,2,1 D(288mJcnr2)?
ii ii ii ii ii ii 94 p < 0.01

Cis UCA 3,2,1D(200pg)+ ii ii ii ii ii it 45 NS
Trans UCA3,2,1D(200pg)+ ii ii ii ii ii it 39 NS

Cis UCA 3,2,1 D(2OOMg)0 50pl 1.0% FITC# 25pl 0.5% FITC4 45 NS

Cis UCA 3,2,1D(2OO|ig)0 li ii ii ii ii it 34 NS

Cis UCA 3,2,1D(2OOug)0
ii if ii ii ii ii 35 NS

Trans UCA3,2,1D(2OOyg)0
ii ii ii ti ii ii 5 NS

Cis UCA 3D(2OOjjg)0 ii if n ii ii ii 18 NS
Trans UCA 3D(2OOug)0

ii ii ii ii ii ii 29 NS
Cis UCA 2D(2OOpg)0

h it ii ii ii ii 0 -

Trans UCA 2D(2OOMg)0
ii ii ti ii ii if 54 p < 0.001

Cis UCA 1 D(2OOpg)0
ii ii ii ii ii ii 25 NS

Trans 1 D(2OOpg)0
ii ii if ii ii ii 43 p < 0.02

Cis UCA 2,1D(2OOug)0 it ii ii ii ii ii 55 p < 0.02
Trans UCA 2,1D(2OOpg)0 ii ii il ii n ii 39 NS

Cis UCA 2,1D(2OOpg)0
ii ii if ii u ii 26 NS

Trans UCA 2,1D(2OOpg)0
ii ii it ii ii ii 6 NS

Cis UCA 2,1D(1OOpg)0 ii ii n if ii ii 28 NS
Trans UCA 2,1D(1OO|ug)0

ii ii ii if ii ii 21 NS
Cis UCA 2,1D (5Opg)0

ii ii n ii it ii 37 NS
Trans UCA 2,1 D (5Oug)0 ii ii ii h ii ii 3 NS
Cis UCA 2.1D (1 Ojug)0 ii ii ii ii ii ii 17 NS
Trans UCA 2,1D (1Oyg)0

ii ii ii ii ii ii 23 NS

Cis UCA 2,1D(2OO]ug)0
it ii ii if it ii 0 -

Trans UCA 2,1D(2OOpg)0 ii ii ii ii ii ii 25 NS
Cis UCA 2,1 D (5Opg)0 ii ii ii ii ii ii 34 NS
Trans UCA 2,1 D (5Ojug)0

ii if ii ii ii ii 0 -

Cis UCA 2,1D (1Opg)0
ii ii ii ii ii ii 1 NS

Trans UCA 2,1 D (lOpg)0
ii ii it ii ii if 37 NS

NS = Not significantly different from control group

*

Mice were treated at the same site as sensitization
¥ Significance of difference from positive control group
+ UCA isomers were topically applied to the left ear of mice
& 25pl of 0.5% FITC was topically applied to the dorsum of the left ear
8 25pl of 0.5% FITC was topically applied to the dorsum of the right ear 6 days later
? The left ear of mice was exposed to 96mJcm-2 of UV-B radiation each day
0 UCA isomers were topically applied to the shaven backs of mice
# 50pl of 1.0% FITC was topically applied to the shaven backs of mice
A 25pl of 0.5% FITC was topically applied to the dorsum of both ears 6 days later
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3.2.4 Influence of UCA Isomers on the Induction of Contact

Hypersensitivity Responses to oxazolone and FITC

A single topical application of 100p.g of cis or trans-UCA to the shaved

dorsum of mice 5hr prior to sensitization with oxazolone at the same site had no

effect on the CH response (Table 7). Likewise, a single s.c. injection of 100pg of cis

or trans-UCA into the flank 5hr prior to sensitization with oxazolone on the shaved

dorsal surface had no systemic effect. It was also not possible to suppress

systemically the CH response to oxazolone by administering 100pg of sis-UCA i.p. 7,

3 or 1 day prior to sensitization. However, significant local and systemic

suppression was demonstrated when 200|ig of cis-UCA was topically applied to the

shaved dorsal surface 1 or 4 days prior to sensitization or injected s.c. into the flank

1 day prior to sensitization, respectively (Table 7). It could not be concluded

whether this suppression of the CH response occurred as a result of administering a

higher concentration of cis-UCA since the time of application prior to sensitization

was different from the above mentioned experiments and the sensitizing dose of

oxazolone was higher (2.5%). Unfortunately it was not possible to reproduce this

result even if the sensitizing dose was decreased to 0.1%. Using a different model

system, it was found that topical application of 200pg of cis or trans-UCA to the

dorsum of the left ear 3, 2 and 1 day prior to sensitization with oxazolone at the

same site failed to induce suppression. Also, administration of 200pg cis or trans-

UCA s.c. into the flank 3, 2 and 1 day prior to sensitization on the dorsum of the left

ear also failed to induce suppression of the CH response. It was concluded that cis or

trans-UCA do not significantly induce local or systemic suppression of the CH

response to oxazolone regardless of its concentration, the sensitizing dose or the time

of application prior to sensitization (Table 7).

It was possible that oxazolone which is a strong contact sensitizer (as

mentioned previously) was having an influence on the ability of UCA isomers to

suppress the CH response. Subsequently, a number of experiments were carried out
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in an attempt to explore whether q]s or trans-UCA when administered by topical

application to the shaved dorsum or left ear of mice, was capable of locally

suppressing the induction of the CH response to FITC (a weaker contact sensitizer

than oxazolone) (Table 8). It was found that 200pg of fiis-UCA induced significant

local suppression of the CH response to FITC when topically applied to the shaved

dorsum of mice 2 and 1 day prior to sensitization. It was observed also that 200pg

of trans-UCA induced suppression when applied in the same way 2 and 1 day prior to

sensitization. This suggested that the concentration of cis-UCA being administered

was too high. Subsequently, dose-response experiments were conducted in order to

separate out the suppressive effect of ds and trans-UCA on the CH response to FITC

when applied to the shaved dorsal surface 2 and 1 day prior to sensitization.

However, it can be seen from Table 8 that it was both not possible to reproduce the

significant suppression of the CH response observed when 200p.g of cis-UCA was

applied 2 and 1 day prior to sensitization or to separate out the effect of cis and

trans-UCA by decreasing their concentration. Using a different model system it was

found that topical application of 200pg of cis-UCA to the dorsum of the left ear 3, 2

and 1 day prior to sensitization with FITC at the same site did induce significant

suppression of the CH response. Once again, however, this result was not

reproducible under the same experimental conditions. It was observed also that

application of trans-UCA under the same conditions in different experiments induced

similar levels of suppression as the cis-UCA isomer.

It was reasonable to conclude from the results shown in Table 7 and 8 that

cis-UCA had little, if any, consistent effect on the induction of CH responses to

oxazolone or FITC.
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3.3 Influence of UV-B Irradiation and UCA Isomers on Dendritic

Cell Migration

3.3.1 Introduction

The mechanism by which UV-B irradiation impairs the induction of the

CH response is unknown. There is a great deal of evidence that indicates that

antigen-bearing DC in DLN are derived from epidermal LC which travel to the lymph

nodes in the afferent lymph [Kinnaird et al. 1989; Macatonia, et al. 1987;

Silberberg-Sinakin et al. 1976; Kripke et al. 1990; Larsen et al. 1990] and that

these antigen-bearing DC are responsible for inducing contact sensitization

[Macatonia and Knight, 1989; Kinnaird et al. 1989], Subsequently, it has been

postulated that immobilization or migration of LC away from the skin at UV-B

irradiated sites may contribute to the failure of mice to develop CH responses

following the painting of hapten on these sites. However, the evidence implicating

either one of these possible effects of UV-B irradiation on LC at the exposed site as a

possible mechanism for local suppression, is based on controversial interpretations

of whether LC have in fact left the skin.

In an attempt to explore whether UV-B irradiation affects epidermal DC

migration and whether such effects are mediated via the postulated UCA

photoreceptor molecule, the influence of UV-B irradiation and UCA isomers on the

migration of DC to DLN was examined in unsensitized and sensitized mice. In addition

the influence of UV-B irradiation on the carriage of antigen and on the expression of

la and ICAM-1 antigens by DC was measured.

3.3.2 Effect of UV-B Irradiation and Cis or Trans-UCA on Dendritic

Cell Accumulation in DLN of Unsensitized Mice

Forty-two hr after irradiating mice or painting their ears with sis. or

trans-UCA. the mice were killed, their auricular lymph nodes excised and the

number of DC present in each lymph node was estimated. Table 9 which shows the
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results of four experiments, demonstrates that UV-B radiation induces significant

and reproducible accumulation of DC in DLN and that neither isomer of UCA has a

consistent effect on DC migration to DLN. This suggests that UV-B induced DC

migration is not attributable to the local production of cis-UCA.

Assuming that the DC accumulating within the DLN as a consequence of

UV-B irradiation are derived from the skin, it was important to generate a clear

picture of the kinetics/tempo of this migration after exposure to UV-B radiation.

Thus, the number of DC present within the DLN of mice at various times following a

single dose of UV-B irradiation (144mJem"2) was calculated. Figure 10 illustrates

that DC migration to DLN starts to take place between 12 and 24hr and reaches a

maximum at 48hr before decreasing. To clarify further that cis-UCA does not induce

DC to migrate to the DLN, the number of DC accumulating in the DLN at various

times following the cutaneous application of 100pg of cis-UCA to the dorsum of each

ear was also estimated. It can be seen from Figure 10 that irrespective of the time

after painting with cis-UCA, the numbers of DC in draining nodes were unaltered.

It was important to establish whether or not the DC migrating to the DLN

as a consequence of UV-B irradiation had the potential to present antigen and so the

number of DC expressing la antigen in the DLN at various times after UV-B

irradiation was examined. It can be seen from the results shown in Table 10 that

UV-B irradiation had no effect on either the percentage of DC in the DLN expressing

la or on the intensity of expression of la per cell. A further investigation of the

influence of UV-B irradiation on the antigen-presenting cell function of the DC

accumulating within the DLN was carried out by examining the number of DC

expressing ICAM-1 and the level of expression per cell (Table 11). Neither the

percentage of DC expressing ICAM-1 nor the intensity of expression per cell was

influenced by UV-B irradiation regardless of the total dose received or the time of

exposure.
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Figure 10 The effect of UV-B irradiation and cis-UCA on the kinetics of DC

migration. The ears of unshaven mice were exposed to a single dose (144mJcm"2)
of UV-B radiation (A) or painted with 100pg of cis-UCA (o) at various times prior

to killing. The DC count in naive mice used as a background control for UV-B

irradiation was 2925 DC/lymph node. The DC count in naive mice (treated at 48hr

with 25|il DMSO on each ear) used as a background control for cis-UCA treatment

was 3524 DC/lymph node.
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Table 10 The Effect of UV-lrradiation on la Expression in DC from DLN

Time After UV Irradiation (hr) % of Cells Within Gated
Population Expressing la

Peak Channel
Number

Untreated DC 93.8 162

12 83.6 150

24 92.0 154

36 94.7 150

48 91.8 157

60 86.2 155

72 91.5 157

The ears of unshaven mice were exposed to a single dose (144mJcrrr2) of
UV-B radiation. At various times following exposure the mice were killed,
their auricular lymph nodes removed and the enriched DC were then
stained for la using an anti-mouse la monoclonal antibody, followed by
staining with a sheep anti-mouse IgG FITC - labelled secondary antibody.
To measure the percentage la expression, 5 x 104 cells from each sample
was analysed in a EPICS "C" flow cytometer. DC were identified on a 2 -

parameter histogram measuring size and side - scatter and then green
fluorescence analysed from a bit map onto a 252 channel histogram using
log amplification. The percentage of la positive cells within this population
was measured and also antigen density per cell (fluorescence intensity) by
mean channel analysis.
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3.3.3 Influence of UV-B Irradiation and Cis or Trans-UCA on

Dendritic Cell Migration Induced by FITC

Irradiated mice or mice painted with cis. or trans-UCA were sensitized on

their ears with FITC 18hr before killing. Auricular lymph nodes were removed and

the number of DC present in each node measured. It can be seen from Table 12,

which summarises the results of four independent experiments, that whilst the UCA

isomers have no effect on DC migration induced by FITC, UV-B irradiation

significantly increases DC migration to the DLN.

There is now a great deal of evidence that DC play a major role during the

induction of skin sensitization. Within hours of topical exposure of mice to contact

sensitizers there is an accumulation of DC in the lymph nodes draining the site of

application [Knight et al. 1985A; Gerberick et al. 1991], It has been demonstrated

from studies in which skin-sensitizing fluorochromes, such as FITC, have been used,

that a proportion of the DC which arrive in the DLN bear significant levels of antigen

[Macatonia et al. 1986; Kinnaird et al. 1989; Macatonia et al. 1987; Cumberbatch

and Kimber, 1990] and that, initially at least, all antigen-bearing cells found

within the DLN express la antigen on their surface [Cumberbatch and Kimber,

1990], These antigen-bearing DC in the DLN are highly immunocompetent. They

are potent stimulators of both primary and secondary T lymphocyte proliferative

responses in vitro [Macatonia et al. 1986; Macatonia et al. 1987; Jones et al.

1989] and efficiently induce contact sensitization in naive animals [Kinnaird et al.

1989; Macatonia and Knight, 1989], A correlation has been found between the

number of DC which are present in DLN 24hr after skin sensitization and the extent

of the primary lymphocyte proliferative response [Kimber et al. 1990A].

Thus, it was of considerable importance to establish whether UV-B

irradiation influenced the number of DC carrying antigen or the expression of la

molecules by these antigen-bearing DC in the DLN. The percentage of DC bearing
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FITC from the draining auricular lymph nodes of mice whose ears had been exposed to

UV-B radiation prior to sensitization with FITC, was examined (Table 13). UV-B

irradiation which increased DC migration induced by FITC did not influence the

percentage of DC carrying FITC. Also, the mean intensity of staining per cell of

FITC-bearing DC was found to be unaltered by UV-B irradiation. It was therefore

concluded that UV-B irradiation prior to sensitization increases the number of FITC-

bearing DC accumulating in the DLN. It can be seen from Table 13 that UV-B

irradiation had no effect on the expression of la molecules by DC accumulating in the

DLN as a result of FITC induction. In addition, by using double colour fluorescence, it

was possible to demonstrate that UV-B irradiation did not alter la expression on

FITC-bearing DC (data not shown).
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3.4 The Role of TNFa and Cis-UCA in UV-B Induced Dendritic Cell

Migration and on Suppression of Contact Hypersensitivity

Responses

3.4.1 Introduction

The mechanism by which UV-B irradiation of mouse skin impairs the

induction of CH responses if hapten is painted directly on the irradiated site [Toews

et al. 1980; Lynch et al. 1981; Yoshikawa and Streilein, 1990] appears to be

genetically determined. It has been reported that UV-B irradiation impairs the

induction of CH in some (C57BL/6, C3H/HeN) but not other (Balb/c, C3H/HeJ,

A/J) genetically defined strains of mice which are referred to as UV-B susceptible

and UV-B resistant, respectively [Streilein and Bergstresser, 1988].

Susceptibility to UV-B irradiation is dictated by alleles at the Lps and TNFa loci

which influence the amount of intracutaneous TNFa produced in response to UV-B

[Yoshikawa and Streilein, 1990], Interestingly, there is now evidence that

keratinocytes synthesize and release TNFa after UV-B irradiation [Kock et al.

1990A]. In addition, Oxholm et al (1988) have reported that TNFa can be detected

in the epidermis of UV-B exposed human skin and their photomicrographs suggest

that TNFa is in keratinocytes. Recently, TNFa has been shown to act as an important

mediator of the suppressive effects of UV-B irradiation on the induction of CH

[Yoshikawa and Streilein, 1990]. Based on this observation and the demonstration

that UV-B irradiation or i.d. TNFa altered the morphology of epidermal LC, Vermeer

and Streilein concluded that TNFa prevents effective sensitization following UV-B

irradiation by immobilizing LC within the epidermis [Vermeer and Streilein,

1990]. Further, it has been reported that no active hapten-bearing DC could be

found within DLN, if the skin on which the hapten was painted had been exposed

previously to UV-B radiation [Bigby et al. 1989],
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3.4.2 Influence of TNFa on UV-B Induced Dendritic Cell

Accumulation in DLN

It has recently been demonstrated that TNFa induces DC migration to DLN

[Cumberbatch and Kimber, 1992] and that both i.d. TNFa and UV-B irradiation

reduce the density of la+ cells in the epidermis [Vermeer and Streilein, 1990]. To

determine whether UV-B induced DC migration was stimulated by TNFa release, 5

and 1 hr prior to exposing the ears of two panels of unshaven mice to a single dose of

UV-B (144mJcm"2) radiation one of these panels received i.p. injections of

dexamethasone (a transcriptional inhibitor of TNFa) whilst the other received i.p.

injections of sterile PBS. Two other panels of mice were treated in the same way at

the same time but were not exposed to UV-B radiation. All four panels of mice were

then killed 48hr following UV-B exposure, their draining auricular lymph nodes

excised and the number of DC present in each lymph node calculated. The result

shown in Figure 11 demonstrates that dexamethasone treatment inhibits UV-B

induced DC migration to the DLN.

However, the action of dexamethasone is not restricted to the inhibition of

TNFa production and has a number of other biological effects. Dexamethasone has

been shown to alter the phenotype and function of peripheral blood lymphocytes from

patients with multiple schlerosis [Salmaggi et al. 1991] and induce changes in

protein formation in thyroidectomized rats [Brtko et al. 1990]. Subsequently in

order to further investigate the effect of TNFa on UV-B induced DC migration, 2hr

prior to irradiating the ears of two panels of unshaven mice with a single dose of UV-

B (144mJem"2) one of these panels received i.p. injections of neutralizing rabbit

anti-murine TNFa antibodies whilst the other received i.p. injections of normal

rabbit serum (NRS). Two other panels of mice not exposed to UV-B radiation were

treated in the same way and at the same time. Forty-eight hr following UV-B

irradiation, all four panels of mice were then killed, their draining auricular lymph

nodes excised and the number of DC present in each lymph node measured. As
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Figure 11 Effect of dexamethasone on DC accumulation in DLN 48hr after UV-B

irradiation. Groups of unshaven mice (n=10) were injected i.p. with 250pl of

dexamethasone (0.03mg/ml) (Dex+ UV-B) or sterile PBS (PBS+UV-B) 5 and 1 hr

prior to UV-B irradiation (144mJcm"2). Negative control mice (n=10) (Dex or

PBS) were treated in the same way but were not exposed to UV-B radiation. The

number of DC in DLN 48hr following UV-B exposure was measured.
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Figure 12 Effect of rabbit anti-murine TNFa antiserum on DC

accumulation in DLN 48hr after UV-B irradiation. Groups of unshaven

mice (n=10) were injected i.p. with 10Opil of rabbit anti-murine TNFa

antiserum (anti-TNFa+UV-B) or normal rabbit serum (NRS+UV-B) 2

hr prior to UV-B irradiation (144mJcm"2). Negative control mice

(n=10) (anti-TNFa or NRS) were treated in the same way but not exposed

to UV-B radiation. The number of DC in DLN 48hr following UV-B

irradiation was calculated.
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illustrated in Figure 12, treatment of mice with anti-TNFa antibodies 2hr prior to

UV-B irradiation decreased DC accumulation in DLN 48hr after UV-B treatment,

suggesting that UV-B induced migration to DLN is stimulated by TNFa release.

3.4.3 Effect of TNFa on UV-B Induced Suppression of Contact

Hypersensitivity Responses

Having demonstrated that TNFa release as a result of exposure to UV-B

radiation induces DC accumulation in DLN it was important to explore the

relationship between TNFa release and UV-B induced suppression of the CH response.

