688 research outputs found

    Visual-INS Using a Human Operator and Converted Measurements

    Get PDF
    A method human operated INS aiding is explored in which the pilot identifies and tracks a ground feature of unknown position over a short measurement epoch using an E/O sensor. One then refers to Visual-INS. In contrast to current research trends, a human operator is entrusted with visually tracking the ground feature. In addition, a less conventional measurement linearization technique is applied to generate “converted” measurements. A linear regression algorithm is then applied to the converted measurements providing an estimate of the INS horizontal velocity error and accelerometer biases. At the completion of the measurement epoch, the INS is corrected by subtracting out the estimated errors. Aiding the INS in this manner provides a significant improvement in the accuracy of the INS-provided aircraft navigation state estimates when compared to those of a free/unaided INS. A number of scenario are simulated including with and without a constrained flight path, with single vs. multiple ground feature tracking sessions, and with a navigation vs. tactical grade INS. Applications for this autonomous navigation approach include navigation in GPS denied environments and/or when RF emitting/receiving sensors are undesirable

    Energy and force analysis of Ti-6Al-4V linear friction welds for computational modeling input and validation data

    Get PDF
    The linear friction welding (LFW) process is finding increasing use as a manufacturing technology for the production of titanium alloy Ti-6Al-4V aerospace components. Computational models give an insight into the process, however, there is limited experimental data that can be used for either modeling inputs or validation. To address this problem, a design of experiments approach was used to investigate the influence of the LFW process inputs on various outputs for experimental Ti-6Al-4V welds. The finite element analysis software DEFORM was also used in conjunction with the experimental findings to investigate the heating of the workpieces. Key findings showed that the average interface force and coefficient of friction during each phase of the process were insensitive to the rubbing velocity; the coefficient of friction was not coulombic and varied between 0.3 and 1.3 depending on the process conditions; and the interface of the workpieces reached a temperature of approximately approximately 1273 K (1000 °C) at the end of phase 1. This work has enabled a greater insight into the underlying process physics and will aid future modeling investigations.EPSRC, Boeing Company, Welding Institut

    Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere

    Get PDF
    Numerical solutions of the incompressible magnetohydrodynamic (MHD) equations are reported for the interior of a rotating, perfectly-conducting, rigid spherical shell that is insulator-coated on the inside. A previously-reported spectral method is used which relies on a Galerkin expansion in Chandrasekhar-Kendall vector eigenfunctions of the curl. The new ingredient in this set of computations is the rigid rotation of the sphere. After a few purely hydrodynamic examples are sampled (spin down, Ekman pumping, inertial waves), attention is focused on selective decay and the MHD dynamo problem. In dynamo runs, prescribed mechanical forcing excites a persistent velocity field, usually turbulent at modest Reynolds numbers, which in turn amplifies a small seed magnetic field that is introduced. A wide variety of dynamo activity is observed, all at unit magnetic Prandtl number. The code lacks the resolution to probe high Reynolds numbers, but nevertheless interesting dynamo regimes turn out to be plentiful in those parts of parameter space in which the code is accurate. The key control parameters seem to be mechanical and magnetic Reynolds numbers, the Rossby and Ekman numbers (which in our computations are varied mostly by varying the rate of rotation of the sphere) and the amount of mechanical helicity injected. Magnetic energy levels and magnetic dipole behavior are exhibited which fluctuate strongly on a time scale of a few eddy turnover times. These seem to stabilize as the rotation rate is increased until the limit of the code resolution is reached.Comment: 26 pages, 17 figures, submitted to New Journal of Physic

    Design and testing of a novel unoccupied aircraft system for the collection of forest canopy samples

    Get PDF
    Unoccupied Aircraft Systems (UAS) are beginning to replace conventional forest plot mensuration through their use as low-cost and powerful remote sensing tools for monitoring growth, estimating biomass, evaluating carbon stocks and detecting weeds; however, physical samples remain mostly collected through time-consuming, expensive and potentially dangerous conventional techniques. Such conventional techniques include the use of arborists to climb the trees to retrieve samples, shooting branches with firearms from the ground, canopy cranes or the use of pole-mounted saws to access lower branches. UAS hold much potential to improve the safety, efficiency, and reduce the cost of acquiring canopy samples. In this work, we describe and demonstrate four iterations of 3D printed canopy sampling UAS. This work includes detailed explanations of designs and how each iteration informed the design decisions in the subsequent iteration. The fourth iteration of the aircraft was tested for the collection of 30 canopy samples from three tree species: eucalyptus pulchella, eucalyptus globulus and acacia dealbata trees. The collection times ranged from 1 min and 23 s, up to 3 min and 41 s for more distant and challenging to capture samples. A vision for the next iteration of this design is also provided. Future work may explore the integration of advanced remote sensing techniques with UAS-based canopy sampling to progress towards a fully-automated and holistic forest information capture system

    The Post-ICU presentation screen (PICUPS) and rehabilitation prescription (RP) for intensive care survivors part II: Clinical engagement and future directions for the national Post-Intensive care Rehabilitation Collaborative

