33 research outputs found

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Study of the ecological factors involved in parasitoid host range modulation

    No full text
    Les parasitoïdes sont des insectes dont le cycle de vie se divise en (i) un stade adulte libre durant lequel la femelle dépose des œufs dans, sur ou à proximité des hôtes et (ii) des stades immatures parasites durant lesquels les larves se développent en consommant leur hôte. Ils sont impliqués dans la régulation de la population de leur(s) hôte(s) et sont largement utilisés en lutte biologique pour réduire les dégâts causés par des ravageurs de cultures dans les agroécosystèmes. L’intensité de cette régulation dépend notamment de la gamme d’hôtes du parasitoïde c.à.d. le nombre d’espèces hôtes différentes dans lesquels il est capable de compléter son développement. La gamme d’hôtes théorique d’un parasitoïde a été largement étudiée et est déterminée par sa capacité à localiser, reconnaître et parasiter son hôte (gamme d'hôtes comportemental) et/ou sa capacité à utiliser les ressources de l’hôte et à contourner ses défenses immunitaires (gamme d'hôtes physiologiques). Cependant, les caractéristiques biotiques et abiotiques environnementales, pouvant potentiellement impacter les traits comportementaux et physiologiques des parasitoïdes et finalement la gamme d’hôtes théorique de ces derniers, ont été très peu étudié. C’est dans ce contexte que j’ai développé ma thèse avec pour but principal d’étudier l’impact de différents facteurs écologiques sur la gamme d’hôtes des parasitoïdes. Pour cela, j’ai choisi comme modèle d’étude les parasitoïdes de pucerons, largement utilisés en lutte biologique, et j’ai étudié le rôle (1) des goulots d’étranglement génétique intervenant lors de l’introduction de petites populations de parasitoïdes dans de nouveaux environnements (par exemple, en lutte biologique classique), (2) de la phylogénie des hôtes et des plantes hôtes, (3) des effets bottom-up du stress hydrique chez les plantes hôtes des pucerons, (4) de la relation entre (i) la qualité des pucerons en tant qu’hôte pour la larve de parasitoïde et (ii) la qualité du puceron en tant que source de nourriture (miellat) pour l’adulte et (5) des interactions indirectes induites par la présence d’hôtes alternatifs sub-optimaux, sur la gamme d’hôte théorique des parasitoïdes. La phylogénie des hôtes et des plantes hôtes ont un effet direct sur la gamme d’hôtes des parasitoïdes tandis que les goulots d’étranglement génétique, les effets bottom-up de la plante, la nutrition des parasitoïdes adultes et les interactions indirectes semblent impacter seulement indirectement la gamme d’hôtes des parasitoïdes de pucerons via une modulation de la fitness et/ou taux de parasitisme. Chaque environnement étant différent, l’'étude de l'impact des facteurs écologiques sur la gamme d'hôtes des parasitoïdes est déterminante ; ce travail de thèse a permis de mieux comprendre certains mécanismes impliqués dans le fonctionnement des communautés de parasitoïdes dans les écosystèmes, ainsi que dans l’optimisation possible de programmes de lutte biologique.Parasitoids are insects whose adult females deposit eggs in, on or near hosts and immatures stages develop by host consumption. They are involved in host population regulation and are largely used in biological control to reduce the damages caused by pests in agroecosystems. Their ability to control pest populations mainly depends on their host range i.e., the number of host species enabling offspring production. The parasitoid host range has been largely studied and may depend on its ability to localize, select and sting their hosts (behavioral host range) and/or its ability to consume and circumvent the hosts physiological defenses (physiological host range). However, each ecosystem has his own biotic and abiotic characteristics that can modulate both behavioral and physiological traits of parasitoids but they implication in the host range modulation have rarely been tested. In this context, the objective of my thesis was to evaluate the impact of different ecological factors on parasitoid host ranges. More specifically, I studied the impact of (i) the genetic bottleneck due to the introduction of small parasitoid population in a new area (through classical biological control notably), (ii) the host and host plant phylogenies, (iii) the bottom-up effects of drought stress, (iv) the relationship between the quality of the host and its ability to produce food for the parasitoid and (v) the parasitoid-mediated indirect interactions between unsuitable and suitable hosts, on the aphid parasitoid host range (high implication in biological control). We demonstrated that the aphids and host plant phylogenies are strongly involved in shaping the ecological host range of parasitoids whereas the other factors tested may only modulate the parasitoid fitness and parasitism rate; which may, finally, indirectly modulate the parasitoid host range. Studied the impact of ecological factors on parasitoid host range seems determinant; this thesis enables to better understand some mechanisms involved in parasitoid community functioning and to potentially optimize biological control programs

    Parasitoid‐mediated indirect interactions between unsuitable and suitable hosts generate apparent predation in microcosm and modeling studies