Accordingly, 2hr prior to exposing the shaved dorsal surface of three panels of mice

whose ears were protected to a single dose of UV-B (144mJcm~2) radiation on day 0

and 1, one panel received i.p. injections of rabbit anti-murine TNFa antibodies,

another received i.p. injections of NRS whilst the third panel was left untreated. Two

other panels of mice received i.p. injections of rabbit anti-murine TNFa antiserum

or NRS at the same time but were not exposed to UV-B radiation. These five panels of

mice were then sensitized on their shaved dorsal skin with 50pl 1% oxazolone (in

acetone:oil) on day 2. Six days later the dorsum of both ears of all these mice were

challenged with 25pl 0.25% oxazolone (in acetone:oil) and the ear swelling response

measured 24hr later. Positive and negative control mice were sensitized with

oxazolone or vehicle, respectively without prior treatment or exposure to UV-B

radiation. The ears of the positive control and one negative control were challenged

with oxazolone, whilst the ears of another negative control were challenged with

vehicle. The results of one experiment presented in Figure 13, demonstrated that

administration of anti-TNFa antibodies prior to UV-B irradiation significantly

inhibited UV-B induced suppression of the CH response to oxazolone supporting the

view that UV-B susceptibility is mediated by intracutaneous production or release of

TNFa.
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Figure 13 Influence of rabbit anti-murine TNFa antiserum on UV-B induced

suppression of the CH response. Panels of 10 mice were injected i.p. with 100pl of rabbit

anti-murine TNFa antiserum or or normal rabbit serum (NRS) 2 hr prior to exposing their

shaved dorsal skin to a single dose of UV-B (144mJcm~2) radiation on day 0 and 1. Control

mice were either treated in the same way but not exposed to UV-B radiation or their shaved

dorsal skin exposed to UV-B (144mJcm"2) radiation on day 0 and 1 without any prior

treatment. On day 2, 50pl of 1% oxazolone was topically applied to the shaved dorsal skin of

all these mice. Six days later, the dorsum of both ears of these mice was challenged with

25pl 0.25% oxazolone. Bars represent mean (+ SE of the mean) ear swelling response 24hr

after challenge expressed as mm x 10~2. The decreased ear swelling response of mice

injected with normal rabbit serum prior to UV-B irradiation was significantly different

from the positive control (p<0.001). The ear swelling response of mice injected with anti-

TNFa antibodies prior to UV-B exposure was not significantly different from the positive

control (p>0.1).
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3.4.4 Effect of Narrow Band UV-B Irradiation on Dendritic Cell

Accumulation in DLN

In an attempt to dissect out the effects of broad band UV-B irradiation on

DC migration to DLN and clarify the role of £i&-UCA in UV-B induced DC migration, a

UV lamp which emits a narrow band of longer UV-B wavelengths around 311-

312nm and isomerizes trans to cis-UCA very efficiently in vivo [Gibbs et al. 1993]

was used. Accordingly, the ears of three panels of unshaven mice were exposed to a

single dose of narrow band UV-B radiation at 144 or 864mJcm"2 or to a single dose

of broad band UV-B radiation at 144mJcm"2. Control mice were not exposed to UV

radiation. Forty-eight hr following exposure all the mice were killed, their

draining auricular lymph nodes excised and the number of DC in each lymph node

calculated. It can be seen from Figure 14 that narrow band UV-B radiation which

efficiently induces the formation of cis-UCA in the skin had no effect on DC

accumulation in DLN regardless of the dose administered, further implying that UV-

B induced migration does not occur as a result of the local production of eis-UCA. It

is also fair to speculate from this result that the UV-B wavelengths emitted by the

TL-01 lamp did not induce the production or release of TNFa since no DC migration

was observed.

3.4.5 Effect of Narrow Band UV-B Irradiation on the Induction of

Contact Hypersensitivity

Since the TL-01 lamp is known to emit wavelengths of UV-B which

isomerize trans to cis-UCA efficiently and does not appear to stimulate TNFa release

it was possible to explore the role of cis-UCA in UV-B induced suppression of CH

responses. Subsequently, the shaved dorsal skin of three panels of mice whose ears

were protected were exposed to a single dose of narrow band UV-B radiation at 144

or 432mJcm"2 or to a single dose of broad band UV-B radiation at 144mJcm"2 on

day 0 and 1. On day 2 these three panels of mice were then sensitized on their shaved
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Figure 14 The effect of narrow and broad band UV-B irradiation on DC

accumulation in DLN 48hr later. Three panels (n=10) of unshaven mice were

exposed to a single dose of narrow band UV-B radiation of 144 (TL-01-144) or

864mJcm~2 (TL-01-864) or to a single dose of broad band UV-B radiation at

144mJcm"2 (UV-B-144). Negative control mice (n=10) were untreated. The

number of DC in DLN 48hr following exposure was measured. The data illustrated

represent the results of a single experiment (TL-01-864) or the mean ± standard

error of three experiments.

119



V

V

ox

UV-B(144) OX

TL-01 (144) OX

TL- 01 (432) OX

Mean Ear Swelling mm x 10 "2

Figure 15 The effect of narrow and broad band UV-B irradiation on the

induction of the CH response to oxazolone. The shaved dorsal skin of three panels

(n=10) of mice were exposed to a single dose of narrow band UV-B radiation of 144

(TL-01-144) or 432m Jem"2 (TL-01-432) or to a single dose of broad band UV-

B radiation at 144mJcm"2 (UV-B-144) on day 0 and 1. All of these mice were

then sensitized on their shaved dorsal skin with 50p.l 1% oxazolone on day 2. Six

days later, the dorsum of both ears of these mice was challenged with 25pl 0.25%

oxazolone. Positive and negative control mice (n=10) were sensitized with

oxazolone or vehicle on their shaved dorsal skin, respectively. Bars represent mean

(± SE of the mean) ear swelling response 24hr after challenge expressed as mm x

10"2 of two independent experiments. The decreased ear swelling response of mice

exposed to broad band UV-B radiation was significantly different from the positive

control (p<0.01) for each experiment. The ear swelling response of mice exposed to

either dose of narrow band UV-B radiation was not significantly different from the

positive control (p>0.1) for each experiment.
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dorsal skin with 50pl 1% oxazolone (in acetone:oil). Six days later the dorsum of

both ears of all these mice were challenged with 25jxl 0.25% oxazolone (in

acetone:oil) and the ear swelling response measured 24hr later. Positive and

negative control mice were sensitized with oxazolone or vehicle on their shaved

dorsal surface, respectively. The ears of the positive control mice and one negative

control panel were challenged with oxazolone whilst the ears of a second panel of

negative control mice were challenged with vehicle. As illustrated in Figure 15,

which shows the results of two representative experiments, narrow band UV-B

irradiation, irrespective of the dose administered, did not induce suppression

suggesting that trans to cis-isomerization of UCA in response to UV-B irradiation is

not sufficient by itself to induce local suppression of the CH response.

3.4.6 Influence of Anti-Cis-UCA Monoclonal Antibody on UV-B

Induced Suppression of the Contact Hypersensitivity Response

In an attempt to further explore the role of cis-UCA in UV-B induced

suppression of CH responses, 2hr prior to exposing the shaved dorsal skin of three

panels of mice to a single dose of broad band UV-B radiation (144mJcm"2) on day 0

and 1, one panel was injected i.p. with 10Opil of affinity purified anti-cis-UCA

monoclonal antibody (0.05mg/ml), another received i.p. injections of 100pl of

sterile PBS whilst the third panel was left untreated. Another panel of mice was

injected i.p. with 10Opil of affinity purified anti-cis-UCA monoclonal antibody

(0.05mg/ml) (see section 3.6) at the same time but was not exposed to UV-B

irradiation. These mice were then sensitized on their shaved dorsal skin with 50pl

1% oxazolone (in acetone:oil) on day 2. Six days later the dorsum of both ears of all

these mice was challenged with 25pl 0.25% oxazolone (in acetone:oil) and the ear

swelling response measured 24hr later. Positive and negative control mice were

sensitized with oxazolone or vehicle on their shaved dorsal skin, respectively

without prior treatment or UV-B irradiation and their ears challenged with
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Figure 16 Influence of anti-cis-UCA monoclonal antibody on UV-B induced

suppression of the CH response. Two hr prior to irradiating the shaved dorsal

skin of three panels of mice (n=8) with a single dose of broad band UV-B

radiation (144mJcrrr2) on day 0 and 1, one panel was injected i.p. with anti-

cis-UCA monoclonal antibody, another received i.p. injections of sterile PBS

while the third was left untreated. Another panel (n=8) was injected i.p. with

anti-cis-UCA monoclonal antibody at the same time but was not irradiated. The

mice were then sensitized on their shaved backs with 1% oxazolone on day 2 and 6

days later both their ears were challenged with 0.25% oxazolone. Bars represent

mean (± SE of the mean) ear swelling response 24hr after challenge expressed as

mm x 10"2. The decreased ear swelling response of mice injected with PBS prior

to UV-B irradiation was significantly different from the positive control (p <

0.05). The ear swelling response of mice injected with anti-cis-UCA monoclonal

antibody prior to UV-B exposure was significantly different from the positive

control (p < 0.02).
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oxazolone 6 days later. It can be seen from Figure 16 which shows the results of one

experiment that administration of anti-cis-UCA monoclonal antibody prior to UV-B

irradiation did not inhibit UV-B induced suppression of the CH response suggesting

that trans to cis-isomerization of UCA in response to UV-B irradiation is not

important in inducing local suppression of the CH response.
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3.5 Influence of UV-B Irradiation and UCA Isomers on Primary

and Secondary Lymphocyte Proliferation Responses

3.5.1 Introduction

There is compelling evidence that DC which are considered to be of central

importance in the presentation of antigen to T-lymphocytes [Inaba and Steinman,

1984] play a major role during the induction of skin sensitization. Following

epicutaneous exposure of mice to contact sensitizers, there is a rapid accumulation

in DLN of DC [Knight et al. 1985A and B; Macatonia et al. 1986; Macatonia et al.

1987; Kinnaird et al. 1989; Kimber et al. 1990A], a significant proportion of

which bear high levels of antigen [Macatonia et al. 1986; Cumberbatch and Kimber,

1990]. There is considerable evidence which suggests that these antigen-bearing DC

are derived from epidermal LC which are stimulated to migrate, via the afferent

lymphatics to the draining nodes [Shelley and Juhlin, 1976; Silberberg-Sinakin et

a[, 1976; Larsen et al. 1990; Steinman, 1991; Kripke et al. 1990],

The antigen-bearing DC which arrive in DLN following skin-sensitization

and which are derived from epidermal LC are highly immunogenic. It has been

demonstrated that DC isolated from draining nodes of skin-sensitized mice are

efficient inducers of both primary and secondary T-lymphocyte proliferative

responses in vitro and small numbers transfer contact sensitivity to naive

recipients [Knight et al. 1985A; Macatonia et al. 1986; Kinnaird et al. 1989;

Macatonia et al. 1987; Jones et al. 1989; Macatonia and Knight, 1989], Indeed,

there exists a correlation between lymphocyte proliferative responses and DC

accumulation in local lymph nodes following skin painting with contact sensitizers

[Kimber et al. 1990A].

A number of studies in mice using a variety of assays to assess cell-

mediated immunity indicated that UV-B irradiation in vivo or in vitro inhibited the

function of splenic antigen-presenting cells [Letvin et al. 1980B; Gurish et al.

124



1982; Letvin et al. 1980A]. More recently, Bigby and his co-workers produced a

series of hapten specific and la restricted T cell hybridomas and found that prior

treatment of mouse skin with low dose UV-B irradiation before epicutaneous

application of a contact sensitizer significantly reduced the capacity of lymph node

hapten-bearing DC to stimulate the hybridomas [Bigby et al. 1989], UV-B radiation

has also been shown to have an inhibitory effect on the antigen-presenting function

of murine epidermal cells [Austaad and Braathen, 1985; Stingl et al. 1981; Lynch et

ai, 1983; Gurish et al. 1983; Tang and Udey, 1991]. Cooper and his co-workers

have demonstrated that following UV-B exposure in humans, epidermal LC are

impaired in their antigen-presenting capacity. These investigators found that in

vitro exposure of these cells to UV-B radiation rendered them ineffective as

accessory cells in vitro assays assessing T cell dependent responses to alloantigens

[Cooper et al. 1985]. As previously mentioned it is hypothesized that UV-B

radiation might exert its immunomodulatary properties via cis-UCA [De Fabo and

Noonan, 1983]. Interestingly, the administration, in vivo of cis-UCA. but not

trans-UCA. in the absence of UV-B irradiation, has been demonstrated to inhibit

antigen- presenting cell function of splenic DC and peritoneal adherent cells [Noonan

et al. 1988].

It was demonstrated (Section 3.3.3) that following UV-B irradiation,

there is a greater number but the same proportion of antigen-bearing DC entering

the DLN than would occur with skin sensitization alone. It was shown also that la and

ICAM-1 expression by DC accumulating in the DLN as a consequence of UV-B

irradiation was apparently unaffected suggesting that antigen-presenting cell

function may not be lost at least due to changes in expression of these molecules. In

an attempt to investigate further the antigen-presenting cell potential of these

antigen-bearing DC accumulating in the DLN following UV-B irradiation an

examination of the ability of these cells to stimulate primary and secondary

lymphocyte proliferative responses was carried out. An investigation of the

125



influence of UCA isomers on the antigen-presenting cell function of antigen-bearing

DC induced to migrate to the DLN by skin sensitization was also carried out in the

same way.

3.5.2 Influence of UV-B Irradiation and UCA Isomers on Primary

Lymphocyte Proliferative Responses

At various times the ears of mice were exposed to a single dose of 96 or

148mJcm"2 of UV-B radiation or 200|ig of cis or trans-UCA was applied topically

to the dorsum of both ears or injected i.p. or s.c. into the flank. Twenty-four hr

after the last treatment, the dorsum of both ears of each mouse was then sensitized

with either 25pl of 0.25% oxazolone or 0.5% FITC. Control mice received an equal

volume of the appropriate vehicle on the dorsum of both their ears at the same time.

Mice sensitized with oxazolone or FITC were killed on day 3 and 4, respectively,

their draining auricular lymph nodes excised and pooled for each experimental

group. Spontaneous proliferation of single cell suspensions of lymph node cells was

then measured (Table 14 and 15).

As shown in Table 14, proliferative responses of lymph node cells from

mice exposed to a single dose of 96 or 148mJcm"2 UV-B radiation daily for 3 and 2

consecutive days respectively, prior to sensitization with oxazolone at the same site,

were significantly and reproducibly suppressed. Although it was not possible to

reproduce, a decreased proliferative response of lymph node cells from mice exposed

to a single dose of 96mJcm"2 UV-B radiation daily for 3 consecutive days, prior to

sensitization with FITC was also observed (Table 15). The proliferative response of

lymph node cells from mice that had received 200pg of cis-UCA either topically or

s.c. each day over 3 days prior to sensitization with oxazolone were reduced but once

again it was not possible to reproduce these results (Table 14). On the other hand,

the observed decreased proliferative response of lymph node cells from mice whose
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Table 14 Influence of UCA Isomers and UV-B Irradiation on Spontaneous Lymphocyte Proliferative
Responses Following Sensitization with oxazolone

Treatment (Days) Prior to/after Sensitization cpm ± SD0 % Decrease Statistical
Sensitization a in Significance

lymphopro- (by t-test)¥
liferation

- Vehicle 4569 ± 731
- 0.25% Ox* 55763 ± 4320

UV-B 2,lD(296mJcnr2) ii It 32542 ± 875 45 P < 0.001
Cis UCA lD(200jig)7r ll it 55247 ± 5455 1 NSS

Trans UCA lDf200|ig)7t ft if 47172 ± 7633 17 P < 0.001

- Vehicle 2159 ± 282
- 0.25% Ox* 61304 ± 5679

UV-B 2,iD(296mJcm-2) ll it 46074 ± 2811 26 P <0.001
Cis UCA lD(200jig) i.p.t

H f! 59232 ± 6678 3.5 NSe
Cis UCA lD(200pg) s.c.Flank+ II If 70956 ± 9899 0 -

Cis UCA 2D After(200pg)5t
It II 62820 ± 10290 0 -

Cis UCA 3,2,lD(200)jg)7t H It 42356 ± 9169 32 P < 0.001
UV-B lD(96mJcm2) ft It 40740 ± 5978 35 P < 0.001

UV-B 2D After(96mJcm-2) If It 78738 ± 6074 0 -

_ Vehicle 4162 ± 733
- 0.25% Ox* 72201 ± 5285

UV-B 3,2,lD(288mJcnr2) ft M 52491 ± 2353 29 P < 0.001
Cis UCA 3,2,lD(200pgp

M ft 63954 ± 12425 12 NSe
3isUCA3,2,lD(200jjg)s.c.Flankt It ft 83648 ± 8374 0 -

Trans UCA 3,2,lD(200*ig)* tl fl 113617 ± 7306 0 -

_ Vehicle 3742 ± 183
- 0.25% Ox* 128716 ± 3429

UV-B 3,2,lD(288mJcm 2)
ft H 97201 ± 5994 25 P < 0.001

Cis UCA 3,2,lD(200|ig)7t
It II 145719 ± 4464 0

Trans UCA 3,2,lD(200pg)* fl tl 99438 ± 5630 23 P < 0.001

2isUCA3,2,lD(200pg)s.c.Flank+ tl H 111146 ± 5116 14 P < 0.002

_ Vehicle 2668 ± 262
- 0.25% Ox* 82843 ± 3753

UV-B 3,2,lD(288mJcm-2)
it ft 59099 ± 4359 30 P < 0.001

Cis UCA 3, 2,lD(200pg)t
tf it 79854 ± 6612 4 NS0

Mice were killed 3 days following sensitization, their draining auricular lymph nodes excised and
pooled for each group. Spontaneous proliferation of single cell suspensions of lymph node cells was
then measured.

A The dorsum of both ears of each mouse was sensitized with 25pl of 0.25% oxazolone
or an equal volume of the appropriate vehicle, 24hr after the last UV or UCA treatment

0 Counts per minute ± standard deviation (SD)
¥ Significance of difference from positive control group*
" UCA isomers were topically applied to the dorsum of both ears
+ Mice were treated at a site distant from the site of sensitization
e Not significantly different from control group*
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Table 15 Influence of UCA Isomers and UV-B Irradiation on Spontaneous Lymphocyte
Proliferative Responses Following Sensitization with FITC

Treatment (Days) Prior to Sensitization cpm ± SD0 % Decrease Statistical
Sensitization a in Significance

lymphopro- (by t-test)¥
liferation

- Vehicle 4776' ± 1575
- 0.5% FITC* 56464 ± 3554

UV-B 3,2,1 D(288mJcnr2) II If 45085 ± 3303 22 P < 0.001

Cis UCA 3,2,lD(200pg)*
If If 51157 ± 5111 1 0 P < 0.01

_ Vehicle 4300 ± 385
- 0.5% FITC* 45502 ± 16348

UV-B 3,2,lD(288mJcm-2) II II 66905 ± 7207 0

Cis UCA 3,2,lD(200pg)i
ll ll 46007 ± 4318 0

_ Vehicle 1552 ± 186
- 0.5% FITC* 55094 ± 3699

UV-B 3,2,lD(288mJcm-2) ll II 51538 ± 4313 7 P < 0.05

Cis UCA 3,2,lD(200)ug)Jt If ll 56026 ± 2997 0

Trans UCA 3,2,lD(200pg)*
ll If 50621 ± 2757 8 P < 0.01

_ Vehicle 4570 ± 1040
- 0.5% FITC* 22506 + 2508

Cis UCA 3,2,lD(200|ig)7T
ll II 19693 ± 1430 1 6 P < 0.01

Trans UCA 3,2,lD(200pg)*
ll II 24350 ± 9249 0

Cis UCA 3,2,lD(200pg)7t Vehicle 6698 ± 596
Trans UCA 3,2,lD(200|ig)*

ll 4186 ± 700

Mice were killed 4 days following sensitization, their draining auricular lymph nodes
excised and pooled for each group. Spontaneous proliferation of single cell suspensions
of lymph node cells was then measured.

A The dorsum of both ears of each mouse was sensitized with 25pl of 0.5% FITC
or an equal volume of the appropriate vehicle, 24hr after the last UV or UCA treatment

0 Counts per minute ± standard deviation
¥ Significance of difference from positive control group*
71 UCA isomers were topically applied to the dorsum of both ears
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ears had been painted with 200pg of cis-UCA daily for 3 consecutive days prior to

sensitization with FITC was reproducible (Table 15).