    Get PDF
    Background: Many Intensive Care Unit (ICU) survivors suffer from a multi- system disability, termed the post-intensive care syndrome. There is no current national coordination of either rehabilitation pathways or related data collection for them. In the last year, the need for tools to systematically identify the multidisciplinary rehabilitation needs of severely affected COVID-19 survivors has become clear. Such tools offer the opportunity to improve rehabilitation for all critical illness survivors through provision of a personalised Rehabilitation Prescription (RP). The initial development and secondary refinement of such an assessment and data tools is described in the linked paper. We report here the clinical and workforce data that was generated as a result. Methods: Prospective service evaluation of 26 acute hospitals in England using the Post-ICU Presentation Screen (PICUPS) tool and the RP. The PICUPS tool comprised items in domains of a) Medical and essential care, b) Breathing and nutrition; c) Physical movement and d) Communication, cognition and behaviour. Results: No difference was seen in total PICUPS scores between patients with or without COVID-19 (77 (IQR 60-92) vs. 84 (IQR 68-97); Mann-Whitney z = −1.46, p = 0.144. A network analysis demonstrated that requirements for physiotherapy, occupational therapy, speech and language therapy, dietetics and clinical psychology were closely related and unaffected by COVID-19 infection status. A greater proportion of COVID-19 patients were referred for inpatient rehabilitation (13% vs. 7%) and community-based rehabilitation (36% vs.15%). The RP informed by the PICUPS tool generally specified a greater need for multi-professional input when compared to rehabilitation plans instituted. Conclusions: The PICUPS tool is feasible to implement as a screening mechanism for post-intensive care syndrome. No differences are seen in the rehabilitation needs of patients with and without COVID-19 infection. The RP could be the vehicle that drives the professional interventions across the transitions from acute to community care. No single discipline dominates the rehabilitation requirements of these patients, reinforcing the need for a personalised RP for critical illness survivors

    The post-ICU presentation screen (PICUPS) and rehabilitation prescription (RP) for intensive care survivors part I: Development and preliminary clinimetric evaluation

    Get PDF
    BANCKGROUND: Patients who have had prolonged stays in intensive care have ongoing rehabilitation needs. This is especially true of COVID-19 ICU patients, who can suffer diverse long-term ill effects. Currently there is no systematic data collection to guide the needs for therapy input for either of these groups nor to inform planning and development of rehabilitation services. These issues could be resolved in part by the systematic use of a clinical tool to support decision-making as patients progress from the Intensive Care Unit (ICU), through acute hospital care and onwards into rehabilitation. We describe (i) the development of such a tool (the Post-ICU Presentation Screen (PICUPS)) and (ii) the subsequent preparation of a person-centred Rehabilitation Prescription (RP) to travel with the patient as they continue down the care pathway. METHODS: PICUPS development was led by a core group of experienced clinicians representing the various disciplines involved in post-ICU rehabilitation. Key constructs and item-level descriptors were identified by group consensus. Piloting was performed as part of wider clinical engagement in 26 acute hospitals across England. Development and validation of such a tool requires clinimetric analysis, and this was based on classical test theory. Teams also provided feedback about the feasibility and utility of the tool. RESULTS: Initial PICUPS design yielded a 24-item tool. In piloting, a total of 552 records were collated from 314 patients, of which 121 (38.5%) had COVID-19. No obvious floor or ceiling effects were apparent. Exploratory factor analysis provided evidence of uni-dimensionality with strong loading on the first principal component accounting for 51% of the variance and Cronbach’s alpha for the full-scale score 0.95 – although a 3-factor solution accounted for a further 21%. The PICUPS was responsive to change both at full scale- and item-level. In general, positive responses were seen regarding the tool’s ability to describe the patients during their clinical course, engage and flag the relevant professionals needed, and to inform what should be included in an RP. CONCLUSIONS: The PICUPS tool has robust scaling properties as a clinical measure and is potentially useful as a tool for identifying rehabilitation needs as patients step down from ICU and acute hospital care

    The role of tool geometry in process damped milling

    Get PDF
    The complex interaction between machining structural systems and the cutting process results in machining instability, so called chatter. In some milling scenarios, process damping is a useful phenomenon that can be exploited to mitigate chatter and hence improve productivity. In the present study, experiments are performed to evaluate the performance of process damped milling considering different tool geometries (edge radius, rake and relief angles and variable helix/pitch). The results clearly indicate that variable helix/pitch angles most significantly increase process damping performance. Additionally, increased cutting edge radius moderately improves process damping performance, while rake and relief angles have a smaller and closely coupled effect

    Social disorganization and history of child sexual abuse against girls in sub-Saharan Africa : a multilevel analysis

    Get PDF
    Background: Child sexual abuse (CSA) is a considerable public health problem. Less focus has been paid to the role of community level factors associated with CSA. The aim of this study was to examine the association between neighbourhood-level measures of social disorganization and CSA. Methods: We applied multiple multilevel logistic regression analysis on Demographic and Health Survey data for 6,351 adolescents from six countries in sub-Saharan Africa between 2006 and 2008. Results: The percentage of adolescents that had experienced CSA ranged from 1.04% to 5.84%. There was a significant variation in the odds of reporting CSA across the communities, suggesting 18% of the variation in CSA could be attributed to community level factors. Respondents currently employed were more likely to have reported CSA than those who were unemployed (odds ratio [OR] = 2.05, 95% confidence interval [CI] 1.48 to 2.83). Respondents from communities with a high family disruption rate were 57% more likely to have reported CSA (OR=1.57, 95% CI 1.14 to 2.16). Conclusion: We found that exposure to CSA was associated with high community level of family disruption, thus suggesting that neighbourhoods may indeed have significant important effects on exposure to CSA. Further studies are needed to explore pathways that connect the individual and neighbourhood levels, that is, means through which deleterious neighbourhood effects are transmitted to individuals
    • 

    corecore