    No full text
    International audienceParasitoids used as biological control agents often parasitize more than a single host species and these hosts tend to vary in suitability for offspring development. The population dynamics of parasitoids and hosts may be altered by these interactions, with outcomes dependent on the levels of suitability and acceptance of both host species. Parasitism of individuals of an unsuitable host species may indirectly increase populations of a suitable host species if eggs laid into unsuitable hosts do not develop into adult parasitoids. In this case, the unsuitable host is acting as an egg sink for parasitoids and this can reduce parasitism of suitable hosts under conditions of egg limitation. We studied parasitoid-mediated indirect interactions between two aphid hosts, Aphis glycines (the soybean aphid) and A. nerii (the milkweed, or oleander aphid), sharing the parasitoid Aphelinus certus. While both of these aphid species are accepted by A. certus, soybean aphid is a much more suitable host than milkweed aphid is. We observed a drastic reduction of parasitoid offspring production (45%) on the suitable host in the presence of the unsuitable host in microcosm assays. Aphelinus certus females laid eggs into the unsuitable hosts (Aphis nerii) in the presence of the suitable host leading to egg and/or time limitation and reduced fitness. The impact of these interactions on the equilibrium population sizes of the three interacting species was analyzed using a consumer-resource modeling approach. Both the results from the laboratory experiment and the modeling approaches identified apparent predation between soybean aphid and milkweed aphid, in which milkweed aphid acts as a sink for parasitoid eggs leading to an increase in the soybean aphid population. The presence of soybean aphids had the opposite effect on milkweed aphid populations as it supported increases in parasitoid abundance and thus reduced the fitness and abundance of this aphid species

    Impact of host endosymbionts on parasitoid host range — from mechanisms to communities

    No full text
    International audienceIn insects, bacterial endosymbionts are known to influence the ecology of their hosts by modifying interactions with natural enemies such as parasitoids. Symbionts can modulate both parasitoid behavioral and/or physiological traits as well as host behaviors and life-history traits. Together these suggest that endosymbionts may impact the host range of parasitoids. For example, endosymbionts may narrow parasitoid host range through first, reducing parasitoid ability to locate hosts and/or larval survival, second, affecting fitness traits of the emerging adult parasitoid and/or third, modulating the outcome of interference and exploitative competition between parasitoid species. From both a fundamental and applied point of view, these symbiotic effects would influence the ecology and evolution of parasitoids and associated population-level processes and ecosystem services (e.g. biocontrol)

    Geographic variation of host preference by the invasive tomato leaf miner Tuta absoluta: implications for host range expansion

    No full text
    International audienceHost range evolution is a central issue for pest management, particularly for invasive species of agricultural importance. The invasive tomato leaf miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), a key pest of tomato in Europe and recently in sub-Saharan Africa, is a good model organism to better understand underlying processes. We studied oviposition acceptance (proportion of females accepting a given plant as host for laying egg), oviposition preference (number of eggs laid by females on a given host plant) and performance (offspring development estimated as survival from egg to adult) of two T. absoluta populations originating from France (FRA) and Senegal (SEN) on six solanaceous plants (tomato, eggplant, Ethiopian eggplant, potato, sweet pepper and pepper). The ovipositional behavioral pattern differed between the two populations; the SEN population showed higher oviposition acceptance on Ethiopian eggplant and sweet pepper than the FRA population. In addition, SEN population showed higher oviposition preference toward sweet pepper and potato than the FRA population. By contrast, the FRA population showed higher preference toward tomato and eggplant than the SEN population. The two populations of T. absoluta performed best on tomato (the preferred host plant) and showed similar decreasing trend in performance when comparing the two populations on the various other host plants. For both populations, performance on solanaceous plant species was closely related to ovipositional response of females to these plants. The differences observed between the two populations may indicate an ongoing differentiation in the host range of T. absoluta in the two invaded areas, possibly due to the abundance of these alternative host crops in Senegal at a period when tomato crops are scarce

    Effects of abiotic factors on HIPV-Mediated interactions between plants and parasitoids

    No full text
    In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and "green leaf volatiles." Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change

    Effect of the endosymbiont Regiella insecticola on an aphid parasitoid

    No full text
    International audienceAbstract The importance of secondary endosymbionts on the resistance to parasitoids is increasingly recognized. Compared with Hamiltonella defensa, our understanding of the role of Regiella insecticola in protecting hosts against parasitic wasps is not well documented. In this study, we conducted experiments to determine whether R. insecticola in Sitobion avenae (the English grain aphid) could confer resistance to a parasitoid, Aphelinus asychis Walker, a major natural enemy in aphid field populations. With the genetic background controlled using clones, our results showed that infected aphids were more likely to be parasitized by A. asychis. However, compared with the uninfected controls, the weight of emerged wasps within 24 hours was significantly lower from infected aphids, suggesting that R. insecticola negatively affected the growth of the developing parasitoid larvae, although no difference in emergence rate between the treatments and the control was detected. These results will help to increase understanding of the dynamics of host-parasite-symbiont interactions
    corecore