3.5.3 Influence of UV-B Irradiation and UCA Isomers on Secondary

Lymphocyte Proliferative Responses

Before assessing the immunostimulatory properties of DC from mice

exposed to UV-B radiation or UCA isomers prior to sensitization, as a function of

their ability to initiate proliferative responses by sensitized lymph node cells In

vitro, it was first necessary to establish the optimal concentration of DC from

sensitized mice which would stimulate a significant proliferative response.

Subsequently, the ears of two panels of mice were each sensitized with 25pl of 5%

FITC or 2.5% oxazolone and killed 18 and 21 hr later, respectively. Their draining

auricular lymph nodes were excised and DC-enriched stimulator populations

prepared. Responder lymph node cells from mice which had been sensitized 7 days

previously on the dorsum of both ears with 25jxl of 5% FITC or 0.5% oxazolone were

then cultured alone or in the presence of different numbers of stimulator cells from

mice sensitized with the homologous contact sensitizer. As a control for non-specific

stimulation, responder lymph node cells from mice sensitized 7 days previously,

with 5% FITC or 0.5% oxazolone were cultured with an appropriate number of

stimulator cells from mice sensitized with oxazolone and FITC respectively. Table

16 and 17 both document the results obtained from one experiment in which various

responder : stimulator ratios were employed. It was found that DC-enriched

populations prepared from DLN 18 and 21 hr following exposure to 5% FITC and

2.5% oxazolone, respectively caused a significant stimulation of proliferation by

lymphocytes sensitized to the appropriate homologous contact sensitizer, at a ratio of

17:1. It was observed also that DC fractions isolated from mice exposed to oxazolone

which induced a marked proliferative response by lymphocytes sensitized to the

same contact sensitizer, induced a significantly smaller response by lymphocytes
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Table
16

Stimulation
of

Antigen
(FITC)

-

Primed
Lymph
Node
Cell

Proliferation
by
DC

Isolated
from
the

DLN
18hr

Following
Skin

Sensitization
With
5%

FITC

Stimulator
Cells¥

Responder
Cells

Responder:
Stimulator
Ratio

Lymphocyte
Proliferation
3H-

Thymidine
Incorporation

(cpm
±

SE)

None

5x105

-

1196
±102

3
x

104

ii

17
:1

8651
±563*

104

ii

50:1

4903
±

390

6
x

103

ii

83
:1

3121
±133

3
x

103

ii

167:1

2765
±

271

1.5

x103

ii

333:1

1822
±100

6

x103

5x

1057T

83:1

3681
±

286

¥

Stimulator
cells

exhibited
no

significant
incorporation
of

3H-thymidine
compared
with

background
controls

*

Significantly
elevated
compared
with

primed
LNC

cultured
in

the

absence
of

stimulator
cells
(p
<

0.001)

"oxazolone-primed
LNC



Table
17

Stimulation
of

Antigen
(oxazolone)

-

Primed
Lymph
Node
Cell

Proliferation
by
DC

Isolated
from

the
DLN
21
hr

Following
Skin

Sensitization
With
2.5%

oxazolone

Stimulator
Cells¥

Responder
Cells

Responder:
Stimulator
Ratio

Lymphocyte
Proliferation3H-ThymidineIncorporation

(cpm
±

SE)

None

5
x

105

-

3551
±247

3
x

104

ii

17
:1

8880
+

307*

104

ii

50
:1

5903
+

278

5
x

103

ii

100:1

5624
±

507

2.5

x103

ii

200:1

4214
+

370

104

5
x

105ir

50:1

2481
±267

¥

Stimulator
cells

exhibited
no

significant
incorporation
of

3H-thymidine
compared
with

background
controls

*

Significantly
elevated
compared
with

primed
LNC

cultured
in

the

absence
of

stimulator
cells
(p<

0.001)

*

FITC-primed
LNC



primed to an unrelated contact sensitizer at the same responder : stimulator ratio,

suggesting that the influence of the DC fraction on lymphocyte proliferation was

largely, but not wholly antigen-specific in nature (Table 17). It was not possible,

however, to reach such a conclusion with DC-enriched populations prepared from

mice exposed to FITC (Table 16).

Having established that DC which accumulate within the DLN of mice

exposed topically to a contact sensitizer initiate proliferative responses by

appropriately sensitized lymph node cells in vitro, an investigation of the influence

of UV radiation and UCA isomers on the ability of these DC to stimulate secondary

proliferative responses was carried out. The ears of shaved mice were exposed to a

single dose of 96mJcm"2 UV-B radiation daily for 3 consecutive days or 200pg of cis

or trans-UCA was topically applied to the dorsum of each ear over the same period.

Positive control mice were treated in the same way except they received two lots of

25pl of 20% DMSO in acetone on the dorsal surface of each ear. Twenty-four hr

following their last treatment all the mice were sensitized on the dorsal surface of

each ear with 25pl of 5% FITC. They were then killed 18hr following sensitization,

their draining auricular lymph nodes excised and DC-enriched populations prepared.

Responder lymph node cells from mice which had been sensitized 7 days previously

on the dorsum of both ears with 25pl of 5% FITC were cultured alone or in the

presence of different numbers of these stimulator cells. As illustrated in Table 18

regardless of the ratio of responder : stimulator cells UV-B radiation and topical

exposure to UCA isomers significantly inhibited the antigen-presenting cell function

of DC isolated from DLN 18hr following skin sensitization with 5% FITC. However,

it was not possible to reproduce the data shown in Table 18 which represents a single

experiment, because DC from mice sensitized with contact sensitizer only were

unable to initiate consistent and significant proliferative responses of responder

cells thereafter.
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Table
18

Influence
of

UV-B

Irradiation
and
UCA

Isomers
on
the

Functional
Activity
of

DC

Isolated
from
the
DLN

18hr

Following
Skin

Sensitization
with
5%

FITC,
to

Stimulate
FITC

-

Primed
LNC

Proliferation

In

Vivo

Treatment
of

Stimulator
2°

Lymphoproliferation
%

Suppression
Statistical
Significance

Stimulator
cells
(DC)

Cells
(DC)

(cpm
±

SE)

(by

t-test)

-ve

Control

-

4312
±581

+ve

Control#
77

3
x

104

55144
+2797*

104

36789
±

1395s

UV-B
3,2,1

D(288mJcm-2)t*
3
x

104

31817
±

644

46

p
<

0.001¥

104

10841
±1726

80

p

<0.001®

Cis

UCA
3,2,1
DA
71

3

x

104

38493
±

2488

33

p<0.01¥

104

31115
±2388

17

Trans
UCA
3.2.1
D**

3
x

104

22134±1634
72

p<0.001¥

104

12212±1653
76

p<

0.001®

#

The

dorsum
of

both
ears
were
painted
with
25pl
of

20%
DMSO

77

Twenty-four
hr

following
their
last

treatment
the

mice
were

sensitized
on
the

dorsal
surface
of

each
ear

with
25jul
of

5%

FITC

t

Both
ears
of

shaved
mice
were

exposed
to
a

single
dose

(96mJcrrr2)
of

UV-B

radiation
daily

¥

Significance
of

difference
from

control
group*

0

Significance
of

difference
from

control
group6

A

The

dorsum
of

both
ears
were
painted
with

200jug
of

UCA
daily

Not

significant
The

mice
were
killed
18hr
after

sensitization,
their

draining
auricular
lymph

nodes
removed
and

DC-enriched

populations
prepared.

Responder
lymph

node
cells
from
mice

sensitized
7

days

previously
with
5%

FITC
were

cultured
alone
or
in

the

presence
of

different
numbers
of

stimulator
cells



3.6 Characterization of a Monoclonal Antibody to Cis-UCA and its

Use in Detecting Cis-UCA In Serum Following UV-B

Irradiation of Mice

3.6.1 Introduction

The mechanism by which £is.-UCA alters immune function is not known.

Indeed, it has not been demonstrated whether cis-UCA formed from the trans-isomer

on UV-B irradiation stays within the epidermis, exerting its immunosuppressive

effect entirely locally and/or systemically or whether it leaves the skin via the

lymphatic or blood system where it may gain access to other areas of the body.

In an attempt to elucidate whether or not cis-UCA formed from the trans-

isomer on UV-B irradiation leaves the skin, a monoclonal antibody with specificity

for cis-UCA was produced and used to detect cis-UCA in serum following UV-B

irradiation of mice.

3.6.2 Preparation of a Monoclonal Antibody Against Cis-UCA

Mice were immunized by s.c. injection of 200pg cjs-UCA-KLH conjugate

in 0.1ml Freund's incomplete adjuvant per mouse. A first booster injection given

i.p., consisting of 200pg cis-UCA-KLH conjugate in 0.2ml sterile PBS, was

administered after 36 days, followed by a second after 61 days and a third after 166

days. Mice were bled 7 days after the second booster and sera screened for anti-cis-

UCA antibody by ELISA. Mice showing antibody titres to cis-UCA-BSA conjugate

were killed 3 days after the third booster and spleen cells fused with NS-0 mouse

myeloma cells. One hybridoma was found which produced an antibody recognizing

cis-UCA-BSA conjugate on ELISA. After cloning the single positive culture by

limiting dilution twice, a titration of the hybridoma culture supernatant was made

by ELISA to establish the end point titre and the antibody dilution giving 50% binding

activity of this antibody with 5pg cis-UCA-BSA conjugate per well as antigen

(Figure 17). The end point titre of the hybridoma culture supernatant was 256000
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Figure 17 Titration of hybridoma cell supernatant. The

antibody dilution giving 50% binding activity was 1 : 1600

(log 3.2)
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i.e. the highest dilution which gave a mean absorbance more than the mean of an

equivalent dilution of culture medium plus 3 x standard deviation of the mean. The

antibody dilution giving 50% binding activity was 1:1600. Using an isotyping kit,

the monoclonal antibody was found to be lgG-| Kappa.

This culture supernatant was tested for activity against other conjugates

and proteins as antigens as shown in Table 19. Trans-UCA-BSA. histamine-BSA,

BSA or KLH were not recognized.

3.6.3 Characterization of the Monoclonal Antibody

A competitive inhibition ELISA was used to determine the fine specificity

of the monoclonal antibody recognizing cjs-UCA-BSA conjugate. The sensitivity of

this assay increases if the quantity of antigen coated on the plate is as low as

possible, since at low concentrations a variation in the amount of competing antigen

has a larger impact on the interaction with the monoclonal antibody being tested

[Tijssen, 1987], Subsequently, a checkerboard titration was performed with

doubling dilutions of both cis-UCA-BSA conjugate starting at 1.25pg per well, and

the monoclonal antibody starting at 1:100 (Figure 18). The lowest concentration of

cis-UCA-BSA conjugate (0.08pg per well) which gave a reasonable O.D. (0.3) with

monoclonal antibody diluted at 1:400, was chosen for the competitive inhibition

ELISAs carried out to demonstrate the specificity of the monoclonal antibody. In

these tests, the results of which are shown in Table 20 , UCA isomers and analogues

or conjugates were added to the well together with the monoclonal antibody and the

inhibition of binding of the monoclonal antibody to cis-UCA-BSA calculated. It was

found that while cis-UCA inhibited the binding of the monoclonal antibody to the

antigen down to a level of 0.1 pg per well, trans-UCA had little effect in comparison;

inhibition was apparent only if trans-UCA was present at 5pg per well. Cis-2-

methyl-UCA was the only UCA analogue to show any inhibition in binding but only at

the high concentration of 5pg per well. Trans-2-methyl-UCA had no effect. Cis. and
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Table 19 Binding of monoclonal antibody (1 : 1600 dilution)
to various antigens (5pg per well) measured by
ELISA

Antigens Absorbance ± SD

Cis-UCA-BSA 0.408 ±0.015

Trans-UCA-BSA 0.044 ± 0.005

Histamine-BSA 0.049 ±0.011

BSA 0.037 ±0.005

KLH 0.060 ± 0.005
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Figure 18 Binding of monoclonal antibody to cis-UCA-BSA conjugate at

concentrations of 1.26 (□), 0.63 (♦), 0.32 (□), 0.16 (O). 0.08 (| ), and

0.04 (□) pg per well by ELISA.
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Table 20 Competitive inhibition ELISA to test effects of UCA analogues and
conjugates on binding of monoclonal antibody (1 : 400 dilution) to
cjs-UCA-BSA conjugate (0.08pg / well)

% Inhibition of Binding
pg analogue or conjugate per well 5 1 0.1 0.03

Cis-UCA 100 80 16 0

Trans-UCA 27 0 0 0

Histamine ND 0 0 0

Histamine-BSA ND 0 0 ND

Cis-UCA-KLH ND 96 60 21

Trans-UCA-KLH ND 83 6 2

Cis-2-methyl-UCA 59 6 0 0

Trans-2-methyl-UCA 0 0 0 0

Cis and trans - pyridine - 2 - acrylic acid, cis and trans - pyridine - 3 - acrylic
acid, cis and trans - 2 - furanacrylic acid, cis and trans - 2 - thiophenoacrylic
acid, sis and trans - 3 - thiopheneacrylic acid, dihydrourocanic acid and
histidine (all at 1 pg and 0.1 pg per well) did not inhibit the binding of the
monoclonal antibody.

ND = not done
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trans-UCA-KLH conjugate were found to be both inhibitory down to 0.03pg per well,

although the monoclonal antibody had a higher functional affinity for the cis-UCA-

KLH conjugate compared with trans-UCA-KLH.

3.6.4 Screening of Murine Sera for Cis-UCA

It was first necessary to explore how sensitive the competitive inhibition

ELISA system would be for detecting quantitatively various concentrations of cis-UCA

in serum. Thus, various amounts of cjs and trans-UCA were added to murine serum

to obtain a standard curve. The result of one such experiment is shown in Figure 19.

It appears that amounts of cis-UCA between 0.75 and 0.1 pg may be detected

accurately by this method, while trans-UCA is not detected at all.

The assay was then applied to the detection and measurement of cis-UCA in

serum at various times after UV-B irradiation of mice (Table 21). In the first

experiment the ears and shaved dorsal skin of ten mice were exposed to a single dose

of UV-B radiation (216mJcm'2) and 14, 25, 39, 48 and 114hr after irradiation

serum from two mice was collected by bleeding via the vena cava. All of these mice

were eyebled 5hr prior to irradiation for control serum. As illustrated in Table 21

which shows the result of a representative experiment, after a single exposure of

UV-B radiation the significant inhibition in binding of the monoclonal antibody

observed indicated a maximum amount of cis-UCA in the serum 25hr after

irradiation, equivalent to 0.1pg cis-UCA in each well of the assay i.e. about 6pg cjs-

UCA per ml serum. In a second experiment the ears and shaved dorsal skin of

fourteen mice were exposed twice to 144mJem"2 of UV-B radiation with 24hr

between each exposure and 1, 5, 11, 24, 29, 47 and 114hr after the second

exposure, serum from two mice was collected by bleeding via the vena cava. Five hr

prior to irradiation all of these mice were eyebled for control serum. It can be seen

from Table 21 which shows the results of a representative experiment that after

two exposures of UV-B radiation, cis-UCA was detected in serum 1 hr after the

140



H9 cis-UCA

Figure 19 Standard curve showing the effect of varying concentrations of

cis-UCA in the competitive inhibition ELISA. The monoclonal antibody was

used at a dilution of 1 : 400 and the cis-UCA-BSA conjugate at 0.08pg per

well. The mean absorbance of the positive control (— — —) was 0.169 and

the mean absorbance of the negative control ( ) was 0.107. Trans-UCA

added at 1pg and 0.5p.g per well, showed absorbances of 0.176 and 0.188

respectively.
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Competitive
inhibition
ELISA
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cis-UCA
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at
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irradiation
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1
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%
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(hr)¥
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14
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1

0.294
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0.116
p

<
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5
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<
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35
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11
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114
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0
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4
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5
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NS0

0
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4
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0
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second irradiation reaching a maximum at 5hr of approximately 30pg per ml

serum, and decreasing to approximately 6pg per ml serum by 29hr.

It was not known whether the cis-UCA in the serum was present in a free

form or conjugated to another molecule. To test this, 25hr after the ears and shaved

dorsal skin of ten mice had been exposed to a single dose of UV-B radiation

(216mJcm"2), serum was collected from these mice (as described previously) and

dialysed. The dialysed serum was then compared with undialysed serum collected

from the same mice in a competitive inhibition ELISA (Table 22). It can be seen that

there was a significant inhibition in binding of the monoclonal antibody to the antigen

in the presence of serum removed from mice 25hr after irradiation and that this

inhibition was removed by dialysis of the serum. Therefore cis-UCA in the serum of

irradiated animals was in an unbound form or conjugated to a molecule with a m.wt.

below 12000.
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CHAPTER 4

DISCUSSION

4.1 Mechanism of UV-B Induced Immunosuppression

It is well established that exposure of mice to UV-B radiation impairs the

immune response to contact-sensitizing haptens applied to the irradiated skin

[Toews et al. 1980; Streilein and Bergstresser, 1988; Yoshikawa et al. 1990],

Further, under these conditions, hapten-specific suppressor T lymphocytes are

generated in the lymphoid organs of mice [Elmets et al. 1983], At present there is

controversy as to whether the decreased immune response observed following UV-B

irradiation is mediated by these suppressor T cells [Elmets et al. 1983; Glass et al.

1990]. Moreover, the mechanism of this UV-B induced immunosuppression is

unknown. However, since it is now more or less accepted that the migration of

antigen-bearing epidermal LC from the skin to DLN is necessary for the induction of

CH responses [Okamoto and Kripke, 1987; Macatonia et al. 1987; Kripke et al.

1990], a UV-B induced perturbation in the migration of these cells would have

profound implications both for the impairment of the induction of CH and the

generation of antigen-specific suppressor T lymphocytes. Evidence that UV-B

irradiation may influence the migration of LC was first provided by Toews and his

colleagues [Toews et al. 1980], These investigators reported that LC density was

decreased in UV-B exposed skin (as detected by ATPase staining) and that there was a

clear correlation between this decrease and the ability of irradiated skin to support

the induction of CH. However, since these observations it has become apparent that

UV-B irradiation modulates surface markers expressed by LC and consequently these

may not provide a reliable indicator of the presence or absence of LC in the skin

[Lynch et al. 1981; Aberer et al. 1981; Hanau et al. 1985]. Thus, it is uncertain
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whether UV-B irradiation influences LC migration. In an attempt to explore further

the possibility that UV-B irradiation may influence LC migration, in the first part of

this investigation the effect of UV-B irradiation on the number of DC accumulating in

the DLN of unsensitized and sensitized mice was examined. The results reported here

demonstrate that UV-B irradiation alone (Table 9), or prior to skin sensitization

with FITC at the same site (Table 12), induced or enhanced DC migration to DLN,

respectively. Further, the data reveal that the percentage of DC bearing FITC in the

DLN of unirradiated and irradiated mice was identical (Table 13), implying that UV-

B irradiation prior to sensitization increased the number of antigen-bearing DC

migrating to DLN. In addition, it was demonstrated that UV-B exposure had no

influence on the amount of antigen being carried by these cells, as they migrate to

DLN (Table 13).

In view of these results it is not possible to conclude that the

immunosuppressive effect of UV-B radiation is mediated through the simple

inhibition of antigen transport by LC to the DLN as postulated by several

investigators [Bigby et al. 1989; Vermeer and Streilein, 1990; Streilein et al.

1990]. Equally, it appears unlikely that impaired sensitization following local UV-

B treatment would be a consequence of the prior migration of functionally mature LC

from the epidermis as suggested by the results of Toews et al (1980). However, in

contrast to the data reported here, Bigby et al (1989) found that after low dose UV-

B treatment of skin prior to hapten painting, they were unable to demonstrate the

presence of hapten-bearing antigen-presenting cells in DLN, implying that LC from

the hapten-painted UV-B treated site had failed to migrate. Despite this report, the

results presented here have been corroborated by the findings of Okamoto and Kripke

(1987) and more recently by Tang et al (1992). Both Okamoto and Kripke (1987)

and Tang et al (1992), using flow cytometry and fluorescence microscopy

respectively, reported that there was no difference in the percentage of FITC+ cells

in the DLN of unirradiated and irradiated mice. Tang et al (1992) extended these
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findings by demonstrating that the number of FITC+ cells in the DLN of UV-B

irradiated mice was greater than that in the DLN of non-irradiated mice and that

there was no difference in the fluorescence intensity of the cells from the two

groups.

