13 research outputs found

    Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth.

    Get PDF
    Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts

    An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors

    Get PDF
    Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines

    Metabolic effects of caffeine in humans: lipid oxidation or futile cycling?

    No full text
    BACKGROUND: Caffeine ingestion stimulates both lipolysis and energy expenditure. OBJECTIVES: Our objectives were to determine whether the lipolytic effect of caffeine is associated with increased lipid oxidation or futile cycling between triacylglycerol and free fatty acids (FFAs) and whether the effects of caffeine are mediated via the sympathetic nervous system. DESIGN: Respiratory exchange and [1-(13)C]palmitate were used to trace lipid oxidation and FFA turnover in 8 healthy, young men for 90 min before and 240 min after ingestion of placebo, caffeine (10 mg/kg), or caffeine during beta-adrenoceptor blockade. RESULTS: During fasting conditions, there were few differences in measured variables between the 3 tests. During steady state conditions (last hour of the test) after ingestion of caffeine, lipid turnover increased 2-fold (P < 0.005), and the mean (+/-SEM) thermic effect was 13.3 +/- 2.2% (P < 0.001), both of which were greater than after ingestion of placebo or caffeine during beta-adrenoceptor blockade. After ingestion of caffeine, oxidative FFA disposal increased 44% (236 +/- 21 to 340 +/- 16 micro mol/min), whereas nonoxidative FFA disposal increased 2.3-fold (455 +/- 66 to 1054 +/- 242 micro mol/min; P < 0.01). In postabsorptive conditions, 34% of lipids were oxidized and 66% were recycled. Caffeine ingestion increased energy expenditure 13% and doubled the turnover of lipids, of which 24% were oxidized and 76% were recycled. beta-Adrenoceptor blockade decreased, but did not inhibit, these variables. CONCLUSIONS: Many, but not all, of the effects of caffeine are mediated via the sympathetic nervous system. The effect of caffeine on lipid mobilization in resting conditions can be interpreted in 2 ways: lipid mobilization alone is insufficient to drive lipid oxidation, or large increments in lipid turnover result in small increments in lipid oxidation

    Metabolic effects of caffeine in humans: lipid oxidation or futile cycling?

    No full text
    BACKGROUND: Caffeine ingestion stimulates both lipolysis and energy expenditure. OBJECTIVES: Our objectives were to determine whether the lipolytic effect of caffeine is associated with increased lipid oxidation or futile cycling between triacylglycerol and free fatty acids (FFAs) and whether the effects of caffeine are mediated via the sympathetic nervous system. DESIGN: Respiratory exchange and [1-(13)C]palmitate were used to trace lipid oxidation and FFA turnover in 8 healthy, young men for 90 min before and 240 min after ingestion of placebo, caffeine (10 mg/kg), or caffeine during beta-adrenoceptor blockade. RESULTS: During fasting conditions, there were few differences in measured variables between the 3 tests. During steady state conditions (last hour of the test) after ingestion of caffeine, lipid turnover increased 2-fold (P < 0.005), and the mean (+/-SEM) thermic effect was 13.3 +/- 2.2% (P < 0.001), both of which were greater than after ingestion of placebo or caffeine during beta-adrenoceptor blockade. After ingestion of caffeine, oxidative FFA disposal increased 44% (236 +/- 21 to 340 +/- 16 micro mol/min), whereas nonoxidative FFA disposal increased 2.3-fold (455 +/- 66 to 1054 +/- 242 micro mol/min; P < 0.01). In postabsorptive conditions, 34% of lipids were oxidized and 66% were recycled. Caffeine ingestion increased energy expenditure 13% and doubled the turnover of lipids, of which 24% were oxidized and 76% were recycled. beta-Adrenoceptor blockade decreased, but did not inhibit, these variables. CONCLUSIONS: Many, but not all, of the effects of caffeine are mediated via the sympathetic nervous system. The effect of caffeine on lipid mobilization in resting conditions can be interpreted in 2 ways: lipid mobilization alone is insufficient to drive lipid oxidation, or large increments in lipid turnover result in small increments in lipid oxidation
    corecore