In an attempt to elucidate further the mechanism of UV-B induced

immunosuppression it was necessary to explore the obvious question raised by the

findings presented here which was, whether the antigen-bearing DC in the DLN of

UV-B irradiated mice are capable of functioning as normal antigen-presenting cells

in stimulating the induction of CH responses. This was carried out by investigating

the ability of antigen-bearing DC accumulating in DLN following UV-B irradiation,

to stimulate primary and secondary lymphocyte proliferative responses.

Circumstantial evidence is available in the literature which suggests that

the extent to which an animal becomes sensitized following topical exposure to a

contact allergen is determined by the magnitude of the primary T lymphocyte

proliferative response in the DLN [Kimber et al. 1989; Kimber et al. 1990B;

Moorhead, 1976; Dieli et al. 1987; Kimber and Dearman, 1991], Moreover,

Kimber et al (1990A) have provided strong evidence that this primary response is

in turn associated with the number of antigen-bearing DC accumulating in DLN

following skin painting. In light of this evidence it is interesting that despite a UV-B

induced increase in the migration of FITC-bearing DC to DLN found here, the

lymphocyte proliferative response of cells isolated from these lymph nodes was

decreased (Table 15). Although, this result was not reproducible, it is clear from

the data recorded in the present study that UV-B irradiation was able to induce a

reproducible and significant reduction in the spontaneous lymphocyte proliferative

response of DLN cells from mice sensitized with oxazolone (Table 14). Thus,

assuming that oxazolone is carried by DC to the DLN following UV-B exposure, the

results suggest that, as a consequence of UV-B irradiation, the antigen-presenting

function of antigen-bearing DC in DLN is decreased. The spontaneous
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lymphoproliferation assay is, however, a relatively crude measure of the influence

of UV-B irradiation on the ability of antigen-bearing DC to stimulate a primary T

lymphocyte response. It does not permit discrimination between alterations in the

ability of antigen-presenting cells to activate appropriate antigen-specific

lymphocytes from other alterations in immune function that may occur within the

lymph node, as the result of exposure of the skin to UV irradiation.

However, despite this, further support for the notion that UV-B

irradiation exerts its immunomodulatory effect at the level of the antigen-

presenting cell was provided by the demonstration that the proliferative response of

FITC-primed lymph node cells from the DLN of unirradiated mice is reduced when

these cells are incubated in vitro with DC-enriched populations from the DLN of

mice sensitized epicutaneously with FITC following UV-B exposure (Table 18). It is

important to point out that this finding does not indicate whether, as a consequence of

UV-B irradiation, the antigen-presenting function of this DC-enriched population is

diminished or merely altered. Two subsets of CD4+ T cells have been identified in

mice [Mosmann et al. 1986A; Mosmann and Coffman, 1987; Powrie and Mason,

1988; Bottomly, 1988], These subsets can be distinguished on the basis of cytokine

production and function. Th1, but not Th2 cells produce IL-2, IFN-y, and

lymphotoxin (TNFp), whereas Th2 cells express IL-4, IL-5, IL-6, and IL-10. Th1

cells appear to be the effectors of DTH reactions [Cher and Mosmann, 1987;

Mosmann and Coffman, 1989A; Mosmann and Coffman, 1989B] whereas Th2 cells

are more efficient at promoting B cell responses to soluble antigen [Bottomly, 1988;

Mosmann et al. 1986A], stimulating IgE production [Lebman and Coffman, 1988],

and enhancing the growth and differentiation of mast cells and eosinophils [Mosmann

et al. 1986B], There is considerable evidence that Th1 and Th2 cells differ in terms

of their requirements for antigen presentation [Mosmann and Coffman, 1989A;

Gajewski et al. 1989; Weaver et al. 1988; Weaver and Unanue, 1990; Gajewski et

al. 1990]. Thus, it seems reasonable to speculate that if UV-B irradiation could
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induce an alteration in the signalling machinery of lymph node DC (presumably

derived from LC) to favour Th2 cell activation, these cells would be unable to

activate antigen-primed Th1 cells from the DLN of unirradiated mice. Indeed, the

reports by Araneo et al (1989) and Simon et al (1990) both support this notion.

Araneo and her colleagues demonstrated that irradiation of mice with high doses of

UV-B changed the pattern of lymphokine secretion by activated T cells from a Th1 to

a Th2 pattern. More direct evidence was provided by Simon et al (1990) who

showed that low dose UV-B irradiation inhibited the capacity of LC to induce

proliferation of Th1 cells while not perturbing their ability to stimulate Th2 cells.

Evidence that the FITC-bearing DC, which accumulate in the DLN

following UV-B irradiation, have a decreased or altered antigen-presenting cell

function has been demonstrated in vivo by a number of investigators [Chung et al.

1986A; Okamoto and Kripke, 1987; Alcalay and Kripke, 1991], Cells were

collected from the DLN of UV-B irradiated or unirradiated mice, epicutaneously

sensitized with FITC or DNFB. In contrast to the CH response exhibited by normal

mice injected with the DLN cells from unirradiated, sensitized donors, the ability of

these recipient mice injected with DLN cells from UV-B irradiated, sensitized donors

to induce a CH response was abrogated. Furthermore, the injection of DLN cells from

UV-B treated, sensitized donors was demonstrated to induce the formation of hapten-

specific suppressor T lymphocytes [Chung et al. 1986A; Okamoto and Kripke,

1987],

In light of the results presented here and the evidence available which has

been discussed above, it is important to consider the possible nature of this antigen-

presenting cell defect. It is well established that in order for an antigen to be

recognised by T lymphocytes, it must be expressed on the surface of an antigen-

presenting cell in association with MHC class I or II molecules. Subsequently, any

reduction in the number of antigen-bearing DC expressing la molecules, that

accumulate in the DLN following UV-B irradiation, would impair the induction of the
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CH response. Most studies examining the influence of UV-B radiation on MHC class II

expression have used epidermal LC as targets. Using immunofluorescence, no

alteration in the constitutive expression of these molecules has been observed

following exposure of human LC to UV-B doses that are sufficient to impair their

antigen-presenting function [Cooper et al. 1985]. Similar findings have been

obtained with murine LC [Aberer et al. 1986]. These immunofluorescence studies

have also been confirmed by immunochemical studies [Aberer and Leibl, 1987].

Assuming that at least the majority of antigen-bearing DC in the DLN of UV-B

irradiated mice are derived from epidermal LC, then the findings by these

investigators correlate closely with the data reported here. It was shown that UV-B

irradiation had no influence on the proportion of DC expressing la antigen in the DLN

of mice sensitized with FITC (Table 13). Further, it was found that all the FITC-

bearing DC in the DLN of unirradiated and irradiated mice expressed la antigen on

their surface. These observations are consistent with the findings of Tang et al

(1992) who reported that the same percentage of FITC/la+ cells are present in the

DLN of UV-B irradiated and unirradiated mice. There is now strong in vitro

[Schuler and Steinman, 1985; Shimada et al. 1987; Picut et al. 1988] and in vivo

[Cumberbatch et al. 1991B] evidence which suggests that as LC migrate to DLN they

are subject to a phenotypic maturation involving an elevation in the expression of la

antigens on their surface, consistent with the acquisition of active antigen-

presenting cell function. Interestingly, although investigators have been unable to

observe a UV-B induced alteration in the constitutive expression of these molecules

on the surface of LC, Shimada et al (1987) demonstrated that treatment of LC with

UV-B prior to culture inhibited both the augmentation in class II antigen expression

and the increase in antigen-presenting capacity. The results presented here on the

other hand demonstrate that there is no difference in the intensity of la expression on

DC from the DLN of irradiated and unirradiated mice (Table 10).
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It is generally accepted that adhesion-molecule pairs LFA-1/ICAM-1 and

CD2/LFA-3 play an essential role during initiation of physical contact between

antigen-presenting cells and T cells [Springer, 1990; Bierer and Burakoff, 1989;

Makgoba et al. 1989]. This interaction helps to overcome the mutual repulsion of

antigen-presenting cells and T cells and establishes an intimate antigen-independent

contact, which enables an antigen/MHC molecule complex to come into contact with

the T cell receptor, providing a signal for T-cell activation. Furthermore, these

adhesion molecules act as signal transducers, delivering stimulatory signals into the

T cell after binding to their respective ligands. It has been demonstrated that short-

term culture of human [Teunissen et al. 1990; Romani et al. 1989A] and murine

[Tang and Udey, 1991] LC results in a marked elevation in ICAM-1 expression.

Also, Cumberbatch et al (1992) were able to demonstrate that LC migration to DLN

is associated with a marked increase in ICAM-1 expression, consistent with the

development of the ability to cluster T lymphocytes and the acquisition of potent

immuno-stimulatory and antigen-presenting potential [Cumberbatch et al. 1991 A].

Thus, it is reasonable to speculate that a failure of antigen-bearing DC to express the

increased levels of ICAM-1 normally associated with LC migration or a decrease in

the number of antigen-bearing DC expressing this molecule, may, at least in part,

explain why the DC which accumulate in DLN following UV-B irradiation exhibit

normal increases in la antigen but a functional deficit. However, although this notion

is supported by the demonstration that exposure of epidermal cells to low dose UV-B

radiation causes a decrease in the ability of LC to express increased amounts of

ICAM-1 in vitro, without affecting surface levels of class II MHC molecules [Tang

and Udey, 1991], the results recorded here (Table 11) fail to indicate that this is

the case.

Although, the exact nature of this antigen-presenting cell defect cannot be

resolved from the data reported here, it is important to consider other possible

forms in which this defect may be manifested. Using MHC class II and/or LFA-3
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expressing or MHC class II and/or ICAM-1 expressing L- cell transfectants, it has

been shown that the presence of LFA-3 as well as ICAM-1 is essential for successful

T-cell stimulation [Altmann et al. 1989; Bierer et al. 1988]. This has recently

been confirmed by Teunissen (1992) who observed that the antigen-specific T cell

response induced by cultured human LC was suppressed in a dose-dependent fashion

when anti-LFA-3 or anti-ICAM-1 antibodies were continuously present in the co-

cultures and that simultaneous addition of both antibodies resulted in an even more

pronounced reduction of T-cell proliferation. Thus, assuming that the observed

elevation in LFA-3 expression on LC during culture [Teunissen et al. 1990] is an in

vitro representative of the in vivo counterpart i.e. phenotypic maturation of

epidermal LC as they migrate to DLN, a UV-B induced selective impairment or

modulation in the expression of this accessory molecule would impair sensitization.

Alternatively, UV-B radiation may perturb other mechanisms required

for efficient T cell activation. For example, UV-B radiation may inhibit or induce LC

to produce certain co-stimulatory factors necessary or inhibitory for T-cell

stimulation, respectively. It is also feasible that a UV-B induced down-regulation of

antigen processing capacity may occur in LC that migrate to DLN following contact

sensitization. Although the precise localization of antigen processing (i.e. cleavage of

exogenous antigens and binding to class II molecules) for class ll-restricted

presentation in LC is not clear, it has been postulated that the Birbeck granule and

Birbeck granule-like structures may be involved in antigen processing or

presentation [Hanau et al. 1985; Takigawa et al. 1985; Hanau et al. 1987A], This

hypothesis has been strengthened considerably by the observation that

internalization of la molecules into these organelles takes place in LC obtained from

normal skin [Hanau et al. 1987B] and in DC from the DLN of contact sensitized mice

[Bucana et al. 1992], Assuming that these granules are important components of the

antigen processing or presentation machinery, it would be predicted that a decrease

or abrogation in the formation of these organelles in LC, following UV-B exposure
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prior to hapten painting on the irradiated site, would reduce or inhibit the ability of

these cells to successfully present antigen to unsensitized T cells in the DLN.

Interestingly, such a UV-B induced perturbation has been observed in epidermal LC

[Hanau et al. 1985] and in DC from the DLN of sensitized mice [Tang et al. 1992].

In the context of attempting to establish the nature of the antigen-

presenting cell defect it is relevant to consider whether the antigen-bearing DC

present in the DLN of UV-B irradiated mice are derived from epidermal LC. Although

there is considerable evidence that the antigen-bearing DC in the DLN of unirradiated

mice are derived from epidermal LC [Kinnaird et al. 1989; Macatonia et al. 1987;

Silberberg-Sinakin et al. 1976; Kripke et al. 1990; Larsen et al. 1990], it is not

possible to conclude from the data recorded here whether the FITC+ DC present in the

DLN of irradiated mice are derived from these cells. It is conceivable that rather

than a direct effect on epidermal LC that carry antigen to the DLN the suppressive

effect of UV-B exposure is mediated through the induction of a unique population of

cells (distinct from LC) which infiltrate the skin, pick up antigen and transport it to

the DLN where they induce a down-regulatory signal. In the model of UV-B induced

suppression of CH reported here, the contact sensitizer was applied to the irradiated

skin of mice 24hr following UV-B treatment on 2 or 3 consecutive days, providing

sufficient time for the influx of another population of cells into the UV-irradiated

site. This interpretation is supported by Tang et al (1992) who have reported

recently that a higher proportion of the FITC+ DLN cells from UV-irradiated mice

were Mac-1+ and F4/80+ compared with those from unirradiated mice, implying

that the FITC+ cell population in the DLN of UV-irradiated mice may be composed

predominantly of inflammatory cells (e.g. macrophages), rather than LC.

Alternatively, UV-irradiation may induce more immature LC to migrate to the DLN

or change or induce expression of these molecules by LC.

Although, it is well established that irradiation of murine body wall skin

with low doses of UV-B radiation impairs the induction of CH responses to haptens
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painted directly on the irradiated site, it is relevant to compare the findings reported

here with those of other investigators. It is clear from the data presented here that

exposure of mice to a single low dose of 96 or 144 mJcm"2 of UV-B radiation on 3

(Table 7 and 8) or 2 (Figure 13, 15 and 16) consecutive days, respectively prior

to sensitization 24hr after the last exposure, locally suppresses the induction of the

CH response to oxazolone or FITC. These findings are more or less consistent with

those of other investigators who demonstrated that mice exposed to a single low dose

(8-70mJcm~2) of UV-B radiation on 4 consecutive days with sensitization taking

place immediately following the last treatment and/or 24hr later, were locally

suppressed [Toews et al. 1980; Okamoto and Kripke, 1987; Elmets et al. 1983;

Yoshikawa and Streilein, 1990], Although exposure of mice to a single low dose of

UV-B radiation on 2, 3 or 4 consecutive days prior to sensitization induces

significant suppression of the CH response, it is not possible to conclude from the

studies presented here and elsewhere whether this is related to the total dose of UV-B

radiation received by the mice over a period of time or to the time of exposure prior

to sensitization. However, the findings of Noonan and De Fabo (1990) may help

clarify this issue. They demonstrated that similar levels of local suppression

(>55%) to the levels recorded here and elsewhere can be induced following a single

exposure of 250mJcm"2 UV-B radiation immediately or 3 days prior to

sensitization. This suggests that while the timing of exposure is not relevant to the

induction of local suppression, the total dose of UV-B administered is. In support of

this notion is the observation here that a single exposure of 96mJcm~2 UV-B

radiation 3 days prior to sensitization failed to induce any suppression (Table 7).

An important aim of this investigation was to explore whether the

suppressive effect of UV-B radiation is mediated through the UV-B induced

production of a soluble factor. Since a large body of evidence is available supporting

the notion that the suppressive effect of UV-B irradiation on immune function is

mediated via cis-UCA (the isomerized form of the proposed UV-B photoreceptor
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molecule) an investigation of the influence of this molecule on the induction of the CH

response was carried out. From the data recorded here, regardless of the

concentration, timing or route of administration (whether applied topically or

injected i.p. or s.c.), cis-UCA failed to have any consistent significant local or

systemic suppressive effect on the induction of the CH response to oxazolone or FITC

(Table 7 and 8). These results, however, contrast with studies by other

investigators who were able to demonstrate that administration of cis-UCA locally or

systemically suppresses the induction of the CH response. Local suppression was

seen following epicutaneous application of cis-UCA immediately or 3 or 5hr prior to

hapten painting on the treated site [Reeve et al. 1989; Kurimoto and Streilein,

1992], and systemic suppression when cis-UCA was injected i.v. 3 days prior to

sensitization [Harriott-Smith and Halliday, 1988B] or applied topically to the

dorsum 3hr prior to sensitization on the ventrum [Reeve et al. 1989]. It is

interesting that in all the cases reported, where cis-UCA was demonstrated to locally

suppress the induction of the CH response, this molecule was applied immediately or

several hours prior to sensitization. In contrast, the time period between cis-UCA

treatment and sensitization for all the experiments recorded here except one, was

24hr or more. Since the amount of cis-UCA (100-200pg per mouse), used in other

investigations was no different from the range of concentrations examined here, it is

conceivable that cjs-UCA is capable of inducing local immunosuppression of the CH

response only when administered immediately or within a few hours before contact

sensitization. On the other hand, it is difficult to provide a satisfactory explanation

from the data reported here as to why cis-UCA was unable to suppress the CH

response systemically. Based on these studies, the implication is that £is.-UCA is not

a mediator of the suppressive effects of UV-B radiation on CH responses. Evidence

supporting this notion is provided by two separate findings. The first was that

exposure of mice on 2 consecutive days to narrow band UV-B radiation (which

efficiently isomerizes trans-UCA to cis-UCA in vivo) failed to induce local
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suppression of the CH response regardless of the dose, when the contact sensitizer

was applied 24hr following the last exposure; however, exposure to broad band UV-

B radiation under the same conditions significantly suppressed the response (Figure

15). The second finding was that mice injected with anti-cis-UCA monoclonal

antibodies (see later in section 4.2) prior to UV-B exposure on 2 consecutive days

failed to inhibit suppression of the CH response to haptens applied to the irradiated

site 24hr after the last exposure (Figure 16). It is conceivable, however, that the

concentration of anti-cis-UCA monoclonal antibodies administered was not high

enough to influence a suppressive effect resulting from the local formation of cis-

UCA following UV-B irradiation.

An investigation of the influence of cis-UCA on epidermal DC migration to

DLN in unsensitized and sensitized mice revealed that epicutaneous application of this

molecule alone (Table 9 and Figure 10) or prior to skin sensitization at the same

site (Table 12) had no effect. In support of this finding was the demonstration that

exposure of mice to narrow band UV-B radiation did not induce DC accumulation in

DLN (Figure 14), further implying that UV-B induced DC migration to DLN is not

mediated through the local formation of cis-UCA. Although, cis-UCA was not

administered immediately or several hours prior to hapten painting, these findings

suggest that the mechanism by which cis-UCA induces suppression of the CH

response as reported by several investigators, is not through the induction of

epidermal DC migration to DLN. These findings contrast with the report that skin-

painting with UV-irradiated UCA resulted in a decrease in the number of cells

expressing la antigens in the epidermis 1 day later [Ross et al. 1987/88], Further,

Kurimoto and Streilein (1992) reported recently that cis-UCA administered i.d.

resulted in a significant reduction of la+ epidermal cells. However, Noonan et al

(1985) demonstrated that incubation of mouse epidermal sheets in the presence of

cis-UCA decreased the number of la+ epidermal cells by 25-35% without affecting

ATPase positive counts suggesting that cis-UCA merely modulates the expression of
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la molecules on the surface of epidermal cells without inducing them to migrate away

from the skin.

Noonan et al (1988) found that i.v. injection of cis-UCA (50-200pg per

mouse) depressed the antigen-presenting cell function of purified splenic DC,

assessed by the proliferative response of purified T cells from mice immune to

DNPeOVA to DC pulsed with this antigen. These data imply that cis-UCA is capable of

inducing an antigen-presenting cell defect in vivo. Similar findings suggesting that

cis-UCA is capable of inducing such a defect in vivo are reported here. It was found

that enriched-DC from the DLN of mice painted with cis-UCA (400pg) daily for 3

consecutive days prior to sensitization had a significantly impaired/altered antigen-

presenting cell function, assessed by the ability of these cells to stimulate secondary

lymphoproliferative responses of lymph node cells from mice sensitized with the

same hapten (Table 18). Also, administration of cis-UCA topically (400|ig) or s.c.

(200p.g) to mice under the same conditions prior to sensitization resulted in

decreased spontaneous lymphoproliferative responses of DLN cells (Table 14 and

15). However, the doses of cis-UCA (1200 or 600pg/mouse) administered to mice

were not within the biological range : that is, they did not reflect the amounts of cis-

UCA that are generated in mouse skin in vivo (100-200p.g) by immunosuppressive

doses of UV-B radiation. Therefore, it is possible that the cis-UCA induced

decrease/alteration in antigen- presenting cell function of lymph node DC observed

here, does not reflect the situation in vivo following UV-B irradiation. The

demonstration that enriched-DC from the DLN of mice treated with identical doses of

trans-UCA inhibited the secondary lymphoproliferative response of lymph node cells

twice as much as that observed with cis.-UCA suggests that this may be the case. It

is, however, conceivable that the reduced antigen-presenting cell ability of lymph

node DC observed when higher than supra - physiological levels of cis-UCA are

administered to mice is directly responsible for the inconsistent but significant

impaired CH responses reported here.
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Streilein and Bergstresser (1988) reported that the capacity of UV-B

irradiation to impair the induction of CH in mice depends upon the genotype of the

host. Specifically, certain strains of mice (C57BL/6, C3H/HeN) are susceptible i.e.

they fail to develop CH if the contact sensitizer is painted on UV-B irradiated skin

while other strains (Balb/c, A/J, C3H/HeJ) are UV-B resistant, exhibiting

vigorous CH responses when the hapten is painted on the UV-B treated site. Since a

correlation between the proportion of cis-UCA formed in the epidermis following

UV-B irradiation and the degree of suppression of DTH appears to exist [Norval el

ai,1988], it seemed reasonable to postulate that a variation in the UCA content of

different mouse strains may account for the genetic differences observed, assuming

that skin pigmentation does not influence the amount of trans to cis-isomerization

that takes place on UV irradiation. Indeed, the investigation presented here (Table 1,

2 and 3) suggests that the UCA content of different strains of mice does vary.

However, since a reciprocal relationship was observed between the amount of UCA

present in the skin of C57BL/6 and Balb/c mice and the potential of each of these

strains to exhibit a suppressed CH response after UV-B irradiation, this implies that

susceptibility or resistance to the effects of UV-B exposure is not related to the total

amount of UCA present in the skin. In view of the observation that black mice

(C57BL/6) are more readily suppressed than albino animals (Balb/c) and that

isomerization of UCA takes place immediately on UV-B irradiation in the stratum

corneum above the pigment layer, it is unlikely that skin colour has any influence on

the degree of isomerization. In support of this notion is the finding reported here

which indicates that there is no obvious difference in the percentage of cis-UCA

formed in the skin of C57BL/6 mice compared with Balb/c mice following UV-B

irradiation. Further, Yoshikawa et al (1990) detected no relationship between UV-

B susceptibility and skin colour type in Caucasian subjects and Vermeer et al

(1991) found that black individuals with the darkest skin colour may be UV-B

susceptible.
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From the evidence discussed previously it appears that irradiation of

mice with broad band UV-B on 2 or 3 consecutive days prior to sensitization 24hr

after the last exposure induces local suppression of the CH response via a mechanism

independent of the local formation of cis-UCA in the skin. This is not necessarily

unexpected in view of the finding that different wavelengths of UV radiation are able

to induce epidermal cells to release a variety of mediators capable of suppressing the

induction of CH or DTH responses [Kim et al. 1990], One mediator of the

suppressive effect of UV-B irradiation on the induction of CH whose production in

response to UV-B irradiation appears to be genetically linked with UV-B

susceptibility, is TNFa [Yoshikawa and Streilein, 1990; Vermeer and Streilein,

1990]. Interestingly, from the data presented here (Figure 13) it was revealed

using polyclonal anti-TNFa antibodies, that the UV-B induced suppression observed

when the contact sensitizer was applied to the irradiation site 24hr following the

last exposure, is mediated by TNFa, supporting the view that this molecule is an

important and possibly critical molecular mediator of the down-regulatory effect of

UV-B exposure on the induction of CH.

Further, the studies described in this report demonstrate that the

induction of DC migration to DLN by UV-B irradiation is mediated by TNFa release

(Figure 11 and 12). These data confirm the report by Cumberbatch and Kimber

(1992) that TNFa induces DC migration to DLN. Having provided evidence that TNFa

is produced and/or released following exposure of murine skin to broad band UV-B

radiation it is important to question the source of TNFa and its possible mode of

interaction with LC.

A number of cutaneous cells could serve as the source of TNFa.

Macrophages are a possible source especially since LPS causes excessive release of

this cytokine from LPSn macrophages [Beutler et al. 1985; Mahoney et al. 1985].

Assuming these cells are the only possible source, then one would predict that the

UV-B effect is mediated by macrophages in the dermis, the compartment of skin
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containing the largest number of these types of cells. However, since most of the

energy of UV-B is absorbed as the light passes through the epidermis, with little

UV-B reaching the dermis [Agin et al. 1981], this possibility seems unlikely.

Epidermal LC could serve as the source of TNFa. In active psoriatic lesions, high

levels of TNFa mRNA have been detected in LC, and TNFa mRNA has even been

detected in LC within normal human epidermis [Nickoloff et al. 1990],

Furthermore, activated LC have been demonstrated to release TNFa [Larrick et al.

1989]. Evidence from photomicrographs of UV-B exposed human skin suggest that

TNFa is present in keratinocytes [Oxholm et al.1988]. This observation is

supported by the finding that UV-B irradiation promotes the synthesis and secretion

of TNFa by human keratinocyte cell lines [Kock et al. 1990A]. Since keratinocytes

comprise the great majority of the epidermis and are known to absorb UV-B

radiation these cells are the most probable source of TNFa. It seems reasonable

therefore, to speculate that exposure of murine skin to UV-B radiation stimulates

the production and/or release of TNFa by keratinocytes and that this cytokine

stimulates LC to leave the epidermis and migrate to the DLN via the afferent

lymphatics.

In light of the studies presented here and elsewhere which suggest that

TNFa acts as a signal for the migration of LC from the skin, it is necessary to

consider the possible mode of interaction of TNFa with these cells. It is conceivable

that TNFa may induce or up-regulate the release of another mediator that directly

interacts with LC inducing their migration to DLN. For example it has been shown

that TNFa can induce the production of IL-1 [Dinarello et al.1986] which shares

many biological properties with TNFa [Dinarello, 1989; Le and Vilcek, 1987] and

that IL-1 is able to cause a reduction in the density of la+ epidermal LC [Lundqvist

and Back, 1990]. It has recently been found that mice possess two receptors for

TNFa, designated mTNF-R1 and mTNF-R2, which differ with respect to both

extracellular nucleotide sequence and species specificity [Lewis et al. 1991],
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Further, mTNF-R1 was found to bind human and mouse TNFa with equivalent

affinity while mTNF-R2 exhibited strong species specificity for the mouse cytokine

[Lewis et al. 1991]. Although it is not known whether both or one or the other of

these receptors is expressed constitutively on the surface of LC, based on the

observations of Koch et al (1990B) and Cumberbatch and Kimber (1992), it seems

reasonable to speculate that the interaction of TNFa with mTNF-R2 expressed on the

the surface of LC is critical in influencing the migratory behaviour of these cells.

Koch et al (1990B) observed that under conditions where murine TNFa maintained

the viability of mouse LC in culture, the same concentrations of human TNFa were

without effect. Also, more recently, Cumberbatch and Kimber (1992) found that in

contrast to the increased accumulation of DC in DLN of mice following i.d. injection of

murine recombinant TNFa, administration of human recombinant TNFa of

comparable specific activity into mice failed to have any influence on DC migration.

Since the density of LC present in the epidermis is approximately 770

cells/mm2 [Toews et al. 1980] it appears from the results reported here and

elsewhere [Kimber et al. 1990A; Macatonia et al. 1986; Knight et al. 1985A and B;

Macatonia et al.1987: Kinnaird et a[, 1989] that only a proportion of epidermal DC

(approximately 18-24000 DC/Lymph node, varying with time, and concentration

and type of hapten) are induced to migrate to DLN following contact sensitization. It

is possible to explain this if the skin is viewed as a primary lymphoid organ i.e. a

site continuously infiltrated by immature LC from the blood which provides the

necessary microenvironment for the development of these cells prior to migration to

secondary lymphoid organs such as the DLN. Thus, epidermal LC would represent a

heterogeneous population of cells varying in age and subsequently exhibiting

different levels of phenotypic and functional maturation. It is plausible that only

cells that have reached a certain level of maturity are able to leave the skin and

migrate to DLN following epicutaneous application of a contact sensitizer or following
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UV-B irradiation. Epidermal LC that perhaps express a threshold level of mTNF-R2

on their surface are the only cells that can leave the skin.

It is interesting that the cia-UCA induced local suppression of CH reported

by Kurimoto and Streilein (1992) was demonstrated to be reversed by prior

treatment of mice with anti-TNFa antibodies implying that cis-UCA achieves its

inhibitory effects, at least in part, through TNFa. Although it was not possible to

demonstrate suppression of CH by epicutaneous application of cis-UCA. it seems

highly unlikely based on the data presented here that cis-UCA mediates its effects

through stimulating cells to produce and/or release TNFa. If this was the case,

exposure of mice to narrow band UV-B radiation or to topical application of cis-UCA

would be predicted to induce DC migration to DLN.

Based on their findings that UV-B irradiation or i.d. TNFa altered the

morphology of epidermal LC, Vermeer and Streilein (1990) concluded that TNFa

prevents effective sensitization following UV-B irradiation by immobilizing LC

within the epidermis. This interpretation contrasts very much with the data

presented here which indicate that the local production of TNFa following UV-B

irradiation is responsible for increasing the number of LC-bearing antigen that

would normally migrate to DLN with sensitization alone. Also, Vermeer and Streilein

(1990) demonstrated that both i.d. TNFa and UV-B irradiation reduce the density of

la+ cells in the epidermis, supporting the notion that UV-B exposure may induce LC

migration through the local release of TNFa. Thus, in view of the data presented here

it is relevant to consider how TNFa may achieve inhibition of the induction of CH. In

vivo evidence suggests that LC stimulated to migrate to DLN as a result of

sensitization undergo a phenotypic and functional maturation [Cumberbatch et al.

1991B; Cumberbatch et al. 1992], similar to that observed in vitro [Shimada et al.

1987; Picut et al. 1988], The changes effected during short term culture of freshly

isolated LC are mediated by GM-CSF [Witmer-Pack et al. 1987] and may be

enhanced further by IL-1 [Heufler et al. 1988], both products of UV-B irradiated
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or mitogen activated keratinocytes [Kupper et al. 1988; Ansel et al. 1988], These

changes, however, do not appear to be effected by TNFa [Kock et al. 1990B]. The

process by which cells receive and translate messages/signals delivered by cytokines

is finely tuned. In other words any slight deviation in the timing at which a

particular chemical mediator delivers its signal compared with another or in the

amount of signal delivered will be interpreted differently by the cell. It is tempting

to speculate that upon application of skin allergens, keratinocytes are induced to

release cytokines such as IL-1, GM-CSF and TNFa which are then responsible for

initiating the migration and functional maturation of LC which carry antigen to DLN,

so that once they arrive in the DLN they have matured into potent

immunostimulatory cells able to initiate a primary immune response. However, the

UV-B induced production of excessive local (cutaneous) amounts of TNFa prior to

sensitization may stimulate the migration of LC to DLN which are phenotypically

and/or functionally immature but are able to pick up antigen. These cells may

subsequently be unable to activate and stimulate the proliferation of hapten-specific

virgin T cells, resulting in an impaired response and/or may activate and induce the

proliferation of T-cells capable of down-regulating the CH response.

In summary, it would appear that the suppressive effects of UV-B

radiation on CH are mediated by TNFa and not cis-UCA. These findings contrast very

much with findings from studies examining the effect of UV-B irradiation and cis-

UCA on the DTH response to HSV. Norval et al (1988) demonstrated that a

correlation exists between the amount of cis-UCA present in the epidermis at

various times following UV-B irradiation and the degree of immunosuppression of

the DTH response to HSV. They showed that immediately following a single exposure

of C3H murine skin to 96mJcm"2 of UV-B radiation, there is a conversion of UCA in

the skin to over 30% as the cis-isomer. from a background level of 4.7% and that

this level is maintained for at least 16hr, declining slowly over the next 7 days.

Interestingly, these findings are extended by data recorded here which suggests that
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48hr following UV-B exposure of C3H skin, the level of £i§.-UCA formed decreases

by 25% (Table 1). Further, Norval et al (1988) demonstrated that local

suppression of the DTH response to HSV by a single exposure of 96mJcm"2 of UV-B

radiation was generated if the interval between irradiation and sensitization was

more than 5hr or less than 14 days; no suppression was observed immediately

following UV-B irradiation and maximum suppression was generated with a delay of

between 2 and 3 days but declined thereafter. These findings suggest that the

proportion of cis-UCA in the epidermis correlates with the degree of

immunosuppression of the DTH response except immediately following irradiation.

Direct evidence implicating cis-UCA as the mediator of UV-B induced suppression of

the DTH response to HSV was provided by Ross et al (1986). These investigators

showed that if irradiated UCA (70% cis-isomerl at concentrations ranging from 3-

100ug was painted on to the shaved skin or if it was injected s.c. followed by

infection with HSV 5hr or 3 days later, then a dose dependent suppression of the DTH

response to the virus ensued. It was found later by Norval et al (1989B) that doses

of as little as 1pg cis-UCA per mouse could suppress the DTH response to HSV.

Thus, it would appear that in UV-B induced immunosuppression of CH and

DTH responses two different suppressive mechanisms are operative, one dependent

on the UV-B induced production of TNFa and the other on cis-UCA. Further, It has

recently been reported that neutralising anti-IL-10 antibody inhibits the

depression of DTH responses by UV-B exposure but will not reverse UV-B induced

suppression of CH (personal communication by Dr. S. Ullrich), supporting the view

that different suppressive mechanisms operate in CH and DTH responses. Also, this

report implies that a variety of suppressive mediators acting independently or

relying on each other for their production, may act to suppress DTH responses.

Although DTH and CH are two closely related T cell-mediated immune responses

requiring the presentation of antigen in two distinct phases termed the sensitization

and effector phases, these findings suggest that the two responses may be regulated
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by separate mechanisms. Indeed, there is strong evidence available which indicates

that this is the case.

It has been found that 24-48hr CH and DTH skin swelling reactions that

result from local antigen challenge of actively sensitized mice are preceded by an

early skin swelling reaction which is maximal 2hr after challenge [Matsushima and

Stohlman, 1991; Van Loveren et al. 1984]. Two different cells mediate the early

and late components of CH and DTH responses; a helper cell responsible for both the

early reaction and the activation of the effector cell which mediates the late phase

reaction. However, although the antigen-specific, MHC-restricted effector cell

which mediates the late phase reaction of CH and DTH is the same (i.e Thy-1+, Lyt-

1+, CD4+, CD8-, CD3+, l-A"), the helper cells responsible for the early response

of CH and DTH are different. The initiating/helper cell which is activated in CH is a

Thy-1+, Lyt-1+, CD4-, CD8-, CD3-, IL-3R+, B220+ cell and acts in an antigen-

specific but MHC-unrestricted fashion [Herzog et al. 1989B], On the other hand the

initiating/helper cell which is activated in DTH is a Thy-1+, Lyt-1+, CD4-, CD8-,

CD3-, IL-2R+, B220-, l-A" cell which also functions in an MHC-unrestricted

manner but provides help in an antigen-nonspecific manner [Matsushima and

Stohlman, 1991].

Furthermore, due to the availability of two strains of mice with specific

defects in related immunological effector mechanisms, it is now clear that different

populations of antigen-presenting cells are involved in inducing CH and DTH

responses. In C57BL/Ler-vit/vit mice which lack the CH response due to the

absence of LC in the skin [Amornsiripanitch et al. 1988], the closely related DTH

response and all other immunological effector mechanisms that require the

participation of antigen-presenting cells appear normal. An age-dependent

macrophage defect in SJL mice that results in DTH unresponsiveness in young adult

(< 8 week old) SJL mice has been reported [Stohlman et al. 1985; Matsushima and

Stohlman, 1988]. Unlike 16 other mouse strains, in which the adult level of DTH
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responsiveness was observed by 6 weeks of age [Matsushima and Stohlman, 1989],

young adult SJL mice did not exhibit a DTH response after immunization with a

variety of soluble and particulate antigens. By contrast, mature adult SJL mice (>

10 weeks) did respond to these antigens, indicating that the regulation of the DTH

response in SJL mice is under unique maturational control [Stohlman et al. 1985;

Matsushima and Stohlman, 1988; Matsushima and Stohlman, 1989]. Importantly,

the CH response and other antigen-presenting cell-dependent immunolgical effector

mechanisms were normal in these DTH-unresponsive mice [Matsushima and

Stohlman, 1989]. Recently, Matsushima and Stohlman (1991) identified a unique

subset of antigen-presenting cells in SJL mice that function as the sole antigen-

presenting cell required for the induction of CD4+ DTH effector T cells. This cell is

adherent, Mac-1 + , Mac-2", Mac-3+ and l-A+ and does not participate in the

induction of CH responses [Matsushima and Stohlman, 1989]. These investigators

have also identified an adherent, Mac-1 + , Mac-2", Mac-3", l-A" accessory cell

which appears to be crucial in the activation of the CD4+ DTH helper cell, although

the interaction between these two cells is neither antigen-specific nor MHC-

restricted.

Based on these studies it appears that the DTH and CH response require

distinct cell-cell interactions for generating immune responsiveness, implying that

they are regulated by different mechanisms. In view of the fact that DTH antigens are

given s.c. and contact sensitizers are applied topically, the demonstration that LC and

a unique subset of macrophages are critical antigen-presenting cells in the induction

of CH and DTH responses, respectively, is not all that surprising. However, these

findings do provide a greater insight into the possible mode of action of cis-UCA and

TNFa in UV-B induced immunosuppression and suggest that the influence of these

UV-B induced mediators is dependent on the site into which antigen is administered.

Thus, it seems reasonable to speculate that the suppressive influence of TNFa is

mediated at the level of the LC, affecting the number of responsive cells that migrate
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to DLN to initiate CH responses, while cis-UCA excerts its influence on a subset of

macrophages important in processing and presenting antigen to induce CD4+ DTH

effector cells. Since an accessory cell recently described by Matsushima and

Stohlman (1991) appears to be important in the activation of the CD4+ DTH helper

cell which is critical for the activation of the effector cell, it is also feasible that

cis-UCA could act on this cell. Interestingly, Rasanen et al (1989) reported that

cis- but not trans-UCA was able to reduce monocyte IL-1 production in a dose-

dependent fashion and suppress HLA-DR antigen expression, in vitro.

It is well established that local impairment of the CH response following

UV-B irradiation is accompanied with the induction of specific immunological

tolerance to haptens applied to the unirradiated site at a later date, which is believed

to be mediated by antigen-specific afferent acting suppressor Ly-1+CD8-

(presumably CD4+) T cells. In an attempt to clarify whether the induction of

afferent acting suppressor T cells is responsible for the down-regulation of CH

responses and long lasting unresponsiveness following UV-B exposure, Glass et al

(1990) explored whether UV-B resistant strains of mice are capable of generating

these cells. Unexpectedly, Glass and his colleagues found that an apparent universal

consequence of treatment of murine skin with UV-B radiation and hapten is the

induction of antigen-specific suppressor T cells that act on the induction phase of CH,

irrespective of whether the recipient displays normal CH or not, suggesting that

future attempts to elucidate the mechanism of UV-B induced local

immunosuppression should be focussed on the ability of UV-B radiation to interrupt

induction of effector mechanisms.

The finding that there are two subsets of CD4+ T cells termed Th1 and

Th2 which differ in their cytokine production and function raises the possibility that

regulation of the immune system may be a direct product of the preferential

activation of only one of these CD4+ T cell subsets in response to antigen. Thus, a

shift in the ratio of Th1 and Th2 cells activated following UV-B irradiation would
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ultimately result in a complete alteration in the secretion of distinct cytokines

following T cell activation and in a depression in the function of certain types of

cellular immune response requiring cytokines no longer being produced. Indeed, the

demonstration that UV-B irradiation is able to alter the pattern of cytokine secretion

by activated T cell from a Th1 to a Th2 profile [Araneo et al. 1989] and alter the

antigen-presenting function of LC for Th1 cells from one that is immunogenic to one

that is tolerogenic (via functional inactivation), while not affecting their ability to

activate Th2 cells, support this notion [Simon et al. 1990 and 1991],

During the course of a normal cell-mediated immune response to a contact

sensitizer, it is conceivable that Th1 and Th2 cells are generated; the ratio between

these subsets within various cellular compartments such as the DLN and spleen,

perhaps varying considerably. It seems reasonable to speculate that Th2 cells

(effectors important in promoting B cell responses) may predominate in the spleen

since this is an important site of antibody production while Th1 cells (effectors of

DTH reactions) predominate in DLN, important sites for sensitization. Assuming

that the behaviour/function of cells is restricted by the anatomical site in which

they are activated, it is feasible that the preferential activation of Th2 cells within

DLN may transform them into cells capable of actively suppressing Th1 responses.

In support of this notion is the demonstration that Th2 cells are able to secrete a

factor that can suppress cytokine production and proliferation of Th1 cells

[Fiorentino et al. 1989; Mosmann and Moore, 1991; Mosmann, 1991; MacNeil et

al, 1990]. This factor, originally known as cytokine synthesis inhibitory factor

(CSIF), is IL-10. lnterleukin-10 acts to inhibit synthesis of most or all cytokines

by Th1 cells but not Th2 cells. It is thought that this may be related to the kinetics

of action; IL-10 shows little or no inhibition of cytokine production before 8hr and

then inhibits synthesis very effectively from this time onward [Mosmann, 1991],

Based on this delay in onset of inhibitory activity, and on the demonstration that IL-

10 acts only when antigen-presenting cells are present it is suggested that IL-10
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acts on antigen-presenting cells inhibiting the production of a costimulatory signal

required for the activation of Th1 cells [Mosmann,1991]. Taking into account these

findings and the studies of Simon et al (1990 and 1991) this would imply that as a

consequence of the UV-B induced alteration in the antigen-presenting cell function of

LC, two down-regulatory signals may be initiated: 1) a long-lasting

unresponsiveness in Th1 cells; and 2) active suppression of the induction of Th1

responses mediated by Th2 cells.

In view of these findings it is relevant to consider an alternative

interpretation of Glass et al (1990) observations. It is conceivable that UV-B

induced suppression of the CH response is ultimately dependent on the balance

between the number of activated Th1 and Th2 cells. In other words, activated Th1

and "suppressor-like" Th2 cells may coexist within the DLN and only if a threshold

level in the number of activated Th2 cells relative to activated Th1 cells is reached

will down-regulation of the CH response be expressed. Thus, in UV-B resistant mice

this threshold level may not be attainable due to the LC of these mice being less

susceptible to the modifying influence of UV-B irradiation. However, it is

conceivable that the original constraints on the function of activated Th2 cells in the

DLN of UV-B resistant mice will be removed following the introduction of these cells

into naive recipient mice prior to sensitization as carried out by Glass and his

colleagues, thus enabling them to suppress the induction phase of the CH response.
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4.2 Development of a Monoclonal Antibody Specific for the Cis-

Isomer of UCA and its Use in detecting Cis-UCA in the Serum

of Irradiated Mice

It is not understood exactly how cis-UCA alters immune function. In

order to elucidate its mechanism of action it is necessary to identify its site of action

and cellular target. At present it is not known if cis-UCA is confined solely to the

epidermis following irradiation or is able to leave this site and act systemically. In

this investigation, a monoclonal antibody with specificity for cis-UCA was produced

and applied to the detection of UCA in serum of irradiated mice.

Although a minimum number of haptens per carrier protein of 15-30 is

recommended for the induction of antibodies [Bauminger and Wilchek, 1980], a good

antibody response was elicited in mice immunized with sis-UCA-KLH conjugate with

an epitope density of 8 cis-UCA molecules per KLH molecule. This is perhaps not all

that surprising as it has been reported that as few as 5 epitopes per carrier

molecule give a good IgG response [Klaus and Cross, 1974]. Since UCA is amphoteric

with a basic imidazole ring and an acidic carboxylic acid group, the carrier proteins

(KLH and BSA) could couple through either group, creating two different structures

(Figure 20). It is not known which of these forms was synthesized and subsequently

which structure was recognized by the monoclonal antibody.

Using an ELISA it was established that the monoclonal antibody was

specific for the cis-isomer of UCA when conjugated to BSA. This was further

corroborated using a competitive inhibition ELISA where cis-UCA competed, even at

low concentrations, with cis-UCA-BSA antigen bound to the well for binding of the

antibody; trans-UCA only competing when it was present at high concentration. Out

of 15 UCA analogues tested, only cis-2-methyl UCA displayed inhibitory activity,

although it was not so active as cis-UCA itself. When cjs-UCA-KLH and trans-UCA-

KLH conjugates were used as competitors, they both demonstrated inhibitory activity
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Figure 20 Two different structures that could be generated following coupling of

urocanic acid to the carrier protein.
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roughly 3-fold better by weight (equivalent to around 1000-fold better in molar

terms) than free UCA. This suggests that the paratope of the monoclonal antibody is

highly specific for an epitope formed from the combined structure of UCA and a

region on the carrier to which it is bound. In support of this notion was the finding

that the monoclonal antibody was unable to interact with KLH. It would appear that

when the monoclonal antibody is exposed to eis. or trans-UCA-KLH it is less able to

distinguish between these isomers unless they are present at low concentrations

(0.1 - 0.3pg/well). However, the isomers of UCA alone or conjugated to another

protein were distinguished and thus it can be concluded that the monoclonal antibody

is operationally specific for cis-UCA unless trans-UCA is present in large

quantities.

Use of the monoclonal antibody enabled cis-UCA in serum of irradiated

mice to be assayed by competitive inhibition ELISA. The sensitivity of detection was

approximately 40pM. However, despite the low sensitivity in comparison with

HPLC where the sensitivity of detection in homogenised ears was about 0.14pM,

representing 1ng/mg wet weight tissue [Norval et al. 1988], cis-UCA was detected

in serum soon after irradiation, its concentration diminishing over the next 2 days.

Dialysis of the serum revealed that cis-UCA was in a dialysable form and therefore

unbound or conjugated to a small molecule with a m.wt. below 12000, and unlikely

to be conjugated to serum proteins or membranes. In support of these findings is the

report [Reeve et al. 1991] that following painting of mice with 14C-UCA synthesized

from [2-14C]-malonic acid, low but significant levels of 14C were detected in

serum. The counts were highest in mice exposed to UV-B radiation after painting,

and were present 2hr after irradiation and not 6 days later. Electrophoresis of

serum proteins suggested that 14C was associated with specific proteins.

Thus there is evidence that a proportion of cis-UCA formed in the

epidermis on UV irradiation reaches the serum either through capillaries or lymph,

enabling it to exert its influence on immune function systemically, in lymph nodes
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or spleen. At present the cellular target for cis-UCA is unknown although there is

some evidence that it may be in the skin [Palaszynski et al. 1992]. The findings

presented here imply on the other hand that cis-UCA has the potential to act on a

cellular target present at a site other than the skin.
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4 . 3 Further Extensions

It is important to understand the cellular mechanisms involved in UV-B

induced immunosuppression for several reasons. First, there is an association

between UV-B induced immunosuppression and the development of primary skin

cancers in mice [Fisher and Kripke, 1982] and humans [Yoshikawa et al. 1990].

Thus, an insight into the cellular mechanisms by which UV suppresses the immune

response using animal models, may be useful in providing new approaches for the

treatment and prevention of skin cancers. Second, the local and systemic

immunological alterations caused by UV radiation, especially the suppression of DTH

responses, may be a predisposing factor for an increased incidence or severity of

infectious disease. Third, in addition to the immunosuppressive effect of UV-B

radiation being antigen-specific, it is highly selective. Despite CH and DTH

responses, and the rejection of UV-induced tumours being suppressed following

exposure to various regimens of UV radiation, most other immune responses such as

antibody production and the generation of cytolytic T cells are normal [Spellman et

ai, 1977; Kripke et al. 1977]. Thus, studies attempting to elucidate the

mechanism(s) of UV-induced immunosuppression may in the process yield new

insights into the differential immunoregulation of different compartments of the

immune system.

There is strong evidence that a common mechanism initiates local and

systemic UV-B induced suppression of CH responses, based on the demonstration

that the dose responses of UV-B induced local and systemic suppression are

identical. However, based on the data recorded here and elsewhere it appears that

more than one mechanism may be involved, acting independently of the other to

induce local and/or systemic immunosuppression. Evidence in the literature that

the antigen-presenting cell function of LC and DC present at the UV irradiated site

or in lymph nodes draining this site, respectively, is decreased, whereas the

antigen-presenting cell function of these cells at sites distant from the site of UV

exposure is unaltered except in the spleen, further suggests that other mechanisms
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are at play. The majority of studies carried out to ascertain whether local or

systemic suppression is associated with the generation of antigen-specific T

suppressor cells, involved adoptively transferring lymph node and spleen cells to

naive syngeneic recipient mice. Thus in light of the evidence that UV-B irradiation

appears to have disparate effects on the function of different populations of antigen-

presenting cells, depending on whether suppression is being induced locally or

systemically, it is imperative to establish what role if any, each of the lymphoid

compartments has in the induction of local and systemic immunosuppression. This

could perhaps be achieved by splenectomising mice, thus enabling an assessment of

the importance of this organ and DLN in the generation of local and systemic

suppression of CH responses to be made.

Investigators examining whether local suppression of CH is mediated via

the reduced/altered antigen-presenting cell activity of DLN cells demonstrated that

the ability of these cells to induce CH when transferred to normal mice was

abrogated and associated with the induction of antigen-specific T suppressor cells.

Although these findings question the role of suppressor T cells formed in the spleen

during local suppression, they suggest that local immunosuppression of CH occurs

as a result of UV radiation exerting its immunomodulatory effect at the level of the

lymph node dendritic antigen-presenting cell. More direct evidence that this is

indeed the case could be achieved by adoptively transferring antigen-bearing DC-

enriched cells from the DLN of mice exposed to UV-B radiation to syngeneic

recipient mice. Further, the role of lymph node and spleen DC from UV irradiated

mice in the induction of local and systemic immunosuppression could be elucidated

by this method.

It is reported here that the ability of antigen-bearing DC from the DLN of

UV-B irradiated mice to stimulate secondary lymphoproliferative responses in

vitro was diminished/altered. Although it was not possible to reproduce these

findings, optimization of this particular assay system would enable a variety of

studies to be carried out. For example the influence of various wavelengths and
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doses of UV radiation and suppressive mediators such as TNFa, IL-10 and cis-UCA

on the antigen-presenting cell function of lymph node DC in vivo could be assessed.

Also, using hapten-specific immune Th1 and Th2 clones, the effect of UV radiation

and suppressive mediators in altering the antigen-presenting cell function of lymph

node DC could be examined.

There is evidence that freshly isolated DC from the spleen resemble

freshly isolated LC from the epidermis and that both cells undergo parallel

phenotypic and functional changes during short term culture [Girolomoni et al.

1990], The parallel modifications that LC and spleen DC exhibit after culture

imply that both cells respond similarly to factors in the microenvironment. An

obvious question raised by these findings is what is the stimulus for the phenotypic

and functional maturation of spleen DC? There is a consensus that the introduction

of an antigen into the epidermal compartment stimulates epidermal cells to release a

variety of cytokines important in inducing the migration of antigen-bearing LC to

DLN and their functional and phenotypic maturation as they do so. It is equally

conceivable that such a process occurs with spleen DC and that these cells upon

encounter with antigen are induced to migrate away from the spleen perhaps to

peripheral lymph nodes. Thus, an examination of whether DC numbers in the spleen

fluctuate following sensitization and a comparison of the events observed in this case

with those occuring when sensitization takes place after UV-B exposure would yield

some interesting results.

The inference of the results reported here is that the UV-B induced local

production of TNFa and subsequent enhanced migration of epithelial DC bearing

antigen to DLN is an important component in the expression of local

immunosuppression. Since it is not known at present whether the increased

number of antigen-carrying DC accumulating in the DLN as a consequence of the UV-

B induced formation of TNFa represents a functionally and/or phenotypically

immature DC derived from epidermal LC or a completely different cell population it

is important that a phenotypic analysis be carried out on these cells. Furthermore,
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it would be interesting to compare the phenotype of the antigen-bearing DC present

in the DLN of mice exposed to UV-B radiation with antigen-bearing DC in the DLN of

mice treated with anti-TNFa antibodies prior to UV-B exposure.

Although several investigators have reported that systemic suppression

of CH responses is not related to a systemic effect of UV radiation on the number and

morphology of LC at the unirradiated site of contact sensitization as detected by

ATPase staining and electron microscopy, it would be interesting to confirm these

observations by investigating the influence of UV-B irradiation on the induction of

DC migration to DLN by hapten painting at an unirradiated site.

The studies presented here failed to indicate that local UV-B induced

suppression of CH is dependent on the formation of cis-UCA following UV-B

irradiation. These observations contrast very much with studies examining the

influence of cis-UCA on DTH responses to HSV, implying that the mechanisms of UV-

B induced suppression of CH and DTH responses are different. This is perhaps not

surprising considering that the sensitizing antigens used to induce CH and DTH

responses are different: one being a live organism and the other a chemical hapten.

Thus, it would be interesting to investigate whether the dose response and kinetics

of generation of UV-B and cis-UCA induced suppression of DTH responses alter when

sensitizing doses of inactivated HSV are administered topically or s.c. to mice.

The recent availability of an anti-cis-UCA monoclonal antibody generated

during the course of these studies provides an excellent opportunity to clarify the

role and mode of action of cis-UCA in UV-B induced suppression of CH and DTH

responses. The influence of sis-UCA in suppressing DTH and CH responses could be

examined by administering sufficient concentrations of this monoclonal antibody

locally or systemically prior to UV-B irradiation. Whether the direct or indirect

effects of cis-UCA on DTH or CH responses is mediated through an

alteration/decrease in the antigen-presenting cell function of epidermal LC, spleen

DC or lymph node DC, could be assessed by injecting anti-cis-UCA monoclonal

antibodies locally or systemically prior to UV-B exposure of mice and then
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examining the ability of these antigen-presenting cells to stimulate secondary

lymphoproliferative responses in vitro. A novel finding reported here is that

following UV-B irradiation, cis-UCA can be detected in the circulation, implying

that this molecule has the potential to act systemically i.e. at sites within the body,

distant from the site of production. Thus, establishing if this molecule can reach

local lymph nodes and/or the spleen would provide valuable information about its

possible mode of action. This could be achieved by mechanical disaggregation of

lymphoid organs from UV irradiated mice through a stainless steel wire mesh and

testing the cell-free supernatant, following washing of the cell suspension, using

the inhibition ELISA system described in these studies. It is of considerable interest

to elucidate whether cis-UCA exerts its immunosuppressive effect by interacting

with a receptor expressed on the surface of a specific population of cells present in

the epidermis, dermis, lymph node or spleen. The availability of a monoclonal

antibody specific for the cis-form of UCA provides an ideal opportunity to explore

this possibility.

There is no doubt that susceptibility to the local and systemic

suppressive effects of UV-B radiation is genetically determined in the mouse. Thus,

carrying out the afore mentioned investigations, while at the same time examining

differences between UV-B resistant and UV-B susceptible strains of mice, would

provide a greater understanding of the mechanism(s) of UV-B induced

immunosuppression.
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SUMMARY

Irradiation with ultraviolet-B light (UV-B) suppresses some cell-mediated immune responses to a
variety of antigens, including contact sensitizers. Following UV irradiation there is modulation of
Langerhans' cells' markers and keratinocytes are induced to synthesize and secrete tumour necrosis
factor-a (TNF-a). Cw-urocanic acid (c«-UCA) has been suggested as a photoreceptor for UV and has
been demonstrated to suppress immune responses in several experimental systems. UCA is found
naturally in the stratum corneum as the trans-isomer and converts to the c/s-isomer on irradiation. In
the present study the migration ofdendritic cells (DC) to lymph nodes following UV-B irradiation or
epicutaneous application of UCA isomers was examined in unsensitized mice and mice sensitized
with fluorescein isothiocyanate (FITC). It was found that UV-B irradiation alone induced DC
migration to draining lymph nodes (DLN) and that UV-B irradiation prior to skin sensitization at the
same site enhanced DC migration. A maximum number of DC was present in DLN 48 hr following
irradiation. In sensitized mice, the percentage ofDC bearing FITC and the quantity of FITC per DC
was unaltered by prior UV exposure. In contrast, neither isomer ofUCA had any significant effect on
DC numbers in sensitized or unsensitized mice. It was concluded that UV-B irradiation induced the

migration of DC from the epidermis to draining lymph nodes, an effect possibly mediated by TNF-a
release, while UCA may act by a different mechanism, perhaps via histamine-like receptors in the
epidermis.

INTRODUCTION

ng epicutaneous exposure of mice to skin-sensitizing
Is there is a rapid accumulation ofdendritic cells (DC) in
ting lymph nodes (DLN).1 3 A significant proportion of
found within DLN bear antigen suggesting that they
.ginate from the epidermis and may have an antigen-
ng function.3"5 Topical exposure of mice to 2.4-dinitro-
nzene (DNFB) causes a temporary but marked deple-
-angerhans' cells (LC) from the epidermis.6 In addition
;ome DC which accumulate in DLN following contact
tion contain Birbeck granules, characteristic of LC.5
id other studies indicate that the antigen-bearing DC in
e derived from epidermal LC which travel to the lymph

iviations: CH, contact hypersensitivity; DC, dendritic cells;
yed hypersensitivity; DLN, draining lymph node; DMSO,
sulphoxide; DNFB, 2,4-dinitrofluorobenzene; FITC, fiuores-
iiocyanate; ICAM-I, intercellular adhesion molecule-1; LC,
ns' cells; RPMI-FCS, supplemented RPMI-1640 medium plus
al calf serum; TNF, tumour necrosis factor; UCA, urocanic
B, ultraviolet-B light.

spondence: Dr M. Norval, Dept. of Medical Microbiology,
y of Edinburgh Medical School, Teviot Place, Edinburgh EH8

nodes as veiled cells in the afferent lymph. Recently Kripke et al.
have corroborated this hypothesis by showing that cells from
DLN of athymic nude mice, grafted with allogeneic skin and
contact sensitized through the graft, contain antigen-bearing
DC of graft donor origin.7 However, it is possible that, while
LC initiate contact sensitization under normal circumstances,
skin cells other than LC may be capable of inducing the
sensitization particularly when the potential of LC to present
antigen has been abrogated.8-9

Antigen-bearing DC in DLN are potent stimulators of both
primary and secondary T-lymphocyte proliferative responses in
vitro2M and efficiently induce contact sensitization in naive
animals.3-" A correlation is found between the number of DC
which are present in DLN 24 hr after skin sensitization and the
extent of the primary lymphocyte proliferative response.12

Irradiation with ultraviolet-B light (UV-B) is known to
suppress some cell-mediated immune responses to a variety of
antigens including contact sensitizers (reviewed in ref. 13). It has
been speculated that a UV-induced loss of LC is responsible for
suppression as epidermal LC numbers in UV-irradiated skin
decrease in parallel with a decrease in contact hypersensitivity
(CH) responses.14 However, a number of other studies have not
shown such a correlation15-16 although there is evidence for the
modulation of LC markers after UV irradiation.17
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been reported that UV-B irradiation impairs the
)f CH in some (UV susceptible), but not other (UV
genetically defined strains of mice,18 Susceptibility to
ictated by alleles at the Lps and Tnfa loci which
he amount of tumour necrosis factor-a (TNF-a)
in response to UV-B.19 Recently, TNF-a has been
ct as an important mediator of the suppressive effects
n the induction of CFI.19 Interestingly, there is now
iat keratinocytes synthesize and release TNF-a after
iiation.20

kely that there is a photoreceptor in skin which
le effects of UV irradiation on the immune system,
date, first proposed by De Fabo and Noonan,21 is
cid (UCA), found naturally in the stratum corneum
ws-isomer, which converts to the cw-isomer on
. There is considerable evidence from several experi-
tems that cw-UCA plays an important role in UV-
imunosuppression. For example, ci.v-UCA has been
nodify antigen-presenting cell function in vivo,22 to
elayed hypersensitivity (DH) responses in a murine
erpes simplex virus infection,23-24 to delay rejection of
ttion allografts25-26 and to enhance UV-induced
:ld and malignancy in the hairless mouse.27
tresent study the effects of UV irradiation and UCA
the migration ofDC to DLN have been examined in
d and sensitized mice. In addition the carriage of
d expression of la antigens by the DC have been

MATERIALS AND METHODS

im (H-2k) female mice, aged 6-8 weeks were used
t. The mice were bred and maintained in the Dept. of
licrobiology Animal House, University of Edin-

tiation
irradiated for 30 min under two Philips TL20/12
h gave a dose of 144 mj/cm2 in the range of 270-350
vere irradiated in separate compartments of a high-
ex box to prevent shielding by cage mates. They were
ind their ears unprotected.

ment

K (Sigma Chemical Co., Poole, U.K.) or rfs-UCA
jy preparative thin layer chromatography of UV-B-
fra/is-UCA)28 was dissolved at a concentration of 40
iimethylsulphoxide (DMSO) at 37° for 5 min. The
as then diluted 10-fold in acetone and 25 pt\ applied
o the dorsal surface of both ears. An equal volume of
■date vehicle was applied in the same way to control

witization

i isothiocyanate (FITC; Sigma) was used as a 1%
1:1 acetone: dibutylphthalate. Mice received 25 g\ of
n equal volume of the appropriate vehicle on the
both ears 18 hr before killing.

Isolation, identification and enumeration of lymph nodes DC
Draining auricular lymph nodes were excised, pooled for each
experimental group and a single-cell suspension of lymph node
cells was prepared by mechanical disaggregation through a 200-
mesh stainless steel gauze. Viable cell counts were performed
using 0-5% trypan blue and the cell concentration adjusted to
5 x 106 cells/ml in RPMI-1640 growth medium (Flow Labora¬
tories, Irvine, U.K.) supplemented with 5 x 10 5 M 2-mercapto-
ethanol, 100 IU/ml penicillin, 2 ntM L-glutamine, 100 ^g/ml
gentamicin, 20 /ug/ml fungizone and 10% heat-inactivated foetal
calf serum (RPMI-FCS). DC-enriched populations were pre¬
pared by density gradient centrifugation as described pre¬

viously.3 Briefly, 8 ml of the cell suspension was added to 10 ml
conical-bottom test tubes and was gently underlayed with 2 ml
of 14-5% metrizamide (Nygaard, Oslo, Norway) in RPMI-FCS.
The tubes were then centrifuged for 15 min (600 g) at room
temperature. The DC-enriched population accumulating at the
interface was collected, washed once and resuspended in RPMI -
FCS. The number of DC within the low-buoyant density
fraction was assessed routinely by direct morphological examin¬
ation using light microscopy. For each experimental group, five
counts were made and the mean number of DC present within a
single lymph node was calculated.

Analysis of FITC-bearing DC
DC-enriched preparations derived from draining auricular
lymph nodes of mice whose ears had been exposed to UV-B
irradiation or painted with UCA isomers prior to sensitization
with FITC, were analysed on an EPICS 'C' flow cytometer
(Coulter Electronics, Luton, U.K.) equipped with a 100 mW
argon laser tuned to 488 nm wavelength. A total of 5000 cells
from each sample was analysed at a flow rate of200 cells/second.
DC were identified on a two-parameter histogram measuring
size and side-scatter and then green fluorescence analysed from
a bit map onto a 252 channel histogram using log amplification.
The percentage of FITC+ cells within this population was
measured and also antigen density/cell (fluorescence intensity)
by mean channel analysis.

Ia antigen staining ofDC and FITC-bearing DC
DC-enriched preparations derived from draining auricular
lymph nodes, were washed and 5 x 10J cells stained with anti-
mouse Ia monoclonal antibody (clone 11.5.2.1.9; ECACC,
Porton Down, Salisbury, U.K.) at a dilution of 1:100 for 1 hr on
ice. The cells were then washed and stained with either a sheep
anti-mouse IgG [Ffab'Lfragment] labelled with FITC (Sigma)
at a dilution of 1:40 or a sheep anti-mouse IgG labelled with
phycoerythrin (Sigma) at a dilution of 1:40 for 40 min on ice.
Simultaneously, 5xl04 cells from DC-enriched preparations
were incubated with an irrelevant antibody followed by FITC or

phycoerythrin-labelled secondary antibody to act as back¬
ground controls in the EPICS analysis. The cells were analysed
in an EPICS 'C' flow cytometer (Coulter Electronics) equipped
with 5 W argon laser operating at 488 nm wavelength. To
measure the percentage of DC expressing Ia, the cells were
labelled with anti-la and FITC secondary antibody before
analysis as outlined in the section above. To measure Ia
expression on DC after sensitization with FITC, the cells were
labelled with anti-la and phycoerythrin secondary antibody and
a double-colour analysis carried out in the following manner.
Dichroic mirrors were used to separate light into the 90° light
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scatter detector (500 long pass) and into both red (560 short pass
followed by a 575/25-band pass filter) and green (530/30 band
pass) fluorescence detectors. Any residual spectral overlap of
green fluorescence into the red detector was removed by
electronic compensation.

RESULTS

Effect of UV-B irradiation and cis or trans-UCA on DC
accumulation in DEN of uusensitized mice

After irradiating mice or painting their ears with cis or trans-
UCA, the mice were then killed, their auricular lymph nodes
excised and the number of DC present in each lymph node was
estimated. Table 1, which shows the results of four experiments,
demonstrates that neither isomer of UCA has a consistent effect
on inducing DC migration to DLN, whereas UV-B irradiation
increases DC numbers within the DLN.

induced by F1TC, UV-B irradiation increases DC m
the DLN considerably.

Influence of UV-B irradiation on the percentage of E
FITC and la expression in the DLN

The draining auricular lymph nodes of mice, who;
been exposed to UV-B radiation prior to sensitiz
FITC, were examined for the percentage of DC bet
(Table 4). UV-B irradiation which increased DC
induced by FITC did not influence the percent?
carrying FITC. The mean intensity of staining/cel
bearing DC was found to be unaltered by UV-B irr;
can therefore be concluded that UV-B irradiatio
sensitization increases the number of FITC-bearii

cumulating in the DLN.
It can be seen from Table 4 that UV-B irradiat

effect on the expression of la molecules by DC accui

Time-course of the effect of UV-B irradiation and ds-UCA on

DC migration and la expression

The number of DC present within the DLN of mice at various
times following a single dose of UV-B irradiation of 144 mJ/cm2
was calculated. Figure 1 illustrates that DC migration to DLN
starts to take place between 12 and 24 hr, and reaches a
maximum at 48 hr before decreasing. On the other hand, at
various times after the cutaneous application of cA-UCA, the
numbers of DC were unaltered (Fig. 1).

The number of DC expressing la antigens in the DLN at
various times after UV-B irradiation was examined; the results
are shown in Table 2. The same mean intensity of staining per
cell was found throughout the experiment (data not shown).

Influence of UV-B irradiation and cis or mans-UCA on DC

migration induced by FITC
Irradiated mice or mice painted with UCA isomers were
sensitized on their ears with FITC 18 hr before killing. Their
auricular lymph nodes were removed and the number of DC
present in each lymph node was measured. It can be seen from
Table 3, which shows the results of four independent experi¬
ments, that whilst the isomers have no effect on DC migration

Table I. Effect of UV-B irradiation and cis or trans-UCA on DC

migration to DLN

Treatment at

66 and 42 hr

prior to analysis

DC count/lymph node
experiment

D

Vehicle

c/.v-UCA
trans-UCA

UV-B (144 mJ/cm2)

2850
5162

7040

10,005

2* 3t 4t

2860 2079 1950
3050 2550 2494

4446 2050 2925
9344 9720 9643

Mean + SD

2435 ±488

20,000 -i

10,000

T T—r
20 40 60

Time after treatment (hr)

!

8(

Figure 1. Effect ofUV-B irradiation (■) and cA-UCA (•) ot
of DC migration. The DC count/lymph node in naive mi
background control for UV-B irradiation was 2925. The
lymph node in mice (treated at 48 hr with 25 /tl DMSO one:
as background control for cA-UCA treatment was 3524.

Table 2. The effect of UV-B irradiation on

expression in DC from DLN

Time after UV
irradiation (hr)

% ofcells within the gat
population expressing

9678 + 2721

Untreated DC
12
24

36
48

60

72

93-8
83-6

92-0
94-7

91-8
86-2

915

* 200 /tg of UCA was painted onto each ear.
t 100 ng of UCA was painted onto each ear.

| Significantly different from control group (P< 0 001 by Student's
t-test).

At various times after UV irradiation (single dc
of 144 mJ/cm2) the mice were killed, their auricu
lymph nodes removed and the enriched DC wi
then stained for la.
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Table 3. Influence of UV-B irradiation and cis or trans-UCA on DC migration to DLN induced by FITC

397

DC count/lymph node
experiment Statisticalf

Treatment at FITC at significance
66 and 42 hr 18 hr I 2 3 4 Mean + SD (by Student's t-test)

Vehicle - 6750 8775 4788 8125 7110+1763
Vehicle* + 12,222 13,754 10,196 13,294 12,367 + 1583
100 ng cis-UCA + 15,238 16,406 9111 11,984 13,185 + 3298 NS

100^g trans-UCA + 14,175 19,511 11,500 15,640 15,207 + 3343 NS
UV-B (144 mJ/cm2) + 23,490 20,174 16,422 19,600 19,922 + 2895 FcOOl

t Significance of difference from vehicle group*.
NS, not significantly different from vehicle group.

Table 4. influence of UV-B irradiation on the percentage of DC carrying FITC and expressing la

% of cells within % of cells within* % of cells withinf
Treatment at FITC DC count/ gated population gated population gated population
66 and 42 hr atl8hr lymph node bearing FITC bearing FITC expressing la

Vehicle — 8125
Vehicle + 13,294
UV-B (144 mJ/cm2) + 19,600

40

34

38 + 8

38 + 5

91+5

85 + 7

87 + 9

* Expressed as arithmetic mean of four experiments + 1 SD.
t Expressed as arithmetic mean of two experiments + 1 SD.

; a results of FITC induction. In addition, by using
>ur fluorescence, UV-B irradiation did not alter la
on FITC-bearing DC (data not shown).

DISCUSSION

reported here demonstrate that UV-B irradiation
ior to skin sensitization at the same site, induces or
Cmigration to DLN. In addition our data show that
unable to induce similar changes, indicating that the
of its action may be different from irradiation.
7 are the major antigen-presenting cells of the skin
rucial role in the induction ofCH responses, they are
ndidates to mediate the immunosuppressive effects
adiation. It has been suggested that the immobiliz-
7 at UV-B-irradiated sites may contribute to the
lice to develop CH when hapten is painted subse-
:hese sites.29 30 Bigby et al,29 reported that there were
tearing antigen-presenting cells in DLN, if the skin
s hapten was painted had been exposed previously to
s known that UV-B irradiation stimulates the
id secretion of TNF-a by keratinocytes.20 Vermeer
t found that TNF-a inhibited the induction ofCH to

ised on this observation and the demonstration that
radermal TNF-a altered the morphology of epider-
rmeer and Streilein concluded that TNF-a prevents
sitization following UV-B irradiation by immobili-
:hin the epidermis.30 In contrast to these findings,
sented here indicate that UV-B irradiation increases
of migrating DC induced by FITC, while the

percentage of DC bearing antigen in DLN is unaltered. Also, we
have found that treatment of mice with dexamethasone, a

transcriptional inhibitor of TNF-a, prior to UV irradiation
inhibits DC migration to DLN (A. M. Moodycliffe, I. Kimber
and M. Norval, unpublished data). The recent demonstration
by Cumberbatch and Kimber31 that TNF-a induces DC migra¬
tion to DLN, supports the concept that one of the effects ofUV-
B exposure is to induce DC accumulation in DLN by stimulat¬
ing TNF-a release. Further support is provided by Vermeer and
Streilein who have shown that both intradermal TNF-a and
UV-B irradiation reduce the density of Ia+ cells in the
epidermis,30 suggesting that UV-B exposure may induce LC
migration through the local release of TNF-a.

It is not possible to conclude from our results whether or not
the induction of DC migration by UV-B radiation to DLN,
either by itself or in conjunction with some other important
components(s), is responsible for UV-B induced suppression of
CH responses. However, we have shown that, following UV-B
irradiation, there was a greater number of antigen-bearing DC
entering the DLN than would occur with skin sensitization
alone. Ia expression was unaffected suggesting that antigen-
presenting cell function may not be lost, although it could be
altered. There is evidence, that during migration from the skin to
lymphoid tissue, LC are subject to phenotypic and functional
maturation.32 The functional maturation of LC in vitro is
stimulated by granulocyte-macrophage colony-stimulating fac¬
tor,33 a product of keratinocytes.34 It is possible that, following
UV irradiation, the migrating DC do not have time to mature
into fully functional antigen-presenting cells. T-cell interactions
with DC may then be affected, for example, by altered ability to
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synthesize and secrete accessory molecules, such as interlcukin-1
(IL-1) and IL-6, or by altered expression of appropriate
adhesion molecules, such as intercellular adhesion molecule-1
(1CAM-1) and LFA-I. Indeed it has been shown recently that
membrane ICAM-1 is expressed on lymph node DC, while it is
present in only very low amounts on epidermal LC; increased
ICAM-1 expression may be necessary for the development of
LC into effective antigen-presenting cells.35

Unlike UV-B irradiation, there was little, if any, effect on
DC migration induced by the UCA isomers even at larger than
physiological doses (100-200 /tg/mouse). C3H mice contain
approximately 20 /tg/cm2 UCA in the epidermis, most as the
rranj-isomer, and about 50% converts into the ew-isomer after
UV-B irradiation of 144 mJ/cm2.36 The result indicates that cis-
UCA may mediate its effect on the immune system in a rather
different way than via TNF-a production and DC migration.
Indeed cw-UCA is a poor suppressor ofCH compared with UV-
B irradiation, while it is highly effective at suppressing DH
responses. In a murine model of HSV infection c/.?-UCA
suppresses DH even at doses of as little as 1 /rg/mouse.28 By
using structural analogues of UCA and histamine receptor
agonists and antagonists, we have shown that cw-UCA is likely
to act via histamine-like receptors in the epidermis.28-37 In
addition there is some evidence that immune responses gener¬
ated in DH and CH may be different. For example irradiation of
keratinocytes with UV of different wavebands induced the
release of mediators which were selective in their ability to
induce suppression of CH and DH.38
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Abstract

Cis-urocanic acid fcis-UCA). which is formed from the naturally occurring trans-isomer on

ultraviolet (UV) irradiation, has been suggested as a photoreceptor for and mediator of the

suppressive effects of UV irradiation on systemic immune responses. Trans-UCA is located

predominantly in the stratum corneum, and the extent of isomerization to cis-UCA may be

analysed by high performance liquid chromatography of skin extracts. Such an analysis is not

suitable for other tissues. In this study a murine monoclonal antibody to cis-UCA was

prepared and tested by ELISA using UCA isomers conjugated to protein as antigens. The

interaction of the antibody with structural analogues of UCA was assessed by competitive

inhibition ELISA which indicated that the antibody had a high specificity for cis-UCA.

Screening of sera at various times after UVB irradiation of mice by competitive inhibition

ELISA using the monoclonal antibody showed that cis-UCA was present, probably in an

unbound form, for at least 2 days after the exposure. Thus, cis-UCA produced in the

epidermis following UVB irradiation reaches the serum a few hours later. The implications of

this finding for the generation of suppressed immune responses are discussed.

Kev Words.

Urocanic acid isomers

Urocanic acid analogues

Monoclonal antibody

ELISA and competitive inhibition ELISA.
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Introduction

Irradiation with ultraviolet-B light (UVB) results in suppression of some T cell mediated

■immune responses to antigens encountered within a short period after the exposure. This has

■been shown in a variety of species including man [reviewed in 1] and mice [reviewed in 2].

■Several hypotheses have been suggested to explain the immunomodulation, one of which

■involves initiation by a specific photoreceptor, urocanic acid (UCA), in the skin which then

■mediates immunosuppression3. UCA is produced in the stratum corneum during

ikeratinization by the action of the enzyme histidine ammonia-lyase*. It occurs naturally as

■the trans-isomer and represents a major UV absorbing component of skin. On UV irradiation

iin vitro or in vivo. trans-UCA converts to cis-UCA in a dose-dependent manner until a

iphotostationary state is reached5"7. Evidence from a variety of experimental systems, most in

imice, indicates that cis-UCA mimics a number of the effects of UV irradiation on immune

■responses. These include modification of antigen presenting cell function in vivo*,

suppression of contact hypersensitivity9-10 and delayed hypersensitivity11 responses, delay in

rejection of transplant allografts12 and enhancement of UV-induced tumour yield and

malignancy13.

(t is not known exactly how cis-UCA alters immune function or, indeed, if it is confined

solely to the epidermis after irradiation. High performance liquid chromatography (HPLC)

-ras been used successfully to quantify UCA isomers in skin extracts14'16. However, it has

■lot proved possible to analyse other tissues easily by HPLC because of the complexity of

.ubstances present and the fact that UCA represents a major UV absorbing constituent only in

-he skin. One approach has been to label UCA with UC and to follow its distribution after

■opical application in mice17. The novel approach, used in the present study, was to prepare

i monoclonal antibody with specificity for cis-UCA and to use this to detect cis-UCA in

-erum following UVB irradiation of mice.
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Materials and Methods

1 ITA isomers and analogues

Trans-UCA was purchased from Sigma (Poole, Dorset, UK) and as-UCA prepared from it as

outlined in Norval et al 18. The following analogues of UCA were synthesized as described

previously1*: £1S and trans-2-methvl urocanic acid, cis and trans-3-furanacrvlic acid, cis

and trans-2-thiopheneacrylic acid, cis and trans-3-thiophenoacrvlic acid and dihydrourocanic

acid. Histidine and histamine were purchased from Sigma. The trans-isomer of

pyridine-2-acrylic acid was prepared by Knoevenagel condensation of

pyridine-2-carboxaldehyde with malonic acid in the presence of pyridine.

Trans-pyridine-3-acrylic acid was prepared similarly from pyridine-3-carboxaldehyde.

Cis-pvTidine-2-acrylic acid was prepared from the corresponding trans-isomer by irradiation

followed by thin layer chromatography using a solvent system of 90% ethyl acetate, 8%

methanol and 2% formic acid. The solvent was removed under vacuum and the cis-isomer

purified on a dry-flash column eluted with ethyl acetate followed by sublimation after

removal of the solvent. The cis-isomer of pyridine-3-acrylic acid was prepared similarly

from the corresponding trans-isomer except it was recrystallised from ethanol in the final

step. The identity and purity of the compounds were established as outlined in Norval d

al1*- The structures of these molecules are shown in Fig. 1.

Conjugates

Cis and trans-UCA were coupled to keyhole limpet haemocyanin (KLH; Sigma) and bovine

serum albumin (BSA; Sigma) using l-ethyl-3-(3-dimethylamino-propyl) carbodwnide as a

condensing agent19 followed by purification by FPLC using a Sephadex G25 column eluted

with sodium borate buffer (200mM, pH 9). The hapten-carrier conjugate was obtained by

freeze drying of the protein-containing fractions. Histamine was coupled to BSA similarly.
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Trans-(2.5-3Hl UCA was prepared from L-(2,5-5H] hislidine using the enzyme histidine

ammonia-lyase (Sigma), then irradiated and the labelled isomers separated by HPLC1* and

counted. Each was reacted with KLH and BSA in the presence of the relevant cold UCA

isomer, and the final conjugate counted to give an estimate of the number of hapten molecules

per molecule of protein. The epitope density was found to be 62 trans-UCA molecules and

29 cis-UCA molecules per KLH molecule, and 4.5 trans-UCA molecules and 3.7 cis-UCA

molecules per BSA molecule.

Preparation of monoclonal antibody

Female Balb/c mice, aged 6 weeks and bred in the Department of Medical Microbiology

Animal House, were immunized by subcutaneous injection of 200 cis-UCA-KLH

conjugate in 0.1 ml Freund's incomplete adjuvant. A first booster injection consisting of

200 /ig cis-UCA-KLH conjugate in 0.2 ml sterile 0.01 M phosphate buffered saline pH 7.2

(PBS) given intraperitoneally was administered after 36 days, followed by a second after 61

days and a third after 166 days. Mice were bled 7 days after the second booster and sera

screened for anti-cis-UCA antibody by ELISA (see below). Mice showing antibody titres to

cis-UCA were killed 3 days after the third booster and spleen cells fused with NS-0 mouse

myeloma cells (a gift from Dr M. McCann, Department of Surgery, Edinburgh University)

using a standard fusion technique. Culture supernatants were screened 14 days after fusion

for antibodies to cis-UCA. The single positive culture was cloned and re-cloned by limiting

dilution. The immunoglobulin subclass of the monoclonal antibody was determined by an

isotvping kit (Amersham).

ELISA

ELISA plates (Gibco) were coated overnight at 4*C with cis-UCA-BSA conjugate diluted in

0.1M carbonate-bicarbonate buffer pH 9.6 (5 /ig in 100/il per well). After extensive washing
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with PBS-Tween pH 7.2, lOOpl hybridoma culture supernatant or serum diluted as appropriate

in PBS-Tween containing 1% BSA was added and incubation continued for 3h at room

temperature, followed by washing, incubation with anti-mouse IgG alkaline phosphatase

conjugate (Sigma) and development with p-nitrophenyl phosphate. Absorbance was measured

at 405nm. Tissue culture medium or pre-bleed serum, as appropriate, were used as negative

controls. The test was considered positive if the absorbance was more than the mean of the

negative control * 3 SD of the mean.

In other assays trans-UCA-BSA conjugate, histamine-BSA conjugate. KLH or BSA were used

as antigen, all at 5 /xg in lOOfil per well.

Competitive inhibition ELISA

Wells of an ELISA plate were coated with cis-UCA-BSA conjugate at 0.08 /xg per well and

incubated overnight at 4*C. After extensive washing with PBS-Tween, 50/xl of the

appropriate inhibitor was added to triplicate wells or more, followed by 50/xl of a 1/400

dilution of the hybridoma culture supernatant. The inhibitors were dissolved in DMSO at

37*C for 5 min at concentrations of 20, 5 or 1 mg/ml and then diluted appropriately in

PBS-Tween containing 1% BSA. The plates were incubated for 3h at room temperature,

washed and developed as above.

The negative control contained 100/xl PBS-Tween with 1% BSA. The positive control

contained 50^1 of the diluted hybridoma culture supernatant and 50/xl of a dilution of DMSO

in PBS-Tween containing 1% BSA, prepared as for the inhibitors above. The inhibition of

binding of the monoclonal antibody was calculated as:

(mean absorbance test - mean absorbance -ve control)
% inhibition = lOOx 1- —"

(mean absorbance +ve control - mean absorbance -ve control)

The SD from the mean absorbances of test and positive samples was less than 10%.

6



Screening of murine sera for cis-UCA

C3Hf Bu/Kam mice were bred and maintained in the Department of Medical Microbiology

Animal House. The dorsal sides of female mice, aged 7-8 weeks, were shaved and they were

irradiated once with 216 mJcm*2 UVB or 144 mJm"2 UVB twice with a 24 h interval between

exposures. The conditions of irradiation and the lamp used have already been described2®.
Five hours before irradiation the mice were eye bled and the sera pooled to give the pre-bleed

sample. At various times following irradiation, the mice were bled from the vena cava, serum

samples from 2 mice being pooled for each time point.

ELISA plates were coated with qs-UCA-BSA conjugate at 0.08 Atg/well as already described.

After washing, pre-bleed serum or sera from irradiated mice were diluted 1:3 in PBS-Tween

with 1% BSA and 50 /il added to each of 6 wells or more followed by 50 /xl hybridoma culture

supernatant diluted appropriately. The plates were incubated for 3 h at room temperature,

washed and developed as above. One control contained 50 j*l pre-bleed serum diluted 1:3 in

PBS-Tween with 1% BSA and 50 ti\ PBS-Tween with 1% BSA. This value was subtracted

from the test value. Another control consisted of hybridoma culture supernatant and

pre-bleed serum diluted 1:3 and containing various concentrations of cii or trans-UCA.

In a further experiment a group of 10 mice were eye bled and the serum pooled. After 5

hours the shaved mice were UVB irradiated with 216 mJcm'2 and 25 h later they were bled

from the vena cava and the serum pooled. Control mice were treated similarly but without

irradiation. Half of each serum sample was dialysed against PBS at 4*C for 14 h using

Visking tubing with molecular weight cut off in the range 12,000 to 14,000. The volume of

the dialysed samples was measured and they were diluted appropriately in PBS-Tween with

1% BSA to be equivalent to 1:3 of the original volume. The undialysed samples were also

diluted 1:3 in the same diluent. A competitive inhibition ELISA was carried out as above.
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Results

Preparation of monoclonal antibody against cis-UCA

Mice were immunized with cis-UCA-KLH and spleen cells from mice showing antibody titres

to cis-UCA-BSA by ELISA were fused with NS-0 cells. One hybridoma was found which

produced an antibody recognising cis-UCA-BSA conjugate on ELISA. After cloning by

limiting dilution twice, dilutions of the hybridoma culture supernatant were tested by ELBA,

using 5 ng cis-UCA-BSA per well as antigen. The highest dilution which gave a mean

absorbance more than the mean of an equivalent dilution of culture medium + 3 SD of the

mean was 256,000. Using an isotyping kit, the monoclonal antibody was found to be IgG,

Kappa.

This culture supernatant was tested for activity against other conjugates and proteins as

antigens as shown in Table 1. Trans-UCA-BSA and histamine-BSA were not recognized, nor

was BSA or KLH.

Specificity of the monoclonal antibody

A checkerboard titration was performed with doubling dilutions of both cis-UCA-BSA

starting at 1.25 ng per well, and the monoclonal antibody starting at 1:100 (Fig. 2).

Antigen at 0.08 pg per well and antibody at a dilution of 1:400 gave an absorbance of 0.30.

These conditions were chosen for the following competitive inhibition ELISAs to demonstrate

the specificity of the monoclonal antibody. In these tests UCA analogues or conjugates were

added to the well together with the monoclonal antibody and the inhibition of binding of the

monoclonal antibody to cis-UCA-BSA calculated. The results are shown in Table 2 where it

can be seen that, while cis-UCA inhibited the binding of the monoclonal antibody to the

antigen down to a level of 0.1 /ig per well, trans-UCA had little effect in comparison;

inhibition was only apparent if trans-UCA was present at 5 /ig per well. The only UCA
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analogue to show any inhibition in binding was cis-2-methvl-UCA. again at the high

concentration of 5 /xg per well. Trans-2-methvl-UCA had no effect. Qs and

trans-UCA-KLH conjugate both had inhibitory activity.

.Screening of murine sera for cis-UCA

Initially various amounts of ds and trans-UCA were added to murine serum to obtain a

standard curve for the quantification of UCA isomers using the competitive inhibition ELISA.

The result of one such experiment is shown in Fig.3. It may be seen that amounts of

cis-UCA between 0.75 /xg and 0.1 /xg may be detected quantitatively by this method, while

trans-UCA is not detected at all.

The assay was then applied to the measurement of cis-UCA in serum at various times after

UVB irradiation of mice (Table 3). In the first experiment, after a single UVB exposure, the

inhibition in binding of the monoclonal antibody indicated a maximum amount of cis-UCA in

the serum 25 h after irradiation, equivalent to approximately 0.1 /xg cis-UCA in each well of

the assay i.e. about 6 /xg cis-UCA per ml serum. In the second experiment after two

exposures to UVB, cis-UCA was detected in the serum 1 h after the second irradiation and

reached a maximum at 5 h of approximately 30 /xg per ml serum.

It was not known whether the cis-UCA in the serum was present in a free form or conjugated

to another molecule. To test this, the serum from irradiated mice was dialysed and used in a

competitive inhibition ELISA (Table 4). It can be seen that there was inhibition of binding

of the monoclonal antibody to the antigen in the presence of serum from irradiated animals

but this inhibition was removed by dialysis of the serum. Therefore cis-UCA in the serum of

irradiated animals was in an unbound form or conjugated to a molecule with molecular weight

below 12,000.
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Discussion

To define the role of cis-UCA in UV-induced immunosuppression, it is necessary to identify

its site of action and cellular target- In the present study, a monoclonal antibody with

specificity for cis-UCA was developed and applied to the detection of UCA in serum of

irradiated mice.

UCA isomers were conjugated to KLH and BSA by the carbodamide method which was

chosen for its convenience and simplicity. One problem which can occur is the precipitation

of protein which has become denatured by cross-linking but very little precipitation was, in

fact, observed. As UCA is amphoteric with both a basic imidazole ring and an acidic

carboxylic acid group, there is the possibility of coupling through either group to the

carrier protein to form two different structures (Fig. 4). It is not known which of these

forms was synthesized or which the monoclonal antibody recognized. The epitope density of

the conjugates was fairly light, as measured by radioactive labelling, but the cis-UCA-KLH

used for immunization elicited a good antibody response and the conjugates used as antigens

in ELISAs proved sensitive and specific. A minimum number of haptens per protein of 15-30

is recommended for the induction of antibodies19, yet as few as 5 have been reported to give

good IgG responses21.

From Table 1, it may be seen that the monoclonal antibody recognized only cis-UCA-BSA

conjugate as antigen and this was corroborated in the competitive inhibition ELISAs (Table 2)

where cis-UCA competed, even at low concentrations, with the antigen bound to the well for

binding of the antibody. Trans-UCA only competed when it was present at high

concentration. The only UCA analogue out of the fifteen tested which showed any inhibitory

activity was cis-2-methvl UCA, although it was not so active as cis-UCA itself. When the

UCA-KLH conjugates were used as competitors, both cis-UCA-KLH and trans-UCA-Kl-H

demonstrated inhibitory activity. From the inhibition data in Table 2, the UCA-KLH

conjugates were recognised approximately 1000-fold better in molar terms than cis-UCA
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itself. As KLH itself does not interact with the monoclonal antibody (Table 1), this result

implies that the antibody is specific for the combined structure of UCA and the region on the

carrier to which it is bound. In this state it cannot distinguish trans or cis-UCA-KLH

conjugates. However, the isomers alone or conjugated to another protein were distinguished

and we conclude that the monoclonal antibody is specific for cis-UCA unless trans-UCA is

present in large quantities or trans-UCA is conjugated to KLH.

Analysis of UCA isomers in skin extracts by HPLC is straightforward and quantitative; in our

hands the sensitivity of detection in homogenised ears is about 0.14 /rM, representing 1 ng/mg

wet weight tissue14. The identificationof such isomers in serum by this method proved

impossible due to the complexity of UV absorbing substances present. Use of the monoclonal

antibody gave us the opportunity to assay cis-UCA in serum of irradiated mice by competitive

inhibition ELISA. The sensitivity of detection was about 40 /iM. However, despite the low

sensitivity in comparison with HPLC, cis-UCA was detected in serum soon after irradiation,

its concentration diminishing over the next two days. By dialysis of the serum, cis-UCA was

demonstrated to be in a dialysable form and therefore unbound or conjugated to a small

molecule, and unlikely to be conjugated to serum proteins or membranes. It has been reported

that radiolabeled cis-UCA can be detected in urine of mice 24 h after topical application [D.

Hug and J.K. Hunter, quoted in22]. In addition Reeve et al.17 have found low but significant

levels of 14C in serum of mice after painting them with UC-UCA synthesized from

[2-uC]-malonic acid. The counts were highest in animals that were UV-B irradiated after

painting, and were present 2 h after exposure and not 6 days later. Electrophoresis of serum

proteins suggested that 14C was associated with specific proteins.

Thus there is evidence that a proportion of cis-UCA formed in the epidermis on UV

irradiation reaches the serum either through capillaries or lymph, and may also be excreted in

the urine. The cellular target for cis-UCA may be in the skin but, as a result of the

systemic spread of cis-UCA after irradiation, it may act in lymph nodes or spleen, there to

influence interactions of antigen presenting cells and T cells. We are in the process of
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analysing murine tissues from these sites for cis-UCA and also have the opportunity to use the

monoclonal antibody in experiments to block the effects of UV irradiation on the immune

system.

12



References

1. Baadsgaard O. (1991) In vivo ultraviolet irradiation of human skin results in profound

pertubation of the immune system. Arch Dermatol 127. 99.

2. Kripke M.L. (1984) Immunological unresponsiveness induced by ultraviolet radiation.

Immunol Rev 2Q, 87.

3. De Fabo E.C. and Noonan F.P. (1983) Mechanism of immune suppression by ultraviolet

irradiation in vivo. I. Evidence for existence of a unique photoreceptor in skin and

its role in phoioimmunology. J Exp Med 157. 84.

4. Taylor R.G., Levy H.L. and Mclnnes R.R. (1991) Histidase and histidinemia; clinical and

molecular considerations. Mol Biol Med &, 101.

5. Anglin J.H., Bever A.T., Everett M.A. and Lamb J.H. (1961) Ultraviolet-light induced

alterations in urocanic acid in vivo. Biochim Biophys Acta 408.

6. Baden H.P. and Pathak M.A. (1967) The metabolism and function of urocanic acid in

skin. J Invest Dermatol 48. 11.

7. Morrison H. (1985) Photochemistry and photobiology of urocanic acid. Photodermatol £,

179.

8. Noonan F.P., De Fabo E.C. and Morrison H. (1988) Cis-urocanic acid, a product formed

by ultraviolet-B irradiation of the skin, initiates an antigen presentation defect in

splenic dendritic cells in vivo. J Invest Dermatol 2Q, 92.

9. Harriott-Smith T.G. and Halliday W.J. (1988) Suppression of contact hypersensitivity by

short-term ultraviolet irradiation: EL The role of urocanic acid. Clin Exp

Immunol 22., 174.

10. Kurimoto I. and Streilein J.W. (1992) Cis-urocanic acid suppression of contact hyper¬

sensitivity induction is mediated via tumour necrosis factor-alpha. J Immunol 148.

3072.

11. Ross J.A., Howie S.E., Norval M., Maingay J. and Simpson T.J. (1986) UV-irradiated

urocanic acid suppresses delayed type hypersensitivity to herpes simplex virus in

mice. J Invest Dermatol 82, 630.



12. Gruner S., Diczcl W., Stoppe H., Oesterwitz H. and Henke W. (1992) Inhibition of skin

allograft rejection and acute graft-versus-host disease by cis-urocanic acid. J

Invest Dermatol 2S. *59.

13. Reeve V.E., Greenoak G.E., Canfield PJ., Boehm-Wilcox C. and Gallagher C.H. (1989)

Topical urocanic acid enhances UV-induced tumour yield and malignancy in the

hairless mouse. Photochem Photobiol 4&, 459.

14. Norval M., Mclntyre C.R., Simpson T.J.. Howie S.E.M. and Bardshiri E. (1988)

Quantification of urocanic acid isomers in murine skin during development and after

irradiation with ultraviolet light. Photodermatol £, 179.

15. Juhlin L., Shroot B.. Martin B. and Caron J-C. (1986) Reduced levels of histidine and

urocanic acid in suction blister fluids from patients with psoriasis. Acta Derm

Venereol (Stockh) ££, 295.

16. Jansen C.T., Lammintausta K., Pasanen P., Neuvonen K., Varjonen E., Kalimo K. and

Ayras P. (1991) A non-invasive chamber sampling technique for HPLC analysis of

human epidermal urocanic acid isomers. Acta Derm Venereol (Stockh) H, 143.

17. Reeve V.W., Bosnic M., Reilly W.G. and Ley R.D. (1991) Urocanic acid photobiology in

the hairless mouse. Photochem Photobiol 88S.

18. Norval M., Simpson T.J., Bardshiri E. and Howie S.E.M. (1989) Urocanic acid analogues

and the suppression of the delayed type hypersensitivity response to herpes simplex

virus. Photochem Photobiol 42, 633.

19. Bauminger S. and Wilchek M. (1980) The use of carbodBmides in the preparation of

immunizing conjugates. Methods in Enzymol 7Q, 151.

20. Howie S., Norval M. and Maingay J. (1986) Exposure to low dose ultraviolet radiation

suppresses delayed-type hypersensitivity to herpes simplex virus in mice. J Invest

Dermatol Si, 125.

21. Klaus G.G. and Cross A.M. (1974) The influence of epitope density on the immunological

properties of hapten-protein conjugates. I. Characteristics of the immune response

to hapten-coupled albumen with varying epitope density. Cell Immunol 14, 226.

14



22. Noonan F.P. and De Fabo E.C. (1992) Immunosuppression by ultraviolet B radiation:

initiation by urocanic acid. Immunol Today 12, 250.

15



Tablet
.

Binding of monoclonal antibody (1:1600 dilution) to various antigens (5 pg per well)
measured by ELISA.

cis-UCA-BSA

trans-UCA -BSA

histamine-BSA

BSA

KLH

Absorbance ± SD

0.408 ♦ 0.015

0.044 ♦ 0.005

0.049 ♦ 0.011

0.037 ♦ 0.005

0.060 ± 0.005
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Tabic I

Competitive inhibition ELISA to test effects of UCA analogues and conjugates on binding of
monoclonal antibody (1:400 dilution) to ciS~UCA-BSA conjugate (0.08 fig per well).

% inhibition of binding

tig analogue or conjugate per well 5 1 0.1 0.03

cis-UCA 100 80 16 0

trans-UCA 27 0 0 0

histamine ND 0 0 0

histamine-BSA ND 0 0 ND

Cis-UCA-KLH ND 96 60 21

trans-UCA-KLH ND 83 6 2

cis-2-methvl-UCA 59 6 0 0

trans-2-methvl-UCA 0 0 0 0

Cis and trans pyridine-2-acrylic acid, cii and trans pyridine-3-acrylic acid, cis and
trans-2-furanacrvlic acid, cis and trans-2-thiophenoacrylic acid, cis and
trans-3-thiopheneacrvlic acid, dihydrourocanic acid and histidine (all at 1 fig and 0.1 fig per
well) did not inhibit the binding of the monoclonal antibody.

ND = not done
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Tabic 4

Competitive inhibition ELISA (conditions as in Table 3) to assay cis-UCA in dialysed and
undialysed serum 25 h after irradiation of mice with 216 mJcm'2

Serum sample Absorbance % inhibition of binding

Prebleed : undialysed 0.1491

Prebleed : dialysed 0.1092

Post-irradiation: undialysed 0.085s 43

Post-irradiation: dialysed 0.108* 0

5 significantly different from 1 (p < 0.001; Student's t test)
* not significantly different from2 (p > 0.01; Student's t test)
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legends for Figure

Fig. 1. Structure of urocanic acid isomers and analogues.

Fig. 2. Binding of monoclonal antibody to cis-UCA-BSA conjugate at concentrations of 1.26

(O), 0.63 ( o ), 0.32 ( ■ ), 0.16 (A ), 0.08 ( A) and 0.04 ( * ) jig per well by

ELBA.

Fig. 3. Standard curve showing the effect of varying concentrations of cis-UCA in serum in

the competitive inhibition ELISA. The monoclonal antibody was used at a dilution

of 1:400 and the cis-UCA-BSA con jugate at 0.08 jig per well. Trans-UCA. added at

1 jig and 0.5 jig per wel^showed absorbances of 0.176 and 0.188 respectively.

Fig. 4. Possible modes of coupling of trans-UCA to a protein carrier.
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